Anticancer and Anti-Inflammatory Properties of Ganoderma lucidum Extract Effects on Melanoma and Triple-Negative Breast Cancer Treatment

Antonio Barbieri, Vincenzo Quagliariello, Vitale Del Vecchio, Michela Falco, Antonio Luciano, Nagoth Joseph Amruthraj, Guglielmo Nasti, Alessandro Ottaiano, Massimiliano Berretta, Rosario Vincenzo Iaffaioli, Claudio Arra, Antonio Barbieri, Vincenzo Quagliariello, Vitale Del Vecchio, Michela Falco, Antonio Luciano, Nagoth Joseph Amruthraj, Guglielmo Nasti, Alessandro Ottaiano, Massimiliano Berretta, Rosario Vincenzo Iaffaioli, Claudio Arra

Abstract

Among the most important traditional medicinal fungi, Ganoderma lucidum has been used as a therapeutic agent for the treatment of numerous diseases, including cancer, in Oriental countries. The aim of this study is to investigate the anti-inflammatory, anticancer and anti-metastatic activities of Ganoderma lucidum extracts in melanoma and triple-negative breast cancer cells. Ganoderma lucidum extracts were prepared by using common organic solvents; MDA-MB 231 and B16-F10 cell lines were adopted as cellular models for triple-negative breast cancer and melanoma and characterized for cell viability, wound-healing assay and measurement of cytokines secreted by cancer cells under pro-inflammatory conditions (incubation with lipopolysaccharide, LPS) and pretreatment with Ganoderma lucidum extract at different concentrations. Our study demonstrates, for the first time, how Ganoderma lucidum extracts can significantly inhibit the release of IL-8, IL-6, MMP-2 and MMP-9 in cancer cells under pro-inflammatory condition. Interestingly, Ganoderma lucidum extracts significantly also decrease the viability of both cancer cells in a time- and concentration-dependent manner, with abilities to reduce cell migration over time, which is correlated with a lower release of matrix metalloproteases. Taken together, these results indicate the possible use of Ganoderma lucidum extract for the therapeutic management of melanoma and human triple-negative breast cancer.

Keywords: Ganoderma lucidum; breast cancer; cell viability; curcumin; cytokines; inflammation; melanoma.

Conflict of interest statement

The authors declare no conflict of interest. Any role of the funding sponsors in the design of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Wound-healing assay. B16F10 and MDA-MB231 cells were plated on a six-well plate. The cell layer was scratched and incubated with Ganoderma lucidum at different concentrations (1 µg/mL; 125 µg/mL; 250 µg/mL; 500 µg/mL; 1000 µg/mL) for 48 h. The images were captured by a Leica microsystem microscope with phase contrast. The experiment was repeated at least three times. CTR = control.
Figure 2
Figure 2
MTT assay. (A) Inhibitory effect of curcumin (IC50 = 10 µM); (B,C) MDA-MB231 and B16-F10 cells were plated on a 96-well plate and incubated with Ganoderma lucidum extracts at different concentrations (1 µg/mL; 125 µg/mL; 250 µg/mL; 500 µg/mL; 1000 µg/mL), and also combined with curcumin 10 µM for 48 h. The experiment was repeated at least three times. CTR = control; Et-OH = Ethanolic extract; DMSO = dimethyl sulfoxide extract; CURC = curcumin.
Figure 3
Figure 3
ELISA assay. The effect of DMSO Ganoderma lucidum extract on the concentration of IL-6, IL-8, MMP-2 and MMP-9. (A) Triple-negative breast cancer cells were treated with or without 2 and 5 mg/mL solution of DMSO Ganoderma lucidum extract for 30 min before exposure to lipopolysaccharide (50 ng/mL) for 12 h; (B) Melanoma cells were treated with or without 2 and 5 mg/mL solution of DMSO Ganoderma lucidum extract for 30 min before exposure to LPS (50 ng/mL) for 12 h. * (p ≤ 0.01).
Figure 3
Figure 3
ELISA assay. The effect of DMSO Ganoderma lucidum extract on the concentration of IL-6, IL-8, MMP-2 and MMP-9. (A) Triple-negative breast cancer cells were treated with or without 2 and 5 mg/mL solution of DMSO Ganoderma lucidum extract for 30 min before exposure to lipopolysaccharide (50 ng/mL) for 12 h; (B) Melanoma cells were treated with or without 2 and 5 mg/mL solution of DMSO Ganoderma lucidum extract for 30 min before exposure to LPS (50 ng/mL) for 12 h. * (p ≤ 0.01).

References

    1. Russell R., Paterson M. Ganoderma—A therapeutic fungal biofactory. Phytochemistry. 2006;67:1985–2001.
    1. Kao C.H.J., Jesuthasan A.C., Bishop K.S., Glucina M.P., Ferguson L.P. Anti-cancer activities of Ganoderma lucidum: Active ingredients and pathways. Funct. Foods Health Dis. 2013;3:48–65.
    1. Lin Z.B. Cellular and molecular mechanisms of immuno-modulation by Ganoderma lucidum. J. Pharmacol. Sci. 2005;99:144–153. doi: 10.1254/jphs.CRJ05008X.
    1. Ko H.H., Hung C.F., Wang J.P., Lin C.N. Antiinflammatory triterpenoids and steroids from Ganoderma lucidum and GANODERMA tsugae. Phytochemistry. 2008;69:234–239. doi: 10.1016/j.phytochem.2007.06.008.
    1. Zhang W., Tao J., Yang X., Yang Z., Zhang L., Liu H., Wu K., Wu J. Antiviral effects of two Ganoderma lucidum triterpenoids against enterovirus 71 infection. Biochem. Biophys. Res. Commun. 2014;449:307–312. doi: 10.1016/j.bbrc.2014.05.019.
    1. Sanodiya B.S., Thakur G.S., Baghel R.K., Prasad G.B., Bisen P.S. Ganoderma lucidum: A potent pharmacological macrofungus. Curr. Pharm. Biotechnol. 2009;10:717–742. doi: 10.2174/138920109789978757.
    1. Kao C.H.J., Bishop K.S., Xu Y., Han D.Y., Murray P.M., Marlow G.J., Ferguson L.R. Identification of Potential Anticancer Activities of Novel Ganoderma lucidum Extracts Using Gene Expression and Pathway Network Analysis. Genom. Insights. 2016;9:1–16.
    1. Bimonte S., Barbieri A., Leongito M., Piccirillo M., Giudice A., Pivonello C., de Angelis C., Granata V., Palaia R., Izzo F. Curcumin AntiCancer Studies in Pancreatic Cancer. Nutrients. 2016;8:433. doi: 10.3390/nu8070433.
    1. Bimonte S., Barbieri A., Palma G., Rea D., Luciano A., D’Aiuto M., Arra C., Izzo F. Dissecting the role of curcumin in tumour growth and angiogenesis in mouse model of human breast cancer. BioMed Res. Int. 2015 doi: 10.1155/2015/878134.
    1. Bimonte S., Barbieri A., Palma G., Luciano A., Rea D., Arra C. Curcumin inhibits tumor growth and angiogenesis in an orthotopic mouse model of human pancreatic cancer. BioMed Res. Int. 2013 doi: 10.1155/2013/810423.
    1. Vecchione R., Quagliariello V., Calabria D., Calcagno V., de Luca E., Iaffaioli R.V., Netti P.A. Curcumin bioavailability from oil in water nano-emulsions: In vitro and in vivo study on the dimensional, compositional and interactional dependence. J. Control. Release. 2016;233:88–100. doi: 10.1016/j.jconrel.2016.05.004.
    1. Shi Z., Yang W.M., Chen L.P., Yang D.H., Zhou Q., Zhu J., Chen J.J., Huang R.C., Chen Z.S., Huang R.P. Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res. Treat. 2012;135:737–747. doi: 10.1007/s10549-012-2196-0.
    1. Luo Y., Ellis L.Z., Dallaglio K., Takeda M., Robinson W.A., Robinson S.E., Liu W., Lewis K.D., McCarter M.D., Gonzalez R., et al. Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance. J. Investig. Dermatol. 2012;132:2440–2450. doi: 10.1038/jid.2012.161.
    1. Weng C.J., Yen G.C. The in vitro and in vivo experimental evidences disclose the chemopreventive effects of Ganoderma lucidum on cancer invasion and metastasis. Clin. Exp. Metastasis. 2010;27:361–369. doi: 10.1007/s10585-010-9334-z.
    1. Ruan W., Wei Y., Popovich D.G. Distinct responses of cytotoxic Ganoderma lucidum triterpenoids in human carcinoma cells. Phytother. Res. 2015;29:1744–1752. doi: 10.1002/ptr.5426.
    1. Chen H.S., Tsai Y.F., Lin S., Lin C.C., Khoo K.H., Lin C.H. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg. Med. Chem. 2004;12:5595–5601. doi: 10.1016/j.bmc.2004.08.003.
    1. Liang Z.E., Yi Y.J., Guo Y.T., Wang R.C., Hu Q.L., Xiong X.Y. Inhibition of migration and induction of apoptosis in LoVo human colon cancer cells by polysaccharides from Ganoderma lucidum. Mol. Med. Rep. 2015;12:7629–7636. doi: 10.3892/mmr.2015.4345.
    1. Hoejberg L., Bastholt L., Johansen J.S., Christensen I.J., Gehl J., Schmidt H. Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res. 2012;22:287–293. doi: 10.1097/CMR.0b013e3283550aa5.
    1. Dethlefsen C., Højfeldt G., Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res. Treat. 2013;138:657–664. doi: 10.1007/s10549-013-2488-z.
    1. Salgado R., Junius S., Benoy I., Van Dam P., Vermeulen P., Van Marck E., Huget P., Dirix L.Y. Circulating interleukin-6 predicts survival in patients with metastatic breast cancer. Int. J. Cancer. 2003;103:642–646. doi: 10.1002/ijc.10833.
    1. Hoejberg L., Bastholt L., Schmidt H. Interleukin-6 and melanoma. Melanoma Res. 2012;22:327–333. doi: 10.1097/CMR.0b013e3283543d72.
    1. Gutman M., Even-Sapir E., Merimsky O., Trejo L., Klausner J.M., Lev-Chelouche D. The role of interleukin-8 in the initiation and progression of human cutaneous melanoma. Anticancer Res. 2002;22:3395–3398.
    1. Benoy I.H., Salgado R., van Dam P., Geboers K., van Marck E., Scharpé S., Vermeulen P.B., Dirix L.Y. Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin. Cancer Res. 2004;10:7157–7162. doi: 10.1158/1078-0432.CCR-04-0812.
    1. Wang H.H., McIntosh A.R., Hasinoff B.B., MacNeil B., Rector E., Nance D.M., Orr F.W. Regulation of B16F1 melanoma cell metastasis by inducible functions of the hepatic microvasculature. Eur. J. Cancer. 2002;38:1261–1270. doi: 10.1016/S0959-8049(02)00039-4.
    1. Ahmed A., Wang J.H., Redmond H.P. Silencing of TLR4 increases tumor progression and lung metastasis in a murine model of breast cancer. Ann. Surg. Oncol. 2013;20(Suppl. S3):S389–S396. doi: 10.1245/s10434-012-2595-9.

Source: PubMed

3
Subscribe