Predicting amyloid status in corticobasal syndrome using modified clinical criteria, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography

Sharon J Sha, Pia M Ghosh, Suzee E Lee, Chiara Corbetta-Rastelli, Willian J Jagust, John Kornak, Katherine P Rankin, Lea T Grinberg, Harry V Vinters, Mario F Mendez, Dennis W Dickson, William W Seeley, Marilu Gorno-Tempini, Joel Kramer, Bruce L Miller, Adam L Boxer, Gil D Rabinovici, Sharon J Sha, Pia M Ghosh, Suzee E Lee, Chiara Corbetta-Rastelli, Willian J Jagust, John Kornak, Katherine P Rankin, Lea T Grinberg, Harry V Vinters, Mario F Mendez, Dennis W Dickson, William W Seeley, Marilu Gorno-Tempini, Joel Kramer, Bruce L Miller, Adam L Boxer, Gil D Rabinovici

Abstract

Introduction: Group comparisons demonstrate greater visuospatial and memory deficits and temporoparietal-predominant degeneration on neuroimaging in patients with corticobasal syndrome (CBS) found to have Alzheimer's disease (AD) pathology versus those with underlying frontotemporal lobar degeneration (FTLD). The value of these features in predicting underlying AD pathology in individual patients is unknown. The goal of this study is to evaluate the utility of modified clinical criteria and visual interpretations of magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) for predicting amyloid deposition (as a surrogate of Alzheimer's disease neuropathology) in patients presenting with CBS.

Methods: In total, 25 patients meeting CBS core criteria underwent amyloid (Pittsburgh compound B; PIB) PET scans. Clinical records, MRI, and FDG scans were reviewed blinded to PIB results. Modified clinical criteria were used to classify CBS patients as temporoparietal variant CBS (tpvCBS) or frontal variant CBS (fvCBS). MRI and FDG-PET were classified based on the predominant atrophy/hypometabolism pattern (frontal or temporoparietal).

Results: A total of 9 out of 13 patients classified as tpvCBS were PIB+, compared to 2out of 12 patients classified as fvCBS (P < 0.01, sensitivity 82%, specificity 71% for PIB+ status). Visual MRI reads had 73% sensitivity and 46% specificity for PIB+ status with moderate intra-rater reliability (Cohen's kappa = 0.42). Visual FDG reads had higher sensitivity (91%) for PIB+ status with perfect intra-rater reliability (kappa = 1.00), though specificity was low (50%). PIB results were confirmed in all 8 patients with available histopathology (3 PIB+ with confirmed AD, 5 PIB- with FTLD).

Conclusions: Splitting CBS patients into frontal or temporoparietal clinical variants can help predict the likelihood of underlying AD, but criteria require further refinement. Temporoparietal-predominant neuroimaging patterns are sensitive but not specific for AD.

Figures

Figure 1
Figure 1
Typical FDG PET metabolic patterns and MRI atrophy patterns. FDG, fluorodeoxyglucose; MRI, magnetic resonance imaging; PET, positron emission tomography.
Figure 2
Figure 2
Voxel-wise FDG comparisons. Patterns of hypometabolism in CBS-PIB- and CBS-PIB+ compared with normal controls (NC) and compared with each other. Voxel-wise comparisons included sex, education and age as nuisance variables. T-score maps are rendered on the ch2.better template. All results are presented at a threshold of P <0.001, uncorrected for multiple comparisons. CBS-PIB-, corticobasal syndrome Pittsburgh compound negative; CBS-PIB+, corticobasal syndrome Pittsburgh compound B positive; FDG, fluorodeoxyglucose.
Figure 3
Figure 3
Neuropathology of patient 13. A. Angular gyrus immunostained against beta-amyloid (4G8). Arrows indicate neuritic plaques and arrowhead indicates cerebral amyloid angiopathy, a typical finding in Alzheimer’s disease patients (Scale bar: 250 μm); B. Inferior temporal gyrus immunostained against phospho-tau (CP-13). The arrows point to neurofibrillary tangles, characteristic of AD. Note their flame-like shape (Scale bar: 500 μm); C. Precentral gyrus immunostained against phospho-tau (CP-13). Arrows indicate ballooned neurons in the cortical deep layers, commonly seen in CBD (Scale bar: 500 μm); D. Precentral gyrus immunostained against phospho-tau (CP-13). The line divides the cortex to the right (cx) and the white matter to the left (WM). Note the striking positivity of white matter for phospho-tau, a feature seen in CBD but not in other tauopathies or AD. AD, Alzheimer’s disease; CBD, corticobasal degradation.

References

    1. Gibb WR, Luthert PJ, Marsden CD. Corticobasal degeneration. Brain. 1989;112:1171–92. doi: 10.1093/brain/112.5.1171.
    1. Riley DE, Lang AE, Lewis A, Resch L, Ashby P, Hornykiewicz O, et al. Cortical-basal ganglionic degeneration. Neurology. 1990;40:1203–12. doi: 10.1212/WNL.40.8.1203.
    1. Rebeiz JJ, Kolodny EH, Richardson EP., Jr Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol. 1968;18:20–33. doi: 10.1001/archneur.1968.00470310034003.
    1. Chand P, Grafman J, Dickson D, Ishizawa K, Litvan I. Alzheimer’s disease presenting as corticobasal syndrome. Mov Disord. 2006;21:2018–22. doi: 10.1002/mds.21055.
    1. Doran M, Du Plessis D, Enevoldson T, Fletcher N, Ghadiali E, Larner A. Pathological heterogeneity of clinically diagnosed corticobasal degeneration. J Neurol Sci. 2003;216:127–34. doi: 10.1016/S0022-510X(03)00232-6.
    1. Alladi S, Xuereb J, Bak T, Nestor P, Knibb J, Patterson K, et al. Focal cortical presentations of Alzheimer’s disease. Brain. 2007;130:2636–45. doi: 10.1093/brain/awm213.
    1. Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, Dearmond SJ, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70:327–40. doi: 10.1002/ana.22424.
    1. Boeve BF, Maraganore DM, Parisi JE, Ahlskog JE, Graff-Radford N, Caselli RJ, et al. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology. 1999;53:795–800. doi: 10.1212/WNL.53.4.795.
    1. Shelley BP, Hodges JR, Kipps CM, Xuereb JH, Bak TH. Is the pathology of corticobasal syndrome predictable in life? Mov Disord. 2009;24:1593–9. doi: 10.1002/mds.22558.
    1. Josephs KA, Whitwell JL, Boeve BF, Knopman DS, Petersen RC, Hu WT, et al. Anatomical differences between CBS-corticobasal degeneration and CBS-Alzheimer’s disease. Mov Disord. 2010;25:1246–52. doi: 10.1002/mds.23062.
    1. Whitwell J, Jack C, Jr, Boeve B, Parisi J, Ahlskog J, Drubach D, et al. Imaging correlates of pathology in corticobasal syndrome. Neurology. 2010;75:1879–87. doi: 10.1212/WNL.0b013e3181feb2e8.
    1. Hu WT, Rippon GW, Boeve BF, Knopman DS, Petersen RC, Parisi JE, et al. Alzheimer’s disease and corticobasal degeneration presenting as corticobasal syndrome. Mov Disord. 2009;24:1375–9. doi: 10.1002/mds.22574.
    1. Burrell JR, Hornberger M, Villemagne VL, Rowe CC, Hodges JR. Clinical profile of PiB-positive corticobasal syndrome. PLoS One. 2013;8:e61025. doi: 10.1371/journal.pone.0061025.
    1. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B, et al. Criteria for the diagnosis of corticobasal degeneration. Neurology. 2013;80:496–503. doi: 10.1212/WNL.0b013e31827f0fd1.
    1. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19. doi: 10.1002/ana.20009.
    1. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–14. doi: 10.1212/WNL.0b013e31821103e6.
    1. Mormino E, Kluth J, Madison C, Rabinovici G, Baker S, Miller B, et al. Episodic memory loss is related to hippocampal-mediated β-amyloid deposition in elderly subjects. Brain. 2009;132:1310–23. doi: 10.1093/brain/awn320.
    1. Rabinovici G, Rosen H, Alkalay A, Kornak J, Furst A, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42. doi: 10.1212/WNL.0b013e31823b9c5e.
    1. Boxer AL, Geschwind MD, Belfor N, Gorno-Tempini ML, Schauer GF, Miller BL, et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol. 2006;63:81–6. doi: 10.1001/archneur.63.1.81.
    1. Ellison D, Love S, Chimelli LM, Harding B, Lowe JS, Vinters HV, et al. Neuropathology: a reference text of CNS pathology. 3. Edinburgh, Scotland: Mosby; 2013.
    1. Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. The National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s Disease. Neurobiol Aging. 1997;18:S1-2.
    1. Dickson DW, Bergeron C, Chin SS, Duyckaerts C, Horoupian D, Ikeda K, et al. Office of Rare Diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002;61:935–46.
    1. McKeith IG, Dickson DW, Lowe J, Emre M, O’Brien JT, Feldman H, et al. Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology. 2005;65:1863–72. doi: 10.1212/01.wnl.0000187889.17253.b1.
    1. Bettcher BM, Wilheim R, Rigby T, Green R, Miller JW, Racine CA, et al. C-reactive protein is related to memory and medial temporal brain volume in older adults. Brain Behav Immun. 2012;26:103–8. doi: 10.1016/j.bbi.2011.07.240.
    1. Rosen HJ, Gorno-Tempini ML, Goldman WP, Perry RJ, Schuff N, Weiner M, et al. Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology. 2002;58:198–208. doi: 10.1212/WNL.58.2.198.
    1. Zhang Y, Schuff N, Ching C, Tosun D, Zhan W, Nezamzadeh M, et al. Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer’s disease and frontotemporal dementia. Int J Alzheimers Dis. 2011;2011:546871.
    1. SPM. .
    1. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16:834–40. doi: 10.1097/00004647-199609000-00008.
    1. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25:1528–47. doi: 10.1038/sj.jcbfm.9600146.
    1. Lehmann M, Ghosh PM, Madison C, Laforce R, Corbetta-Rastelli C, Weiner MW, et al. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain. 2013;136:844–58. doi: 10.1093/brain/aws327.
    1. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi: 10.1006/nimg.2001.0978.
    1. Mathew R, Bak TH, Hodges JR. Diagnostic criteria for corticobasal syndrome: a comparative study. J Neurol Neurosurg Psychiatry. 2012;83:405–10. doi: 10.1136/jnnp-2011-300875.
    1. Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain. 2007;130:2616–35. doi: 10.1093/brain/awm177.
    1. Ukmar M, Moretti R, Torre P, Antonello R, Longo R, Bava A. Corticobasal degeneration: structural and functional MRI and single-photon emission computed tomography. Neuroradiology. 2003;45:708–12. doi: 10.1007/s00234-003-1058-1.
    1. Koyama M, Yagishita A, Nakata Y, Hayashi M, Bandoh M, Mizutani T. Imaging of corticobasal degeneration syndrome. Neuroradiology. 2007;49:905–12. doi: 10.1007/s00234-007-0265-6.
    1. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62:42–52. doi: 10.1016/j.neuron.2009.03.024.
    1. Laforce R, Jr, Rabinovici GD. Amyloid imaging in the differential diagnosis of dementia: review and potential clinical applications. Alzheimers Res Ther. 2011;3:31. doi: 10.1186/alzrt93.
    1. Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron. 2013;79:1094–108. doi: 10.1016/j.neuron.2013.07.037.
    1. Geser F, Prvulovic D, O’Dwyer L, Hardiman O, Bede P, Bokde A, et al. On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol. 2011;95:649–62. doi: 10.1016/j.pneurobio.2011.08.011.
    1. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9. doi: 10.1016/j.jalz.2011.03.005.

Source: PubMed

3
Subscribe