Polyphenols: benefits to the cardiovascular system in health and in aging

Sandhya Khurana, Krishnan Venkataraman, Amanda Hollingsworth, Matthew Piche, T C Tai, Sandhya Khurana, Krishnan Venkataraman, Amanda Hollingsworth, Matthew Piche, T C Tai

Abstract

Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging.

Figures

Figure 1
Figure 1
Mechanisms of protection by polyphenols in the cardiovascular system, in disease and in aging.

References

    1. Lindlahr V.H. How to Win and Keep Health with Foods. Kessinger Publishing; Whitefish, Montana, MT, USA: 2006. p. 132.
    1. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498.
    1. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79:727–747.
    1. Arts I.C.W., Hollman P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005;81:317S–325S.
    1. Renaud S., de Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523–1526. doi: 10.1016/0140-6736(92)91277-F.
    1. Opie L.H., Lecour S. The red wine hypothesis: From concepts to protective signalling molecules. Eur. Heart J. 2007;28:1683–1693. doi: 10.1093/eurheartj/ehm149.
    1. Huang C.L., Sumpio B.E. Olive oil, the mediterranean diet, and cardiovascular health. J. Am. Coll. Surg. 2008;207:407–416. doi: 10.1016/j.jamcollsurg.2008.02.018.
    1. Dhalla N.S., Temsah R.M., Netticadan T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000;18:655–673. doi: 10.1097/00004872-200018060-00002.
    1. Hamilton C.A., Miller W.H., Al-Benna S., Brosnan M.J., Drummond R.D., McBride M.W., Dominiczak A.F. Strategies to reduce oxidative stress in cardiovascular disease. Clin. Sci. (Lond.) 2004;106:219–234. doi: 10.1042/CS20030379.
    1. Brieger K., Schiavone S., Miller F.J., Krause K.H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012;142:w13659.
    1. Selvaraju V., Joshi M., Suresh S., Sanchez J.A., Maulik N., Maulik G. Diabetes, oxidative stress, molecular mechanism, and cardiovascular disease—An overview. Toxicol. Mech. Methods. 2012;22:330–335. doi: 10.3109/15376516.2012.666648.
    1. Sugamura K., Keaney J.F., Jr. Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med. 2011;51:978–992. doi: 10.1016/j.freeradbiomed.2011.05.004.
    1. Venkataraman K., Khurana S., Tai T.C. Oxidative stress in aging-matters of the heart and mind. Int. J. Mol. Sci. 2013;14:17897–17925. doi: 10.3390/ijms140917897.
    1. Raedschelders K., Ansley D.M., Chen D.D.Y. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol. Ther. 2012;133:230–255. doi: 10.1016/j.pharmthera.2011.11.004.
    1. Cai H., Harrison D.G. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ. Res. 2000;87:840–844. doi: 10.1161/01.RES.87.10.840.
    1. Paravicini T.M., Touyz R.M. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities. Diabetes Care. 2008;31:S170–S180. doi: 10.2337/dc08-s247.
    1. Hansson G.K., Libby P. The immune response in atherosclerosis: A double-edged sword. Nat. Rev. Immunol. 2006;6:508–519. doi: 10.1038/nri1882.
    1. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr. 2006;83:456S–460S.
    1. Huo Y., Ley K.F. Role of platelets in the development of atherosclerosis. Trends Cardiovasc. Med. 2004;14:18–22. doi: 10.1016/j.tcm.2003.09.007.
    1. Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc. Res. 2004;61:498–511. doi: 10.1016/j.cardiores.2003.11.036.
    1. Iijima K., Yoshizumi M., Hashimoto M., Kim S., Eto M., Ako J., Liang Y.Q., Sudoh N., Hosoda K., Nakahara K., et al. Red wine polyphenols inhibit proliferation of vascular smooth muscle cells and downregulate expression of cyclin A gene. Circulation. 2000;101:805–811. doi: 10.1161/01.CIR.101.7.805.
    1. Maulik S.K., Kumar S. Oxidative stress and cardiac hypertrophy: A review. Toxicol. Mech. Methods. 2012;22:359–366. doi: 10.3109/15376516.2012.666650.
    1. Daou G.B., Srivastava A.K. Reactive oxygen species mediate Endothelin-1-induced activation of ERK1/2, PKB, and Pyk2 signaling, as well as protein synthesis, in vascular smooth muscle cells. Free Radic. Biol. Med. 2004;37:208–215. doi: 10.1016/j.freeradbiomed.2004.04.018.
    1. Schiffrin E.L. Role of endothelin-1 in hypertension. 1999;34:876–881.
    1. Williams B. Angiotensin II and the pathophysiology of cardiovascular remodeling. Am. J. Cardiol. 2001;87:10–17. doi: 10.1016/S0002-9149(01)01507-7.
    1. Dhalla N.S., Elmoselhi A.B., Hata T., Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc. Res. 2000;47:446–456. doi: 10.1016/S0008-6363(00)00078-X.
    1. Borradaile N.M., Pickering J.G. NAD(+), sirtuins, and cardiovascular disease. Curr. Pharm. Des. 2009;15:110–117. doi: 10.2174/138161209787185742.
    1. Habauzit V., Morand C. Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: An update for clinicians. Ther. Adv. Chronic Dis. 2012;3:87–106. doi: 10.1177/2040622311430006.
    1. Sies H. Polyphenols and health: Update and perspectives. Arch. Biochem. Biophys. 2010;501:2–5. doi: 10.1016/j.abb.2010.04.006.
    1. Rodrigo R., Miranda A., Vergara L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta. 2011;412:410–424. doi: 10.1016/j.cca.2010.11.034.
    1. Cao Z., Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: Protection against oxidative and electrophilic injury. Eur. J. Pharmacol. 2004;489:39–48. doi: 10.1016/j.ejphar.2004.02.031.
    1. Ungvari Z., Bagi Z., Feher A., Recchia F.A., Sonntag W.E., Pearson K., de Cabo R., Csiszar A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am. J. Physiol. Heart Circ. Physiol. 2010;299:H18–H24. doi: 10.1152/ajpheart.00260.2010.
    1. Stangl V., Dreger H., Stangl K., Lorenz M. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc. Res. 2012;73:348–358.
    1. Vauzour D., Rodriguez-Mateos A., Corona G., Oruna-Concha M.J., Spencer J.P.E. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2010;2:1106–1131. doi: 10.3390/nu2111106.
    1. Rahman I., Biswas S.K., Kirkham P.A. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. 2006;72:1439–1452. doi: 10.1016/j.bcp.2006.07.004.
    1. Middleton E., Kandaswami C., Theoharides T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000;52:673–751.
    1. Scalbert A., Johnson I.T., Saltmarsh M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005;81:215–217.
    1. Parks D.A., Booyse F.M. Cardiovascular protection by alcohol and polyphenols—Role of nitric oxide. 2002;957:115–121.
    1. Basu A. Berries: Emerging impact on cardiovascular health. Nutr. Rev. 2011;68:168–177. doi: 10.1111/j.1753-4887.2010.00273.x.
    1. Vita J.A. Polyphenols and cardiovascular disease: Effects on endothelial and platelet function. Am. J. Clin. Nutr. 2005;81:292–297.
    1. Baur J.A., Sinclair D.A. Therapeutic potential of resveratrol: The in vivo evidence. Nat. Rev. Drug Dis. 2006;5:493–506. doi: 10.1038/nrd2060.
    1. Karavidas A., Lazaros G., Tsiachris D., Pyrgakis V. Aging and the cardiovascular system. Hell. J. Cardiol. 2010;51:421–427.
    1. Maruyama Y. Aging and arterial-cardiac interactions in the elderly. Int. J. Cardiol. 2012;155:14–19. doi: 10.1016/j.ijcard.2011.01.087.
    1. Orlandi A., Bochaton-Piallat M.L., Gabbiani G., Spagnoli L.G. Aging, smooth muscle cells and vascular pathobiology: Implications for atherosclerosis. Atherosclerosis. 2006;188:221–230. doi: 10.1016/j.atherosclerosis.2006.01.018.
    1. Ferrari A.U., Radaelli A., Centola M. Invited review: Aging and the cardiovascular system. J. Appl. Physiol. 2003;95:2591–2597.
    1. Coleman R., Hayek T., Keidar S., Aviram M. A mouse model for human atherosclerosis: Long-term histopathological study of lesion development in the aortic arch of apolipoprotein E-deficient (E0) mice. Acta Histochem. 2006;108:415–424. doi: 10.1016/j.acthis.2006.07.002.
    1. Csiszar A. Anti-inflammatory effects of resveratrol: Possible role in prevention of age-related cardiovascular disease. Ann. N. Y. Acad. Sci. 2011;1215:117–122. doi: 10.1111/j.1749-6632.2010.05848.x.
    1. Ungvari Z., Sonntag W.E., Csiszar A. Mitochondria and aging in the vascular system. J. Mol. Med. (Berl.) 2010;88:1021–1027. doi: 10.1007/s00109-010-0667-5.
    1. Avery S.V. Molecular targets of oxidative stress. Biochem. J. 2011;434:201–210. doi: 10.1042/BJ20101695.
    1. Burns J., Yokota T., Ashihara H., Lean M.E.J., Crozier A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002;50:3337–3340. doi: 10.1021/jf0112973.
    1. Gu X., Creasy L., Kester A., Zeece M. Capillary electrophoretic determination of resveratrol in wines. J. Agric. Food Chem. 1999;47:3223–3227. doi: 10.1021/jf981211e.
    1. Gonçalves J., Câmara J.S. New method for determination of (E)-resveratrol in wine based on microextraction using packed sorbent and ultra-performance liquid chromatography. J. Sep. Sci. 2011;34:2376–2384. doi: 10.1002/jssc.201100336.
    1. Netticadan T. Why research on resveratrol-mediated cardioprotection should not decelerate. Can. J. Physiol. Pharmacol. 2012;90 doi: 10.1139/y2012-065.
    1. Ragab A.S., van Fleet J., Jankowski B., Park J.H., Bobzin S.C. Detection and quantitation of resveratrol in tomato fruit (Lycopersicon esculentum Mill.) J. Agric. Food Chem. 2006;54:7175–7179. doi: 10.1021/jf0609633.
    1. Hurst W.J., Glinski J.A., Miller K.B., Apgar J., Davey M.H., Stuart D.A. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J. Agric. Food Chem. 2008;56:8374–8378. doi: 10.1021/jf801297w.
    1. Bothig S. WHO MONICA project: Objectives and design. Int. J. Epidemiol. 1989;18:S29–S37. doi: 10.1093/ije/18.Supplement_1.S29.
    1. Smoliga J.M., Baur J.A., Hausenblas H.A. Resveratrol and health—A comprehensive review of human clinical trials. Mol. Nutr. Food Res. 2011;55:1129–1141. doi: 10.1002/mnfr.201100143.
    1. Magyar K., Halmosi R., Palfi A., Feher G., Czopf L., Fulop A., Battyany I., Sumegi B., Toth K., Szabados E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012;50:179–187.
    1. Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J., García-Almagro F.J., Ruiz-Ros J.A., García-Conesa M.T., Tomás-Barberán F.A., Espín J.C. One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am. J. Cardiol. 2012;110:356–363. doi: 10.1016/j.amjcard.2012.03.030.
    1. Tomé-Carneiro J., Gonzálvez M., Larrosa M., García-Almagro F.J., Avilés-Plaza F., Parra S., Yáñez-Gascón M.J., Ruiz-Ros J.A., García-Conesa M.T., Tomás-Barberán F.A., et al. Consumption of a grape extract supplement containing resveratrol decreases oxidized LDL and ApoB in patients undergoing primary prevention of cardiovascular disease: A triple-blind, 6-month follow-up, placebo-controlled, randomized trial. Mol. Nutr. Food Res. 2012;56:810–821. doi: 10.1002/mnfr.201100673.
    1. Tomé-Carneiro J., Gonzálvez M., Larrosa M., Yáñez-Gascón M.J., García-Almagro F.J., Ruiz-Ros J.A., Tomás-Barberán F.A., García-Conesa M.T., Espín J.C. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: A triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc. Drugs Ther. 2013;27:37–48. doi: 10.1007/s10557-012-6427-8.
    1. Agarwal B., Campen M.J., Channell M.M., Wherry S.J., Varamini B., Davis J.G., Baur J.A., Smoliga J.M. Resveratrol for primary prevention of atherosclerosis: Clinical trial evidence for improved gene expression in vascular endothelium. Int. J. Cardiol. 2012;8:9–11.
    1. Borriello A., Cucciolla V., Della Ragione F., Galletti P. Dietary polyphenols: Focus on resveratrol, a promising agent in the prevention of cardiovascular diseases and control of glucose homeostasis. Nutr. Metab. Cardiovasc. Dis. 2010;20:618–625. doi: 10.1016/j.numecd.2010.07.004.
    1. Chung S., Yao H., Caito S., Hwang J.W., Arunachalam G., Rahman I. Regulation of SIRT1 in cellular functions: Role of polyphenols. Arch. Biochem. Biophys. 2010;501:79–90. doi: 10.1016/j.abb.2010.05.003.
    1. Zang M., Xu S., Maitland-Toolan K.A., Zuccollo A., Hou X., Jiang B., Wierzbicki M., Verbeuren T.J., Cohen R.A. Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes. 2006;55:2180–2191. doi: 10.2337/db05-1188.
    1. Csiszar A., Labinskyy N., Pinto J.T., Ballabh P., Zhang H., Losonczy G., Pearson K., de Cabo R., Pacher P., Zhang C., et al. Resveratrol induces mitochondrial biogenesis in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H13–H20. doi: 10.1152/ajpheart.00368.2009.
    1. Wallerath T. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation. 2002;106:1652–1658. doi: 10.1161/01.CIR.0000029925.18593.5C.
    1. Chen C.K., Pace-Asciak C.R. Vasorelaxing activity of resveratrol and quercetin in isolated rat aorta. Gen. Pharmacol. 1996;27:363–366. doi: 10.1016/0306-3623(95)02001-2.
    1. Pace-Asciak C.R., Hahn S., Diamandis E.P., Soleas G., Goldberg D.M. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: Implications for protection against coronary heart disease. Clin. Chim. Acta. 1995;235:207–219. doi: 10.1016/0009-8981(95)06045-1.
    1. Olas B., Wachowicz B. Resveratrol, a phenolic antioxidant with effects on blood platelet functions. Platelets. 2005;16:251–260. doi: 10.1080/09537100400020591.
    1. Shen M.Y., Hsiao G., Liu C.L., Fong T.H., Lin K.H., Chou D.S., Sheu J.R. Inhibitory mechanisms of resveratrol in platelet activation: Pivotal roles of p38 MAPK and NO/cyclic GMP. Br. J. Haematol. 2007;139:475–485.
    1. Wung B.S., Hsu M.C., Wu C.C., Hsieh C.W. Resveratrol suppresses IL-6-induced ICAM-1 gene expression in endothelial cells: Effects on the inhibition of STAT3 phosphorylation. Life Sci. 2005;78:389–397. doi: 10.1016/j.lfs.2005.04.052.
    1. Csiszar A., Smith K., Labinskyy N., Orosz Z., Rivera A., Ungvari Z., Resveratrol Z.U. Resveratrol attenuates TNF-α-induced activation of coronary arterial endothelial cells: Role of NF-κB inhibition. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H1694–H1699. doi: 10.1152/ajpheart.00340.2006.
    1. Chung E.Y., Kim B.H., Hong J.T., Lee C.K., Ahn B., Nam S.Y., Han S.B., Kim Y. Resveratrol down-regulates interferon-γ-inducible inflammatory genes in macrophages: Molecular mechanism via decreased STAT-1 activation. J. Nutr. Biochem. 2011;22:902–909. doi: 10.1016/j.jnutbio.2010.07.012.
    1. Chen Q., Wang E., Ma L., Zhai P. Dietary resveratrol increases the expression of hepatic 7α-hydroxylase and ameliorates hypercholesterolemia in high-fat fed C57BL/6J mice. Lipids Health Dis. 2012;11:56. doi: 10.1186/1476-511X-11-56.
    1. Thandapilly S.J., Wojciechowski P., Behbahani J., Louis X.L., Yu L., Juric D., Kopilas M.A., Anderson H.D., Netticadan T. Resveratrol prevents the development of pathological cardiac hypertrophy and contractile dysfunction in the SHR without lowering blood pressure. Am. J. Hypertens. 2010;23:192–196. doi: 10.1038/ajh.2009.228.
    1. Behbahani J., Thandapilly S.J., Louis X.L., Huang Y., Shao Z., Kopilas M.A., Wojciechowski P., Netticadan T., Anderson H.D. Resveratrol and small artery compliance and remodeling in the spontaneously hypertensive rat. Am. J. Hypertens. 2010;23:1273–1278. doi: 10.1038/ajh.2010.161.
    1. Thandapilly S.J., Louis X.L., Yang T., Stringer D.M., Yu L., Zhang S., Wigle J., Kardami E., Zahradka P., Taylor C., et al. Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur. J. Pharmacol. 2011;668:217–224. doi: 10.1016/j.ejphar.2011.06.042.
    1. Rimbaud S., Ruiz M., Piquereau J., Mateo P., Fortin D., Veksler V., Garnier A., Ventura-Clapier R. Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS One. 2011;6:e26391. doi: 10.1371/journal.pone.0026391.
    1. Chen Y.R., Yi F.F., Li X.Y., Wang C.Y., Chen L., Yang X.C., Su P.X., Cai J. Resveratrol attenuates ventricular arrhythmias and improves the long-term survival in rats with myocardial infarction. Cardiovasc. Drugs Ther. 2008;22:479–485. doi: 10.1007/s10557-008-6141-8.
    1. Shen M., Wu R.X., Zhao L., Li J., Guo H.T., Fan R., Cui Y., Wang Y.M., Yue S.Q., Pei J.M. Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS One. 2012;7:e51223.
    1. Fichtlscherer S., de Rosa S., Fox H., Schwietz T., Fischer A., Liebetrau C., Weber M., Hamm C.W., Röxe T., Müller-Ardogan M., et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 2010;107:677–684. doi: 10.1161/CIRCRESAHA.109.215566.
    1. Mukhopadhyay P., Pacher P., Das D.K. MicroRNA signatures of resveratrol in the ischemic heart. Ann. N. Y. Acad. Sci. 2011;1215:109–116. doi: 10.1111/j.1749-6632.2010.05866.x.
    1. Lançon A., Kaminski J., Tili E., Michaille J.J., Latruffe N. Control of microRNA expression as a new way for resveratrol to deliver its beneficial effects. J. Agric. Food Chem. 2012;60:8783–8789. doi: 10.1021/jf301479v.
    1. Mukhopadhyay P., Mukherjee S., Ahsan K., Bagchi A., Pacher P., Das D.K. Restoration of altered microRNA expression in the ischemic heart with resveratrol. PLoS One. 2010;5:e15705.
    1. Baur J.A., Pearson K.J., Price N.L., Jamieson H.A., Lerin C., Kalra A., Prabhu V.V, Allard J.S., Lopez-Lluch G., Lewis K., et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–342. doi: 10.1038/nature05354.
    1. Kumerz M., Heiss E.H., Schachner D., Atanasov A.G., Dirsch V.M. Resveratrol inhibits migration and Rac1 activation in EGF- but not PDGF-activated vascular smooth muscle cells. Mol. Nutr. Food Res. 2011;55:1230–1236. doi: 10.1002/mnfr.201100309.
    1. Ong E.T., Hwang T.L., Huang Y.L., Lin C.F., Wu W.B. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells. Toxicol. Appl. Pharmacol. 2011;256:198–208. doi: 10.1016/j.taap.2011.08.013.
    1. Dubey R.K., Jackson E.K., Gillespie D.G., Zacharia L.C., Imthurn B., Rosselli M. Resveratrol, a red wine constituent, blocks the antimitogenic effects of estradiol on human female coronary artery smooth muscle cells. J. Clin. Endocrinol. Metab. 2010;95:E9–E17. doi: 10.1210/jc.2010-0460.
    1. Csiszar A., Sosnowska D., Wang M., Lakatta E.G., Sonntag W.E., Ungvari Z. Age-associated proinflammatory secretory phenotype in vascular smooth muscle cells from the non-human primate Macaca mulatta: Reversal by resveratrol treatment. J. Gerontol. A Biol. Sci. Med. Sci. 2012;67:811–820. doi: 10.1093/gerona/glr228.
    1. Balentine D.A., Wiseman S.A., Bouwens L.C. The chemistry of tea flavonoids. Crit. Rev. Food Sci. Nutr. 1997;37:693–704. doi: 10.1080/10408399709527797.
    1. Arts I.C., van de Putte B., Hollman P.C. Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J. Agric. Food Chem. 2000;48:1752–1757. doi: 10.1021/jf000026+.
    1. Arts I.C., van de Putte B., Hollman P.C. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J. Agric. Food Chem. 2000;48:1746–1751. doi: 10.1021/jf000025h.
    1. Nagao T., Komine Y., Soga S., Meguro S., Hase T., Tanaka Y., Tokimitsu I. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am. J. Clin. Nutr. 2005;81:122–129.
    1. Kuriyama S., Shimazu T., Ohmori K., Kikuchi N., Nakaya N., Nishino Y., Tsubono Y., Tsuji I. Green tea consumption and mortality due to cardiovascular disease. JAMA. 2006;296:1255–1265. doi: 10.1001/jama.296.10.1255.
    1. Yang Y.C., Lu F.H., Wu J.S., Wu C.H., Chang C.J. The protective effect of habitual tea consumption on hypertension. Arch. Intern. Med. 2004;164:1534–1540. doi: 10.1001/archinte.164.14.1534.
    1. Geleijnse J.M., Launer L.J., van der Kuip D.A.M., Hofman A., Witteman J.C.M. Inverse association of tea and flavonoid intakes with incident myocardial infarction: The Rotterdam Study. Am. J. Clin. Nutr. 2002;75:880–886.
    1. Hertog M.G., Feskens E.J., Hollman P.C., Katan M.B., Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet. 1993;342:1007–1011. doi: 10.1016/0140-6736(93)92876-U.
    1. Hertog M.G., Feskens E.J., Kromhout D. Antioxidant flavonols and coronary heart disease risk. Lancet. 1997;349:699.
    1. Imai K., Nakachi K. Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ. 1995;310:693–696. doi: 10.1136/bmj.310.6981.693.
    1. Peters U., Poole C., Arab L. Does tea affect cardiovascular disease? A meta-analysis. Am. J. Epidemiol. 2001;154:495–503. doi: 10.1093/aje/154.6.495.
    1. Kuriyama S. The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J. Nutr. 2008;138:1548–1553.
    1. Mukamal K.J., MacDermott K., Vinson J.A., Oyama N., Manning W.J., Mittleman M.A. A 6-month randomized pilot study of black tea and cardiovascular risk factors. Am. Heart J. 2007;154:724.
    1. Woodward M., Tunstall-Pedoe H. Coffee and tea consumption in the Scottish Heart Health Study follow up: Conflicting relations with coronary risk factors, coronary disease, and all cause mortality. J. Epidemiol. Community Health. 1999;53:481–487. doi: 10.1136/jech.53.8.481.
    1. Negishi H., Xu J.W., Ikeda K. Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats. J. Nutr. 2004;134:38–42.
    1. Appeldoorn M.M., Venema D.P., Peters T.H.F., Koenen M.E., Arts I.C.W., Vincken J.P., Gruppen H., Keijer J., Hollman P.C.H. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro. J. Agric. Food Chem. 2009;57:7693–7699. doi: 10.1021/jf901381x.
    1. Kim J.A., Formoso G., Li Y., Potenza M.A., Marasciulo F.L., Montagnani M., Quon M.J. Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J. Biol. Chem. 2007;282:13736–13745.
    1. Lorenz M., Wessler S., Follmann E., Michaelis W., Düsterhöft T., Baumann G., Stangl K., Stangl V. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and -dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biol. Chem. 2004;279:6190–6195.
    1. Potenza M.A., Marasciulo F.L., Tarquinio M., Tiravanti E., Colantuono G., Federici A., Kim J.A., Quon M.J., Montagnani M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am. J. Physiol. Endocrinol. Metab. 2007;292:E1378–E1387. doi: 10.1152/ajpendo.00698.2006.
    1. Ludwig A., Lorenz M., Grimbo N., Steinle F., Meiners S., Bartsch C., Stangl K., Baumann G., Stangl V. The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells. Biochem. Biophys. Res. Commun. 2004;316:659–665. doi: 10.1016/j.bbrc.2004.02.099.
    1. Pullikotil P., Chen H., Muniyappa R., Greenberg C.C., Yang S., Reiter C.E.N., Lee J.W., Chung J.H., Quon M.J. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-α. J. Nutr. Biochem. 2012;23:1134–1145. doi: 10.1016/j.jnutbio.2011.06.007.
    1. Wu C.C., Hsu M.C., Hsieh C.W., Lin J.B., Lai P.H., Wung B.S. Upregulation of heme oxygenase-1 by Epigallocatechin-3-gallate via the phosphatidylinositol 3-kinase/Akt and ERK pathways. Life Sci. 2006;78:2889–2897. doi: 10.1016/j.lfs.2005.11.013.
    1. Ramesh E., Geraldine P., Thomas P.A. Regulatory effect of epigallocatechin gallate on the expression of C-reactive protein and other inflammatory markers in an experimental model of atherosclerosis. Chem. Biol. Interact. 2010;183:125–132. doi: 10.1016/j.cbi.2009.09.013.
    1. Miura Y., Chiba T., Tomita I. Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J. Nutr. 2001;131:27–32.
    1. Senthil Kumaran V., Arulmathi K., Sundarapandiyan R., Kalaiselvi P. Attenuation of the inflammatory changes and lipid anomalies by epigallocatechin-3-gallate in hypercholesterolemic diet fed aged rats. Exp. Gerontol. 2009;44:745–751. doi: 10.1016/j.exger.2009.08.010.
    1. Cuccioloni M., Mozzicafreddo M., Spina M., Tran C.N., Falconi M., Eleuteri A.M., Angeletti M. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase. J. Lipid Res. 2011;52:897–907. doi: 10.1194/jlr.M011817.
    1. Yang J., Han Y., Sun H., Chen C., He D., Guo J., Yu C., Jiang B., Zhou L., Zeng C. (−)-Epigallocatechin gallate suppresses proliferation of vascular smooth muscle cells induced by high glucose by inhibition of PKC and ERK1/2 signalings. J. Agric. Food Chem. 2011;59:11483–11490.
    1. Sartor L., Pezzato E., Dell’Aica I., Caniato R., Biggin S., Garbisa S. Inhibition of matrix-proteases by polyphenols: Chemical insights for anti-inflammatory and anti-invasion drug design. Biochem. Pharmacol. 2002;64:229–237. doi: 10.1016/S0006-2952(02)01069-9.
    1. Maeda K., Kuzuya M., Cheng X.W., Asai T., Kanda S., Tamaya-Mori N., Sasaki T., Shibata T., Iguchi A. Green tea catechins inhibit the cultured smooth muscle cell invasion through the basement barrier. Atherosclerosis. 2003;166:23–30. doi: 10.1016/S0021-9150(02)00302-7.
    1. Cheng X.W., Kuzuya M., Nakamura K., Liu Z., Di Q., Hasegawa J., Iwata M., Murohara T., Yokota M., Iguchi A. Mechanisms of the inhibitory effect of epigallocatechin-3-gallate on cultured human vascular smooth muscle cell invasion. Arterioscler. Thromb. Vasc. Biol. 2005;25:1864–1870. doi: 10.1161/01.ATV.0000179675.49619.9b.
    1. Lill G., Voit S., Schrör K., Weber A.A. Complex effects of different green tea catechins on human platelets. FEBS Lett. 2003;546:265–270. doi: 10.1016/S0014-5793(03)00599-4.
    1. Jin Y.R., Im J.H., Park E.S., Cho M.R., Han X.H., Lee J.J., Lim Y., Kim T.J., Yun Y.P. Antiplatelet activity of epigallocatechin gallate is mediated by the inhibition of PLCgamma2 phosphorylation, elevation of PGD2 production, and maintaining calcium-ATPase activity. J. Cardiovasc. Pharmacol. 2008;51:45–54. doi: 10.1097/FJC.0b013e31815ab4b6.
    1. Reiter C.E.N., Kim J., Quon M.J. Green tea polyphenol epigallocatechin gallate reduces endothelin-1 expression and secretion in vascular endothelial cells: Roles for AMP-activated protein kinase, Akt, and FOXO1. Endocrinology. 2010;151:103–114. doi: 10.1210/en.2009-0997.
    1. Hao J., Kim C.H., Ha T.S., Ahn H.Y. Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J. Vet. Sci. 2007;8:121–129. doi: 10.4142/jvs.2007.8.2.121.
    1. Sheng R., Gu Z., Xie M., Zhou W., Guo C. EGCG inhibits cardiomyocyte apoptosis in pressure overload-induced cardiac hypertrophy and protects cardiomyocytes from oxidative stress in rats. Acta Pharmacol. Sin. 2007;28:191–201. doi: 10.1111/j.1745-7254.2007.00495.x.
    1. Ou H.C., Song T.Y., Yeh Y.C., Huang C.Y., Yang S.F., Chiu T.H., Tsai K.L., Chen K.L., Wu Y.J., Tsai C.S., et al. EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling. J. Appl. Physiol. 2010;108:1745–1756. doi: 10.1152/japplphysiol.00879.2009.
    1. Piao C.S., Kim D.S., Ha K.C., Kim H.R., Chae H.J., Chae S.W. The protective effect of epigallocatechin-3 gallate on ischemia/reperfusion injury in isolated rat hearts: An ex vivo approach. Korean J. Physiol. Pharmacol. 2011;15:259–266. doi: 10.4196/kjpp.2011.15.5.259.
    1. Yanagi S., Matsumura K., Marui A., Morishima M., Hyon S.H., Ikeda T., Sakata R. Oral pretreatment with a green tea polyphenol for cardioprotection against ischemia-reperfusion injury in an isolated rat heart model. J. Thorac. Cardiovasc. Surg. 2011;141:511–517. doi: 10.1016/j.jtcvs.2010.04.016.
    1. Townsend P.A., Scarabelli T.M., Pasini E., Gitti G., Menegazzi M., Suzuki H., Knight R.A., Latchman D.S., Stephanou A. Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J. 2004;18:1621–1623.
    1. Kim C.J., Kim J.M., Lee S.R., Jang Y.H., Chun K.J. Polyphenol (−)-epigallocatechin gallate targeting myocardial reperfusion limits infarct size and improves cardiac function. Korean J. Anesthsiol. 2010;58:169–175. doi: 10.4097/kjae.2010.58.2.169.
    1. Duilio C., Ambrosio G., Kuppusamy P., DiPaula A., Becker L.C., Zweier J.L. Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 2001;280:H2649–H2657.
    1. Aneja R., Hake P.W., Burroughs T.J., Denenberg A.G., Wong H.R., Zingarelli B. Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol. Med. 2004;10:55–62. doi: 10.1007/s00894-003-0166-5.
    1. Takano K., Nakaima K., Nitta M., Shibata F., Nakagawa H. Inhibitory effect of (−)-epigallocatechin 3-gallate, a polyphenol of green tea, on neutrophil chemotaxis in vitro and in vivo. J. Agric. Food Chem. 2004;52:4571–4576. doi: 10.1021/jf0355194.
    1. Hofbauer R., Frass M., Gmeiner B., Handler S., Speiser W., Kapiotis S. The green tea extract epigallocatechin gallate is able to reduce neutrophil transmigration through monolayers of endothelial cells. Wien. Klin. Wochenschr. 1999;111:278–282.
    1. Devika P.T., Stanely Mainzen Prince P. Protective effect of (−)-epigallocatechin-gallate (EGCG) on lipid peroxide metabolism in isoproterenol induced myocardial infarction in male Wistar rats: A histopathological study. Biomed. Pharmacother. 2008;62:701–708. doi: 10.1016/j.biopha.2007.10.011.
    1. Widlansky M.E., Hamburg N.M., Anter E., Holbrook M., Kahn D.F., Elliott J.G., Keaney J.F., Vita J.A. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J. Am. Coll. Nutr. 2007;26:95–102. doi: 10.1080/07315724.2007.10719590.
    1. Deka A., Vita J.A. Tea and cardiovascular disease. Pharmacol. Res. 2011;64:136–145. doi: 10.1016/j.phrs.2011.03.009.
    1. Yamada H., Watanabe H. Tea polyphenols in preventing cardiovascular diseases. Cardiovasc. Res. 2007;73:439–440. doi: 10.1016/j.cardiores.2006.11.008.
    1. Sheng R., Gu Z.L., Xie M.L. Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int. J. Cardiol. 2011;162:199–209. doi: 10.1016/j.ijcard.2011.07.083.
    1. Li H.L., Huang Y., Zhang C.N., Liu G., Wei Y.S., Wang A.B., Liu Y.Q., Hui R.T., Wei C., Williams G.M., et al. Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic. Biol. Med. 2006;40:1756–1775. doi: 10.1016/j.freeradbiomed.2006.01.005.
    1. Rickman C., Iyer A., Chan V., Brown L. Green tea attenuates cardiovascular remodelling and metabolic symptoms in high carbohydrate-fed rats. Curr. Pharm. Biotechnol. 2010;11:881–886. doi: 10.2174/138920110793261980.
    1. Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health. J. Am. Coll. Nutr. 2007;26:373S–388S. doi: 10.1080/07315724.2007.10719626.
    1. Meng Q., Velalar C.N., Ruan R. Regulating the age-related oxidative damage, mitochondrial integrity, and antioxidative enzyme activity in Fischer 344 rats by supplementation of the antioxidant epigallocatechin-3-gallate. Rejuvenation Res. 2008;11:649–660. doi: 10.1089/rej.2007.0645.
    1. Goel A., Kunnumakkara A.B., Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008;75:787–809. doi: 10.1016/j.bcp.2007.08.016.
    1. Kim Y.S., Ahn Y., Hong M.H., Joo S.Y., Kim K.H., Sohn I.S., Park H.W., Hong Y.J., Kim J.H., Kim W., et al. Curcumin attenuates inflammatory responses of TNF-α-stimulated human endothelial cells. J. Cardiovasc. Pharmacol. 2007;50:41–49. doi: 10.1097/FJC.0b013e31805559b9.
    1. Kapakos G., Youreva V., Srivastava A.K. Cardiovascular protection by curcumin: Molecular aspects. Indian J. Biochem. Biophys. 2012;49:306–315.
    1. Soni K.B., Kuttan R. Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J. Physiol. Pharmacol. 1992;36:273–275.
    1. Alwi I., Santoso T., Suyono S., Sutrisna B., Suyatna F.D., Kresno S.B., Ernie S. The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med. Indones. 2008;40:201–210.
    1. Ramirez-Tortosa M.C., Mesa M.D., Aguilera M.C., Quiles J.L., Baro L., Ramirez-Tortosa C.L., Martinez-Victoria E., Gil A. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis. 1999;147:371–378. doi: 10.1016/S0021-9150(99)00207-5.
    1. Quiles J.L., Mesa M.D., Ramirez-Tortosa C.L., Aguilera C.M., Battino M., Gil A., Ramirez-Tortosa M.C. Curcuma longa extract supplementation reduces oxidative stress and attenuates aortic fatty streak development in rabbits. Arterioscler. Thromb. Vasc. Biol. 2002;22:1225–1231. doi: 10.1161/01.ATV.0000020676.11586.F2.
    1. Shin S.K., Ha T.Y., McGregor R.A., Choi M.S. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol. Nutr. Food Res. 2011;55:1829–1840. doi: 10.1002/mnfr.201100440.
    1. Jang E.M., Choi M.S., Jung U.J., Kim M.J., Kim H.J., Jeon S.M., Shin S.K., Seong C.N., Lee M.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metab. Clin. Exp. 2008;57:1576–1583. doi: 10.1016/j.metabol.2008.06.014.
    1. Ramaswami G., Chai H., Yao Q., Lin P.H., Lumsden A.B., Chen C. Curcumin blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J. Vasc. Surg. 2004;40:1216–1222. doi: 10.1016/j.jvs.2004.09.021.
    1. Xu P.H., Long Y., Dai F., Liu Z.L. The relaxant effect of curcumin on porcine coronary arterial ring segments. Vasc. Pharmacol. 2007;47:25–30. doi: 10.1016/j.vph.2007.03.003.
    1. Kapakos G. Attenuation of endothelin-1-induced PKB and ERK1/2 signaling, as well as Egr-1 expression, by curcumin in A-10 vascular smooth muscle cells. Can. J. Physiol. Pharmacol. 2012;1285:1277–1285. doi: 10.1139/y2012-059.
    1. Kolodziejczyk J., Olas B., Saluk-Juszczak J., Wachowicz B. Antioxidative properties of curcumin in the protection of blood platelets against oxidative stress in vitro. Platelets. 2011;22:270–276. doi: 10.3109/09537104.2010.547637.
    1. Venkatesan N. Curcumin attenuation of acute adriamycin myocardial toxicity in rats. Br. J. Pharmacol. 1998:425–427. doi: 10.1038/sj.bjp.0701877.
    1. Motterlini R., Foresti R., Bassi R., Green C.J. Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stres. Free Radic. Biol. Med. 2000;28:1303–1312. doi: 10.1016/S0891-5849(00)00294-X.
    1. Yang X., Thomas D.P., Zhang X., Culver B.W., Alexander B.M., Murdoch W.J., Rao M.N., Tulis D.A., Ren J., Sreejayan N. Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler. Thromb. Vasc. Biol. 2006;26:85–90. doi: 10.1161/01.ATV.0000191635.00744.b6.
    1. Qin L., Yang Y.B., Tuo Q.H., Zhu B.Y., Chen L.X., Zhang L., Liao D.F. Effects and underlying mechanisms of curcumin on the proliferation of vascular smooth muscle cells induced by Chol:MbetaCD. Biochem. Biophys. Res. Commun. 2009;379:277–282. doi: 10.1016/j.bbrc.2008.12.038.
    1. Kang B.Y., Khan J.A., Ryu S., Shekhar R., Seung K.B., Mehta J.L. Curcumin reduces angiotensin II-mediated cardiomyocyte growth via LOX-1 inhibition. J. Cardiovasc. Pharmacol. 2010;55:417–424. doi: 10.1097/FJC.0b013e3181ca4ba1.
    1. Hong D., Zeng X., Xu W., Ma J., Tong Y., Chen Y. Altered profiles of gene expression in curcumin-treated rats with experimentally induced myocardial infarction. Pharmacol. Res. 2010;61:142–148. doi: 10.1016/j.phrs.2009.08.009.
    1. Aggarwal B.B., Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009;41:40–59. doi: 10.1016/j.biocel.2008.06.010.
    1. Fleenor B.S., Sindler A.L., Marvi N.K., Howell K.L., Zigler M.L., Yoshizawa M., Seals D.R. Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Exp. Gerontol. 2013;48:269–276. doi: 10.1016/j.exger.2012.10.008.
    1. Akazawa N., Choi Y., Miyaki A., Tanabe Y., Sugawara J., Ajisaka R., Maeda S. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr. Res. 2012;32:795–799. doi: 10.1016/j.nutres.2012.09.002.
    1. Wongcharoen W., Phrommintikul A. The protective role of curcumin in cardiovascular diseases. Int. J. Cardiol. 2009;133:145–151. doi: 10.1016/j.ijcard.2009.01.073.
    1. Larson A.J., Symons J.D., Jalili T. Quercetin: A treatment for hypertension?—A review of efficacy and mechanisms. Pharmaceuticals. 2010;3:237–250. doi: 10.3390/ph3010237.
    1. Patil B., Pike L., Yoo K. Variation in the quercetin content in different colored onions (Allium cepa L.) J. Am. Soc. Hortic. Sci. 1995;120:909–913.
    1. Mubarak A., Swinny E.E., Ching S.Y.L., Jacob S.R., Lacey K., Hodgson J.M., Croft K.D., Considine M.J. Polyphenol composition of plum selections in relation to total antioxidant capacity. J. Agric. Food Chem. 2012;60:10256–10262. doi: 10.1021/jf302903k.
    1. Doi K., Kojima T., Makino M. Studies on the constituents of the leaves of Morus alba L. Chem. Pharm. Bull. (Tokyo) 2011;49:151–153.
    1. Edwards R.L., Lyon T., Litwin S.E., Rabovsky A., Symons J.D., Jalili T. Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007;137:2405–2411.
    1. Egert S., Bosy-Westphal A., Seiberl J., Kurbitz C., Settler U., Plachta-Danielzik S., Wagner A.E., Frank J., Schrezenmeir J., Rimbach G., et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009;102:1065–1074. doi: 10.1017/S0007114509359127.
    1. Angeloni C., Leoncini E., Malaguti M., Angelini S., Hrelia P., Hrelia S. Role of quercetin in modulating rat cardiomyocyte gene expression profile. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H1233–H1243.
    1. Balasuriya N., Rupasinghe H.P. Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem. 2012;135:2320–2325. doi: 10.1016/j.foodchem.2012.07.023.
    1. Chirumbolo S. Role of quercetin in vascular physiology. Can. J. Physiol. Pharmacol. 2012;90:1652–1657. doi: 10.1139/y2012-137.
    1. Khoo N.K., White C.R., Pozzo-Miller L., Zhou F., Constance C., Inoue T., Patel R.P., Parks D.A. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radic. Biol. Med. 2010;49:339–347. doi: 10.1016/j.freeradbiomed.2010.04.022.
    1. Monteiro M.M., Franca-Silva M.S., Alves N.F., Porpino S.K., Braga V.A. Quercetin improves baroreflex sensitivity in spontaneously hypertensive rats. Molecules. 2012;17:12997–13008. doi: 10.3390/molecules171112997.
    1. Perez-Vizcaino F., Duarte J., Jimenez R., Santos-Buelga C., Osuna A. Antihypertensive effects of the flavonoid quercetin. Pharmacol. Rep. 2009;61:67–75.
    1. Nishizuka T., Fujita Y., Sato Y., Nakano A., Kakino A., Ohshima S., Kanda T., Yoshimoto R., Sawamura T. Procyanidins are potent inhibitors of LOX-1: A new player in the French Paradox. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2011;87:104–113. doi: 10.2183/pjab.87.104.
    1. Zhao L., Wu J., Wang Y., Yang J., Wei J., Gao W., Guo C. Cholesterol metabolism is modulated by quercetin in rats. J. Agric. Food Chem. 2011;59:1104–1108. doi: 10.1021/jf1035367.
    1. Harauma A., Murayama T., Ikeyama K., Sano H., Arai H., Takano R., Kita T., Hara S., Kamei K., Yokode M. Mulberry leaf powder prevents atherosclerosis in apolipoprotein E-deficient mice. Biochem. Biophys. Res. Commun. 2007;358:751–756. doi: 10.1016/j.bbrc.2007.04.170.
    1. Mosawy S., Jackson D.E., Woodman O.L., Linden M.D. Treatment with quercetin and 3′,4′-dihydroxyflavonol inhibits platelet function and reduces thrombus formation in vivo. J. Thromb. Thrombolysis. 2012;36:50–57.
    1. Shibata Y., Kume N., Arai H., Hayashida K., Inui-Hayashida A., Minami M., Mukai E., Toyohara M., Harauma A., Murayama T., et al. Mulberry leaf aqueous fractions inhibit TNF-alpha-induced nuclear factor kappaB (NF-kappaB) activation and lectin-like oxidized LDL receptor-1 (LOX-1) expression in vascular endothelial cells. Atherosclerosis. 2007;193:20–27. doi: 10.1016/j.atherosclerosis.2006.08.011.
    1. Setorki M., Asgary S., Eidi A., Rohani A.H., Esmaeil N. Effects of apple juice on risk factors of lipid profile, inflammation and coagulation, endothelial markers and atherosclerotic lesions in high cholesterolemic rabbits. Lipids Health Dis. 2009;8:39. doi: 10.1186/1476-511X-8-39.
    1. Perez-Vizcaino F., Bishop-Bailley D., Lodi F., Duarte J., Cogolludo A., Moreno L., Bosca L., Mitchell J.A., Warner T.D. The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2006;346:919–925. doi: 10.1016/j.bbrc.2006.05.198.
    1. Jin H.B., Yang Y.B., Song Y.L., Zhang Y., Li Y.R. Protective roles of quercetin in acute myocardial ischemia and reperfusion injury in rats. Mol. Biol. Rep. 2012;39:11005–11009. doi: 10.1007/s11033-012-2002-4.
    1. Larson A.J., Symons J.D., Jalili T. Therapeutic potential of quercetin to decrease blood pressure: Review of efficacy. Adv. Nutr. 2012;3:39–46. doi: 10.3945/an.111.001271.
    1. Mozzicafreddo M., Cuccioloni M., Bonfili L., Eleuteri A.M., Fioretti E., Angeletti M. Antiplasmin activity of natural occurring polyphenols. Biochim. Biophys. Acta. 2008;1784:995–1001. doi: 10.1016/j.bbapap.2008.03.016.
    1. Yoshizumi M., Tsuchiya K., Suzaki Y., Kirima K., Kyaw M., Moon J.H., Terao J., Tamaki T. Quercetin glucuronide prevents VSMC hypertrophy by angiotensin II via the inhibition of JNK and AP-1 signaling pathway. Biochem. Biophys. Res. Commun. 2002;293:1458–1465. doi: 10.1016/S0006-291X(02)00407-2.
    1. Qin T.C., Chen L., Yu L.X., Gu Z.L. Inhibitory effect of quercetin on cultured neonatal rat cardiomyocytes hypertrophy induced by angiotensin. Acta Pharmacol. Sin. 2001;22:1103–1106.
    1. Jalili T., Carlstrom J., Kim S., Freeman D., Jin H., Wu T.C., Litwin S.E., David Symons J. Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. J. Cardiovasc. Pharmacol. 2006;47:531–541. doi: 10.1097/01.fjc.0000211746.78454.50.
    1. Seeram N. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008;56:627–629. doi: 10.1021/jf071988k.
    1. Leifert W.R., Abeywardena M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008;28:729–737. doi: 10.1016/j.nutres.2008.08.007.
    1. De Pascual-Teresa S., Moreno D.A., García-Viguera C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci. 2010;11:1679–1703. doi: 10.3390/ijms11041679.
    1. Gil M.I., Tomás-Barberán F.A., Hess-Pierce B., Holcroft D.M., Kader A.A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 2000;48:4581–4589. doi: 10.1021/jf000404a.
    1. Aqil F., Gupta A., Munagala R., Jeyabalan J., Kausar H., Sharma R.J., Singh I.P., Gupta R.C. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (Jamun, the Indian Blackberry) Nutr. Cancer. 2012;64:428–438. doi: 10.1080/01635581.2012.657766.
    1. Chong M.F.F., Macdonald R., Lovegrove J.A. Fruit polyphenols and CVD risk: A review of human intervention studies. Br. J. Nutr. 2010;104:S28–S39. doi: 10.1017/S0007114510003922.
    1. Huijbregts P.P., Feskens E.J., Kromhout D. Dietary patterns and cardiovascular risk factors in elderly men: The Zutphen Elderly Study. Int. J. Epidemiol. 1995;24:313–320. doi: 10.1093/ije/24.2.313.
    1. McCullough M., Peterson J. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012;95:454–464. doi: 10.3945/ajcn.111.016634.
    1. Vartiainen E., Laatikainen T., Peltonen M., Juolevi A., Männistö S., Sundvall J., Jousilahti P., Salomaa V., Valsta L., Puska P. Thirty-five-year trends in cardiovascular risk factors in Finland. Int. J. Epidemiol. 2010;39:504–518. doi: 10.1093/ije/dyp330.
    1. Rissanen T.H., Voutilainen S., Virtanen J.K., Venho B., Vanharanta M., Mursu J., Salonen J.T. Low intake of fruits , berries and vegetables is associated with excess mortality in men: The Kuopio Ischaemic Heart Disease Risk Factor (KIHD) Nutr. Epidemiol. 2003;133:199–204.
    1. Iqbal R., Anand S., Ounpuu S., Islam S., Zhang X., Rangarajan S., Chifamba J., Al-Hinai A., Keltai M., Yusuf S. Dietary patterns and the risk of acute myocardial infarction in 52 countries: Results of the INTERHEART study. Circulation. 2008;118:1929–1937. doi: 10.1161/CIRCULATIONAHA.107.738716.
    1. Do R., Xie C., Zhang X., Männistö S., Harald K., Islam S., Bailey S.D., Rangarajan S., McQueen M.J., Diaz R., et al. The effect of chromosome 9p21 variants on cardiovascular disease may be modified by dietary intake: Evidence from a case/control and a prospective study. PLoS Med. 2011;8:e1001106.
    1. Rosenblat M., Volkova N., Coleman R., Aviram M. Pomegranate byproduct administration to apolipoprotein E-deficient mice attenuates atherosclerosis development as a result of decreased macrophage oxidative stress and reduced cellular uptake of oxidized low-density lipoprotein. J. Agric. Food Chem. 2006;54:1928–1935. doi: 10.1021/jf0528207.
    1. Wu X., Kang J., Xie C., Burris R., Ferguson M.E., Badger T.M., Nagarajan S. Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. J. Nutr. 2010;140:1628–1632. doi: 10.3945/jn.110.123927.
    1. Gallaher C.M., Gallaher D.D. Dried plums (prunes) reduce atherosclerosis lesion area in apolipoprotein E-deficient mice. Br. J. Nutr. 2009;101:233–239. doi: 10.1017/S0007114508995684.
    1. Auclair S., Silberberg M., Gueux E., Morand C., Mazur A., Milenkovic D., Scalbert A. Apple polyphenols and fibers attenuate atherosclerosis in apolipoprotein E-deficient mice. J. Agric. Food Chem. 2008;56:5558–5563.
    1. De Lange D.W., Verhoef S., Gorter G., Kraaijenhagen R.J., van de Wiel A., Akkerman J.W. Polyphenolic grape extract inhibits platelet activation through PECAM-1: An explanation for the French paradox. Alcohol. Clin. Exp. Res. 2007;31:1308–1314. doi: 10.1111/j.1530-0277.2007.00439.x.
    1. Falati S., Patil S., Gross P.L., Stapleton M., Merrill-Skoloff G., Barrett N.E., Pixton K.L., Weiler H., Cooley B., Newman D.K., et al. Platelet PECAM-1 inhibits thrombus formation in vivo. Blood. 2006;107:535–541. doi: 10.1182/blood-2005-04-1512.
    1. Mattiello T., Trifirò E., Jotti G.S., Pulcinelli F.M. Effects of pomegranate juice and extract polyphenols on platelet function. J. Med. Food. 2009;12:334–339. doi: 10.1089/jmf.2007.0640.
    1. Berger J., Moller D.E. The mechanisms of action of PPARs. Annu. Rev. Med. 2002;53:409–435.
    1. Seymour E.M., Bennink M.R., Watts S.W., Bolling S.F. Whole grape intake impacts cardiac peroxisome proliferator-activated receptor and nuclear factor kappaB activity and cytokine expression in rats with diastolic dysfunction. Hypertension. 2010;55:1179–1185.
    1. Seymour E.M., Singer A.A., Kirakosyan A., Urcuyo-Llanes D.E., Kaufman P.B., Bolling S.F. Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry. J. Med. Food. 2008;11:252–259. doi: 10.1089/jmf.2007.658.
    1. Kivimäki A.S., Ehlers P.I., Siltari A., Turpeinen A.M., Vapaatalo H., Korpela R. Lingonberry, cranberry and blackcurrant juices affect mRNA expressions of inflammatory and atherothrombotic markers of SHR in a long-term treatment. J. Funct. Foods. 2012;4:496–503.
    1. Chanet A., Milenkovic D., Claude S., Maier J.A., Kamran Khan M., Rakotomanomana N., Shinkaruk S., Bérard A.M., Bennetau-Pelissero C., Mazur A., Morand C. Flavanone metabolites decrease monocyte adhesion to TNF-α-activated endothelial cells by modulating expression of atherosclerosis-related genes. Br. J. Nutr. 2013;110:587–598. doi: 10.1017/S0007114512005454.
    1. Kalea A.Z., Clark K., Schuschke D.A., Kristo A.S., Klimis-Zacas D.J. Dietary enrichment with wild blueberries (Vaccinium angustifolium) affects the vascular reactivity in the aorta of young spontaneously hypertensive rats. J. Nutr. Biochem. 2010;21:14–22. doi: 10.1016/j.jnutbio.2008.09.005.
    1. Shaughnessy K.S., Boswall I.A., Scanlan A.P., Gottschall-Pass K.T., Sweeney M.I. Diets containing blueberry extract lower blood pressure in spontaneously hypertensive stroke-prone rats. Nutr. Res. 2009;29:130–138. doi: 10.1016/j.nutres.2009.01.001.
    1. Wiseman W., Egan J.M., Slemmer J.E., Shaughnessy K.S., Ballem K., Gottschall-pass K.T., Sweeney M.I. Feeding blueberry diets inhibits angiotensin II-converting enzyme (ACE) activity in spontaneously hypertensive stroke-prone rats. Can. J. Physiol. Pharmacol. 2011;89:67–71. doi: 10.1139/Y10-101.
    1. Jia H., Liu J.W., Ufur H., He G.S., Liqian H., Chen P. The antihypertensive effect of ethyl acetate extract from red raspberry fruit in hypertensive rats. Pharmacogn. Mag. 2011;7:19–24. doi: 10.4103/0973-1296.75885.
    1. Falchi M., Bertelli A., Lo Scalzo R., Morassut M., Morelli R., Das S., Cui J., Das D.K. Comparison of cardioprotective abilities between the flesh and skin of grapes. J. Agric. Food Chem. 2006;54:6613–6622.
    1. Ahmet I., Spangler E., Shukitt-Hale B., Joseph J.A., Ingram D.K., Talan M. Survival and cardioprotective benefits of long-term blueberry enriched diet in dilated cardiomyopathy following myocardial infarction in rats. PLoS One. 2009;4:e7975.
    1. Ahmet I., Spangler E., Shukitt-Hale B., Juhaszova M., Sollott S.J., Joseph J.A., Ingram D.K., Talan M. Blueberry-enriched diet protects rat heart from ischemic damage. PLoS One. 2009;4:e5954. doi: 10.1371/journal.pone.0005954.
    1. Shao Z.H., Wojcik K.R., Dossumbekova A., Hsu C., Mehendale S.R., Li C.Q., Qin Y., Sharp W.W., Chang W.T., Hamann K.J., et al. Grape seed proanthocyanidins protect cardiomyocytes from ischemia and reperfusion injury via Akt-NOS signaling. J. Cell. Biochem. 2009;107:697–705. doi: 10.1002/jcb.22170.
    1. Kähkönen M.P., Hopia A.I., Heinonen M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001;49:4076–4082. doi: 10.1021/jf010152t.
    1. Heinonen I.M., Meyer A.S., Frankel E.N. Antioxidant activity of berry phenolics on human low-density lipoprotein and liposome oxidation. J. Agric. Food Chem. 1998;46:4107–4112. doi: 10.1021/jf980181c.
    1. Heinonen I., Lehtonen P., Hopia A. Antioxidant activity of berry and fruit wines and liquors. J. Agric. Food Chem. 1998;46:25–31. doi: 10.1021/jf970489o.
    1. Chan K.C., Ho H.H., Peng C.H., Lan K.P., Lin M.C., Chen H.M., Wang C.J. Polyphenol-rich extract from mulberry leaf inhibits vascular smooth muscle cell proliferation involving upregulation of p53 and inhibition of cyclin-dependent kinase. J. Agric. Food Chem. 2010;58:2536–2542.
    1. Cuccioloni M., Mozzicafreddo M., Sparapani L., Spina M., Eleuteri A.M., Fioretti E., Angeletti M. Pomegranate fruit components modulate human thrombin. Fitoterapia. 2009;80:301–305. doi: 10.1016/j.fitote.2009.03.009.
    1. Guo C., Wei J., Yang J., Xu J., Pang W., Jiang Y. Pomegranate juice is potentially better than apple juice in improving antioxidant function in elderly subjects. Nutr. Res. 2008;28:72–77. doi: 10.1016/j.nutres.2007.12.001.
    1. Wallace T.C. Anthocyanins in cardiovascular disease. Adv. Nutr. Int. Rev. J. 2011;2:1–7. doi: 10.3945/an.110.000042.
    1. Chen J.H., Ho C.T. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 1997;45:2374–2378. doi: 10.1021/jf970055t.
    1. Elavarasan J., Velusamy P., Ganesan T., Ramakrishnan S.K., Rajasekaran D., Periandavan K. Hesperidin-mediated expression of Nrf2 and upregulation of antioxidant status in senescent rat heart. J. Pharm. Pharmacol. 2012;64:1472–1482. doi: 10.1111/j.2042-7158.2012.01512.x.
    1. Visioli F., Galli C. Biological properties of olive oil phytochemicals. Crit. Rev. Food Sci. Nutr. 2002;42:209–221. doi: 10.1080/10408690290825529.
    1. Visioli F., Bellomo G., Galli C. Free radical-scavenging properties of olive oil polyphenols. Biochem. Biophys. Res. Commun. 1998;247:60–64. doi: 10.1006/bbrc.1998.8735.
    1. Fitó M., Covas M.I., Lamuela-Raventós R.M., Vila J., Torrents L., de la Torre C., Marrugat J. Protective effect of olive oil and its phenolic compounds against low density lipoprotein oxidation. Lipids. 2000;35:633–638. doi: 10.1007/s11745-000-0567-1.
    1. Beltrán G., Del Rio C., Sánchez S., Martínez L. Influence of harvest date and crop yield on the fatty acid composition of virgin olive oils from cv. Picual. J. Agric. Food Chem. 2004;52:3434–3440. doi: 10.1021/jf049894n.
    1. Bonoli M., Bendini A., Cerretani L., Lercker G., Toschi T.G. Qualitative and semiquantitative analysis of phenolic compounds in extra virgin olive oils as a function of the ripening degree of olive fruits by different analytical techniques. J. Agric. Food Chem. 2004;52:7026–7032. doi: 10.1021/jf048868m.
    1. Rotondi A., Bendini A., Cerretani L., Mari M., Lercker G., Toschi T.G. Effect of olive ripening degree on the oxidative stability and organoleptic properties of cv. Nostrana di Brisighella extra virgin olive oil. J. Agric. Food Chem. 2004;52:3649–3654. doi: 10.1021/jf049845a.
    1. Gimeno E., Fitó M., Lamuela-Raventós R.M., Castellote A.I., Covas M., Farré M., de la Torre-Boronat M.C., López-Sabater M.C. Effect of ingestion of virgin olive oil on human low-density lipoprotein composition. Eur. J. Clin. Nutr. 2002;56:114–120. doi: 10.1038/sj.ejcn.1601293.
    1. Kafatos A.G., Zampelas A. Olive oil intake in relation to cardiovascular diseases. Grasas Y Aceites. 2004;55:24–32.
    1. Pérez-Jiménez F., Ruano J., Perez-Martinez P., Lopez-Segura F., Lopez-Miranda J. The influence of olive oil on human health: Not a question of fat alone. Mol. Nutr. Food Res. 2007;51:1199–1208.
    1. Damasceno N.R.T., Perez-Heras A., Serra M., Cofan M., Sala-Vila A., Salas-Salvado J., Ros E. Crossover study of diets enriched with virgin olive oil, walnuts or almonds. Effects on lipids and other cardiovascular risk markers. Nutr. Metab. Cardiovasc. Dis. 2011;21:S14–S20. doi: 10.1016/j.numecd.2010.12.006.
    1. Covas M., Nyyssönen K., Poulsen H. The effect of polyphenols in olive oil on heart disease risk factors. Ann. Intern. Med. 2006;145:333–341. doi: 10.7326/0003-4819-145-5-200609050-00006.
    1. Weinbrenner T., Fito M., de la Torre R., Saez G.T., Rijken P., Tormos C., Coolen S., Albaladejo M.F., Abanades S., Schroder H., et al. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. J. Nutr. 2004;134:2314–2321.
    1. Marrugat J., Covas M.I., Fitó M., Schröder H., Miró-Casas E., Gimeno E., López-Sabater M.C., de la Torre R., Farré M. Effects of differing phenolic content in dietary olive oils on lipids and LDL oxidation—A randomized controlled trial. Eur. J. Nutr. 2004;43:140–147. doi: 10.1007/s00394-004-0452-8.
    1. Fitó M., Cladellas M., de la Torre R., Martí J., Muñoz D., Schröder H., Alcántara M., Pujadas-Bastardes M., Marrugat J., López-Sabater M.C., et al. Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: A randomized, crossover, controlled trial. Eur. J. Clin. Nutr. 2008;62:570–574. doi: 10.1038/sj.ejcn.1602724.
    1. Fitó M., Cladellas M., de la Torre R., Martí J., Alcántara M., Pujadas-Bastardes M., Marrugat J., Bruguera J., López-Sabater M.C., Vila J., et al. Antioxidant effect of virgin olive oil in patients with stable coronary heart disease: A randomized, crossover, controlled, clinical trial. Atherosclerosis. 2005;181:149–158. doi: 10.1016/j.atherosclerosis.2004.12.036.
    1. Bogani P., Galli C., Villa M., Visioli F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis. 2007;190:181–186. doi: 10.1016/j.atherosclerosis.2006.01.011.
    1. Rafehi H., Smith A.J., Balcerczyk A., Ziemann M., Ooi J., Loveridge S.J., Baker E.K., El-Osta A., Karagiannis T.C. Investigation into the biological properties of the olive polyphenol, hydroxytyrosol: Mechanistic insights by genome-wide mRNA-Seq analysis. Genes Nutr. 2012;7:343–355. doi: 10.1007/s12263-011-0249-3.
    1. Di Benedetto R., Varì R., Scazzocchio B., Filesi C., Santangelo C., Giovannini C., Matarrese P., D’Archivio M., Masella R. Tyrosol, the major extra virgin olive oil compound, restored intracellular antioxidant defences in spite of its weak antioxidative effectiveness. Nutr. Metab. Cardiovasc. Dis. 2007;17:535–545. doi: 10.1016/j.numecd.2006.03.005.
    1. Salami M., Galli C., de Angelis L., Visioli F. Formation of F2-isoprostanes in oxidize low density lipoprotein: Inhibitory effect of hydroxytyrosol. Pharmacol. Res. 1995;31:275–279.
    1. Nakbi A., Dabbou S., Champion S., Fouchier F., Mehri S., Attia N., Leger C., Hammami M. Modulation of the superoxide anion production and MMP-9 expression in PMA stimulated THP-1 cells by olive oil minor components: Tyrosol and hydroxytyrosol. Food Res. Int. 2011;44:575–581. doi: 10.1016/j.foodres.2010.12.010.
    1. Masella R., Varì R. Extra virgin olive oil biophenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J. Nutr. 2004;134:785–791.
    1. Widmer R.J., Freund M.A., Flammer A.J., Sexton J., Lennon R., Romani A., Mulinacci N., Vinceri F.F., Lerman L.O., Lerman A. Beneficial effects of polyphenol-rich olive oil in patients with early atherosclerosis. Eur. J. Nutr. 2013;52:1223–1231. doi: 10.1007/s00394-012-0433-2.
    1. De la Cruz J.P., Villalobos M.A., Carmona J.A., Martin-Romero M., Smith-Agreda J.M., de la Cuesta F.S. Antithrombotic potential of olive oil administration in rabbits with elevated cholesterol. Thromb. Res. 2000;100:305–315. doi: 10.1016/S0049-3848(00)00321-2.
    1. González-Santiago M., Martín-Bautista E., Carrero J.J., Fonollá J., Baró L., Bartolomé M.V., Gil-Loyzaga P., López-Huertas E. One-month administration of hydroxytyrosol, a phenolic antioxidant present in olive oil, to hyperlipemic rabbits improves blood lipid profile, antioxidant status and reduces atherosclerosis development. Atherosclerosis. 2006;188:35–42. doi: 10.1016/j.atherosclerosis.2005.10.022.
    1. Petroni A., Blasevich M., Salami M., Papini N., Montedoro G.F., Galli C. Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil. Thromb. Res. 1995;78:151–160. doi: 10.1016/0049-3848(95)00043-7.
    1. Faine L. Effects of olive oil and its minor constituents on serum lipids, oxidative stress, and energy metabolism in cardiac muscle. Can. J. Physiol. Pharmacol. 2006;84:239–245. doi: 10.1139/y05-124.
    1. Schmitt C.A., Handler N., Heiss E.H., Erker T., Dirsch V.M. No evidence for modulation of endothelial nitric oxide synthase by the olive oil polyphenol hydroxytyrosol in human endothelial cells. Atherosclerosis. 2007;195:e58–e64. doi: 10.1016/j.atherosclerosis.2007.02.024.
    1. Egeria S., Nadia C., Marika M. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: A potentially protective. Arch. Biochem. Biophys. 2012;527:81–89. doi: 10.1016/j.abb.2012.05.003.
    1. Dell’Agli M., Fagnani R., Mitro N., Scurati S., Masciadri M., Mussoni L., Galli G.V., Bosisio E., Crestani M., de Fabiani E., et al. Minor components of olive oil modulate proatherogenic adhesion molecules involved in endothelial activation. J. Agric. Food Chem. 2006;54:3259–3264. doi: 10.1021/jf0529161.
    1. Manna C., Napoli D., Cacciapuoti G., Porcelli M., Zappia V. Olive oil phenolic compounds inhibit homocysteine-induced endothelial cell adhesion regardless of their different antioxidant activity. J. Agric. Food Chem. 2009;57:3478–3482. doi: 10.1021/jf8037659.
    1. Carluccio M.A., Siculella L., Ancora M.A., Massaro M., Scoditti E., Storelli C., Visioli F., Distante A., de Caterina R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: Antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 2003;23:622–629. doi: 10.1161/01.ATV.0000062884.69432.A0.
    1. Abe R., Beckett J., Nixon A., Rochier A., Yamashita N., Sumpio B. Olive oil polyphenol oleuropein inhibits smooth muscle cell proliferation. Eur. J. Vasc. Endovasc. Surg. 2011;41:814–820. doi: 10.1016/j.ejvs.2010.12.021.
    1. Manna C., Migliardi V., Golino P., Scognamiglio A., Galletti P., Chiariello M., Zappia V. Oleuropein prevents oxidative myocardial injury induced by ischemia and reperfusion. J. Nutr. Biochem. 2004;15:461–466. doi: 10.1016/j.jnutbio.2003.12.010.
    1. Camargo A., Delgado-Lista J., Garcia-Rios A., Cruz-Teno C., Yubero-Serrano E.M., Perez-Martinez P., Gutierrez-Mariscal F.M., Lora-Aguilar P., Rodriguez-Cantalejo F., Fuentes-Jimenez F., et al. Expression of proinflammatory, proatherogenic genes is reduced by the Mediterranean diet in elderly people. Br. J. Nutr. 2012;108:500–508. doi: 10.1017/S0007114511005812.
    1. Cicerale S., Lucas L., Keast R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci. 2010;11:458–479. doi: 10.3390/ijms11020458.
    1. Tasioula-Margari M., Okogeri O. Simultaneous determination of phenolic compounds and tocopherols in virgin olive oil using HPLC and UV detection. Food Chem. 2001;74:377–383. doi: 10.1016/S0308-8146(01)00176-5.
    1. Gordon M.H., Paiva-Martins F., Almeida M. Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols. J. Agric. Food Chem. 2001;49:2480–2485. doi: 10.1021/jf000537w.
    1. Samuel S.M., Thirunavukkarasu M., Penumathsa S.V., Paul D., Maulik N. Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: Switching gears toward survival and longevity. J. Agric Food Chem. 2008;56:9692–9698. doi: 10.1021/jf802050h.
    1. Bayram B., Ozcelik B., Grimm S., Roeder T., Schrader C., Ernst I.M., Wagner A.E., Grune T., Frank J., Rimbach G. A diet rich in olive oil phenolics reduces oxidative stress in the heart of SAMP8 mice by induction of Nrf2-dependent gene expression. Rejuvenation Res. 2012;15:71–81. doi: 10.1089/rej.2011.1245.
    1. Miles E.A., Zoubouli P., Calder P.C. Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. Nutrition. 2005;21:389–394. doi: 10.1016/j.nut.2004.06.031.
    1. Beauchamp G.K., Keast R.S., Morel D., Lin J., Pika J., Han Q., Lee C.H., Smith A.B., Breslin P.A. Phytochemistry: Ibuprofen-like activity in extra-virgin olive oil. Nature. 2005;437:45–46. doi: 10.1038/437045a.
    1. Loued S., Berrougui H., Componova P., Ikhlef S., Helal O., Khalil A. Extra-virgin olive oil consumption reduces the age-related decrease in HDL and paraoxonase 1 anti-inflammatory activities. Br. J. Nutr. 2013 in press.
    1. Zrelli H., Matsuka M., Araki1 M., Zarrouk M., Miyazaki H. Hydroxytyrosol induces vascular smooth muscle cells apoptosis through NO production and PP2A activation with subsequent inactivation of Akt. Planta Med. 2011;77:1680–1686. doi: 10.1055/s-0030-1271073.
    1. Visioli F., Caruso D., Grande S., Bosisio R., Villa M., Galli G., Sirtori C., Galli C. Virgin Olive Oil Study (VOLOS): Vasoprotective potential of extra virgin olive oil in mildly dyslipidemic patients. Eur. J. Nutr. 2005;44:121–127. doi: 10.1007/s00394-004-0504-0.
    1. Hennekens C.H., Buring J.E., Manson J.E., Stampfer M., Rosner B., Cook N.R., Belanger C., LaMotte F., Gaziano J.M., Ridker P.M., et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N. Engl. J. Med. 1996;334:1145–1149. doi: 10.1056/NEJM199605023341801.
    1. Christen W. Design of Physicians’ Health Study II—A randomized trial of beta-carotene, vitamins E and C, and multivitamins, in prevention of cancer, cardiovascular disease, and eye disease, and review of results of completed trials. Ann. Epidemiol. 2000;10:125–134. doi: 10.1016/S1047-2797(99)00042-3.
    1. Wong R.H.X., Howe P.R.C., Buckley J.D., Coates A.M., Kunz I., Berry N.M. Acute resveratrol supplementation improves flow-mediated dilatation in overweight/obese individuals with mildly elevated blood pressure. Nutr. Metab. Cardiovasc. Dis. 2011;21:851–856. doi: 10.1016/j.numecd.2010.03.003.
    1. Freedman J.E., Parker C., Li L., Perlman J.A., Frei B., Ivanov V., Deak L.R., Iafrati M.D., Folts J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001;103:2792–2798. doi: 10.1161/01.CIR.103.23.2792.
    1. Basu A., Du M., Leyva M. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010;140:1582–1587. doi: 10.3945/jn.110.124701.
    1. Duffy S.J., Keaney J.F., Jr., Holbrook M., Gokce N., Swerdloff P.L., Frei B., Vita J.A. Short-and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation. 2001;104:151–156. doi: 10.1161/01.CIR.104.2.151.
    1. Brown A.L., Lane J., Coverly J., Stocks J., Jackson S., Stephen A., Bluck L., Coward A., Hendrickx H. Effects of dietary supplementation with the green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors: Randomized controlled trial. Br. J. Nutr. 2009;101:886–984. doi: 10.1017/S0007114508047727.
    1. Van Mierlo L.A.J., Zock P.L., van der Knaap H.C.M., Draijer R. Grape polyphenols do not affect vascular function in healthy men. J. Nutr. 2010;140:1769–1773. doi: 10.3945/jn.110.125518.
    1. Auclair S., Chironi G., Milenkovic D., Hollman P.C., Renard C.M., Mégnien J.L., Gariepy J., Paul J.L., Simon A., Scalbert A. The regular consumption of a polyphenol-rich apple does not influence endothelial function: A randomised double-blind trial in hypercholesterolemic adults. Eur. J. Clin. Nutr. 2010;64:1158–1165. doi: 10.1038/ejcn.2010.135.
    1. Frank J., George T. Daily consumption of an aqueous green tea extract supplement does not impair liver function or alter cardiovascular disease risk biomarkers in healthy men. J. Nutr. 2009;139:58–62.
    1. Basu A., Du M., Sanchez K., Leyva M.J., Betts N.M., Blevins S., Wu M., Aston C.E., Lyons T.J. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition. 2011;27:206–213. doi: 10.1016/j.nut.2010.01.015.
    1. Trautwein E.A., Du Y., Meynen E., Yan X., Wen Y., Wang H., Molhuizen H.O. Purified black tea theaflavins and theaflavins/catechin supplements did not affect serum lipids in healthy individuals with mildly to moderately elevated cholesterol concentrations. Eur. J. Nutr. 2010;49:27–35. doi: 10.1007/s00394-009-0045-7.
    1. Mennen L.I., Walker R., Bennetau-Pelissero C., Scalbert A. Risks and safety of polyphenol consumption. Am. J. Clin. Nutr. 2005;81:326S–329S.
    1. Bravo L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998;56:317–333. doi: 10.1111/j.1753-4887.1998.tb01670.x.
    1. Brune M., Rossander L., Hallberg L. Iron absorption and phenolic compounds: Importance of different phenolic structures. Eur. J. Clin. Nutr. 1989;43:547–557.
    1. Reddy M., Cook J. Assessment of dietary determinants of nonheme-iron absorption in humans and rats. Am. J. Clin. Nutr. 1991;54:723–728.
    1. Temme E.H., van Hoydonck P.G. Tea consumption and iron status. Eur. J. Clin. Nutr. 2002;56:379–386. doi: 10.1038/sj.ejcn.1601309.
    1. Zijp I.M., Korver O., Tijburg L.B. Effect of tea and other dietary factors on iron absorption. Crit. Rev. Food Sci. Nutr. 2000;40:371–398. doi: 10.1080/10408690091189194.
    1. Sakihama Y., Cohen M.F., Grace S.C., Yamasaki H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology. 2002;177:67–80. doi: 10.1016/S0300-483X(02)00196-8.
    1. Isbrucker R.A., Edwards J.A., Wolz E., Davidovich A., Bausch J. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: Dermal, acute and short-term toxicity studies. Food Chem. Toxicol. 2006;44:636–650. doi: 10.1016/j.fct.2005.11.003.
    1. Hirose M., Hoshiya T., Mizoguchi Y., Nakamura A., Akagi K., Shirai T. Green tea catechins enhance tumor development in the colon without effects in the lung or thyroid after pretreatment with 1,2-Dimethylhydrazine or 2,2′-dihydroxy-di-n-propylnitrosamine in male F344 rats. Cancer Lett. 2001;168:23–29. doi: 10.1016/S0304-3835(01)00502-X.
    1. Van der Woude H., Gliszczyńska-Swigło A., Struijs K., Smeets A., Alink G.M., Rietjens I.M.C.M. Biphasic modulation of cell proliferation by quercetin at concentrations physiologically relevant in humans. Cancer Lett. 2003;200:41–47. doi: 10.1016/S0304-3835(03)00412-9.
    1. Manach C., Williamson G., Morand C., Scalbert A., Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S.
    1. Kay C.D. The future of flavonoid research. Br. J. Nutr. 2010;104:S91–S95. doi: 10.1017/S000711451000396X.
    1. Wersching H. An apple a day keeps stroke away? Consumption of white fruits and vegetables is associated with lower risk of stroke. Stroke. 2011;42:3001–3002. doi: 10.1161/STROKEAHA.111.626754.

Source: PubMed

3
Subscribe