Cardiac Left Ventricle Mitochondrial Dysfunction After Neonatal Exposure to Hyperoxia: Relevance for Cardiomyopathy After Preterm Birth

Daniela Ravizzoni Dartora, Adrien Flahault, Carolina N R Pontes, Ying He, Alyson Deprez, Anik Cloutier, Gaël Cagnone, Perrine Gaub, Gabriel Altit, Jean-Luc Bigras, Jean-Sébastien Joyal, Thuy Mai Luu, Yan Burelle, Anne Monique Nuyt, Daniela Ravizzoni Dartora, Adrien Flahault, Carolina N R Pontes, Ying He, Alyson Deprez, Anik Cloutier, Gaël Cagnone, Perrine Gaub, Gabriel Altit, Jean-Luc Bigras, Jean-Sébastien Joyal, Thuy Mai Luu, Yan Burelle, Anne Monique Nuyt

Abstract

Background: Individuals born preterm present left ventricle changes and increased risk of cardiac diseases and heart failure. The pathophysiology of heart disease after preterm birth is incompletely understood. Mitochondria dysfunction is a hallmark of cardiomyopathy resulting in heart failure. We hypothesized that neonatal hyperoxia in rats, a recognized model simulating preterm birth conditions and resulting in oxygen-induced cardiomyopathy, induce left ventricle mitochondrial changes in juvenile rats. We also hypothesized that humanin, a mitochondrial-derived peptide, would be reduced in young adults born preterm.

Methods: Sprague-Dawley pups were exposed to room air (controls) or 80% O2 at postnatal days 3 to 10 (oxygen-induced cardiomyopathy). We studied left ventricle mitochondrial changes in 4 weeks old males. In a cohort of young adults born preterm (n=55) and age-matched term (n=54), we compared circulating levels of humanin.

Results: Compared with controls, oxygen-exposed rats showed smaller left ventricle mitochondria with disrupted integrity on electron microscopy, decreased oxidative phosphorylation, increased glycolysis markers, and reduced mitochondrial biogenesis and abundance. In oxygen-exposed rats, we observed lipid deposits, increased superoxide production (isolated cardiomyocytes), and reduced Nrf2 gene expression. In the cohort, left ventricle ejection fraction and peak global longitudinal strain were similar between groups however humanin levels were lower in preterm and associated with left ventricle ejection fraction and peak global longitudinal strain.

Conclusions: In conclusion, neonatal hyperoxia impaired left ventricle mitochondrial structure and function in juvenile animals. Serum humanin level was reduced in preterm adults. This study suggests that preterm birth-related conditions entail left ventricle mitochondrial alterations that may underlie cardiac changes perpetuated into adulthood. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03261609.

Keywords: cardiomyopathies; humanin; hyperoxia; mitochondria; premature birth.

Figures

Figure 1.
Figure 1.
Mitochondrial ultrastructure, morphology, and integrity in left ventricle cardiac muscle. Electron microscope images of left ventricular fibers (A) from rats exposed only to room air (control) and rats exposed to hyperoxia as newborns (oxygen-induced cardiomyopathy [OIC]). Top views were magnified ×2900 and bottom views ×7000. Individual mitochondria are indicated by arrows. Mitochondrial average surface area (B), perimeter (C), proportion (%) of cardiomyocyte area covered by mitochondria (D), and frequency distribution of mitochondrial size (E) all showed lower values for the OIC group than for controls. F presents the distribution (%) of mitochondria according to integrity score (0–4). Data shown are mean±SEM (SEM); n=3/group. *P<0.05, **P<0.01, ****P<0.0001 comparing control vs OIC with unpaired t test.
Figure 2.
Figure 2.
Mitochondrial respiration in isolated mitochondria from left ventricle cardiac muscle. Rates of oxygen consumption in isolated left ventricular mitochondria from rats exposed only to room air (control) and rats exposed to hyperoxia as newborns (oxygen-induced cardiomyopathy [OIC]). Values are shown at metabolic state 2 (A); metabolic state 3 (B) metabolic state 4 (C); and uncoupled respiration, using carbonyl cyanide-4- (trifluoromethoxy)phenylhydrazone (FCCP; D). Respiratory control ratio (RCR) indicates functional integrity of mitochondria (E). Data shown are mean±SEM; n=9/group. *P<0.05 comparing control vs OIC with unpaired t test.
Figure 3.
Figure 3.
Glycolysis activation and lipid deposition in left ventricle cardiac tissue.A, Representative blot and histogram of compiled data of the protein HIF (hypoxia-inducible factor)-1α expression in rats exposed only to room air (control) and rats exposed to hyperoxia as newborns (oxygen-induced cardiomyopathy [OIC]); β-tubulin was used as internal standard. Hexokinase 1 mRNA (B) and hexokinase 2 mRNA (C) are expressed relative to the 40S ribosomal protein S16 (S16). Representative image (D) and quantification (E) of intracardiac lipid deposition in left ventricle sections. Scale bar: 36.8 µm Data shown are mean±SEM; n=6/group. Lipid droplets appear as green fluorescent dots in the representative images. *P<0.05; ***P<0.001 comparing control vs OIC with unpaired t test.
Figure 4.
Figure 4.
Mitochondrial biogenesis and abundance, mitochondrial superoxide production, SOD2 (superoxide dismutase 2), and Nrf2 (nuclear factor erythroid 2–related factor) expression in cardiac left ventricle. Markers of mitochondrial biogenesis and abundance in left ventricle tissue from rats exposed only to room air (control) and rats exposed to hyperoxia as newborns (oxygen-induced cardiomyopathy [OIC]): Pgc (peroxisome proliferator-activated receptor gamma coactivator)-1α gene expression (A), citrate synthase (B), the ratio of mitochondrial DNA (mtDNA) to genomic DNA (gDNA; C) were all reduced in rats with OIC compared with controls. Mitochondrial superoxide production was increased in isolated left ventricular cardiomyocytes from OIC rats as compared to room air (control); representative images and quantification (D). SOD2 protein expression (representative blot with β-tubulin as internal standard and histograms of compiled data) is shown in (E) and Nrf2 gene expression in (F) in left ventricle. Gene mRNA expression are expressed relative to the 40S ribosomal protein S16 (S16). Data shown are mean±SEM; n=6/group. *P<0.05, **P<0.01 comparing control vs OIC with unpaired t test.
Figure 5.
Figure 5.
Clinical study: humanin levels and left ventricle (LV) ejection fraction in young adults born preterm vs full-term. Serum humanin levels in young adults born preterm (<30 wk’ gestation) and full-term (≥37 wk’ gestation; A). LV ejection fraction in preterm (B) and full-term groups (C) and peak global longitudinal strain (%) in preterm (D) and full-term groups (E) by humanin tertile. Tertiles: low (≤130 pg/mL), medium (131–193 pg/mL), high (>193 pg/mL). Statistical tests: Mann-Whitney U (A) and Kendall (B and C).

References

    1. Chawanpaiboon S, Vogel JP, Moller A-B, Lumbiganon P, Petzold M, Hogan D, Landoulsi S, Jampathong N, Kongwattanakul K, Laopaiboon M.Global, regional, and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019;7:e37–e46. doi: 10.1016/S2214-109X(18)30451-0
    1. Luu TM, Katz SL, Leeson P, Thébaud B, Nuyt AM. Preterm birth: risk factor for early-onset chronic diseases. CMAJ. 2016;188:736–746. doi: 10.1503/cmaj.150450
    1. Crump C, Howell EA, Stroustrup A, McLaughlin MA, Sundquist J, Sundquist K. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr. 2019;173:736–743. doi: 10.1001/jamapediatrics.2019.1327
    1. Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, McCormick K, Wilkinson AR, Singhal A, Lucas A, et al. . Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127:197–206. doi: 10.1161/CIRCULATIONAHA.112.126920
    1. Telles F, McNamara N, Nanayakkara S, Doyle MP, Williams M, Yaeger L, Marwick TH, Leeson P, Levy PT, Lewandowski AJ. Changes in the preterm heart from birth to young adulthood: a meta-analysis. Pediatrics. 2020;146:e20200146. doi: 10.1542/peds.2020-0146
    1. Carr H, Cnattingius S, Granath F, Ludvigsson JF, Edstedt Bonamy AK. Preterm birth and risk of heart failure up to early adulthood. J Am Coll Cardiol. 2017;69:2634–2642. doi: 10.1016/j.jacc.2017.03.572
    1. Crump C, Groves A, Sundquist J, Sundquist K. Association of preterm birth with long-term risk of heart failure into adulthood. JAMA Pediatr. 2021;175:689–697. doi: 10.1001/jamapediatrics.2021.0131
    1. Bertagnolli M, Huyard F, Cloutier A, Anstey Z, Huot-Marchand JÉ, Fallaha C, Paradis P, Schiffrin EL, Deblois D, Nuyt AM. Transient neonatal high oxygen exposure leads to early adult cardiac dysfunction, remodeling, and activation of the renin-angiotensin system. Hypertension. 2014;63:143–150. doi: 10.1161/HYPERTENSIONAHA.113.01760
    1. Bertagnolli M, Dios A, Béland-Bonenfant S, Gascon G, Sutherland M, Lukaszewski MA, Cloutier A, Paradis P, Schiffrin EL, Nuyt AM. Activation of the cardiac renin-angiotensin system in high oxygen-exposed newborn rats: angiotensin receptor blockade prevents the developmental programming of cardiac dysfunction. Hypertension. 2016;67:774–782. doi: 10.1161/HYPERTENSIONAHA.115.06745
    1. Mian MOR, He Y, Bertagnolli M, Mai-Vo TA, Fernandes RO, Boudreau F, Cloutier A, Luu TM, Nuyt AM. TLR (Toll-Like Receptor) 4 antagonism prevents left ventricular hypertrophy and dysfunction caused by neonatal hyperoxia exposure in rats. Hypertension. 2019;74:843–853. doi: 10.1161/HYPERTENSIONAHA.119.13022
    1. Piquereau J, Ventura-Clapier R. Maturation of cardiac energy metabolism during perinatal development. Front Physiol. 2018;9:959. doi: 10.3389/fphys.2018.00959
    1. Lopaschuk GD, Jaswal JS. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J Cardiovasc Pharmacol. 2010;56:130–140. doi: 10.1097/FJC.0b013e3181e74a14
    1. Lai L, Leone TC, Zechner C, Schaeffer PJ, Kelly SM, Flanagan DP, Medeiros DM, Kovacs A, Kelly DP. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22:1948–1961. doi: 10.1101/gad.1661708
    1. Menendez-Montes I, Escobar B, Palacios B, Gómez MJ, Izquierdo-Garcia JL, Flores L, Jiménez-Borreguero LJ, Aragones J, Ruiz-Cabello J, Torres M, et al. . Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev Cell. 2016;39:724–739. doi: 10.1016/j.devcel.2016.11.012
    1. Yzydorczyk C, Comte B, Cambonie G, Lavoie JC, Germain N, Ting Shun Y, Wolff J, Deschepper C, Touyz RM, Lelièvre-Pegorier M, et al. . Neonatal oxygen exposure in rats leads to cardiovascular and renal alterations in adulthood. Hypertension. 2008;52:889–895. doi: 10.1161/HYPERTENSIONAHA.108.116251
    1. Widmer RJ, Flammer AJ, Herrmann J, Rodriguez-Porcel M, Wan J, Cohen P, Lerman LO, Lerman A. Circulating humanin levels are associated with preserved coronary endothelial function. Am J Physiol Heart Circ Physiol. 2013;304:H393–H397. doi: 10.1152/ajpheart.00765.2012
    1. Sharp TE, 3rd, Gong Z, Scarborough A, Goetzman ES, Ali MJ, Spaletra P, Lefer DJ, Muzumdar RH, Goodchild TT. Efficacy of a novel mitochondrial-derived peptide in a porcine model of myocardial ischemia/reperfusion injury. JACC Basic Transl Sci. 2020;5:699–714. doi: 10.1016/j.jacbts.2020.04.015
    1. Thummasorn S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. High-dose Humanin analogue applied during ischemia exerts cardioprotection against ischemia/reperfusion injury by reducing mitochondrial dysfunction. Cardiovasc Ther. 2017;35:e12289doi: 10.1111/1755-5922.12289
    1. Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, Port J, Bi Q, Navarrete G, Brandhorst S, et al. . The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY). 2020;12:11185–11199. doi: 10.18632/aging.103534
    1. Flahault A, Altit G, Sonea A, Gervais AS, Mian MOR, Wu R, Desbrousses E, Mai L, Cloutier A, Simoneau J, et al. . Left ventricle structure and function in young adults born very preterm and association with neonatal characteristics. J Clin Med. 2021;10:1760. doi: 10.3390/jcm10081760
    1. Flahault A, Paquette K, Fernandes RO, Delfrate J, Cloutier A, Henderson M, Lavoie JC, Mâsse B, Nuyt AM, Luu TM; HAPI Collaborating Group*. Increased incidence but lack of association between cardiovascular risk factors in adults born preterm. Hypertension. 2020;75:796–805. doi: 10.1161/HYPERTENSIONAHA.119.14335
    1. Mofarrahi M, Sigala I, Guo Y, Godin R, Davis EC, Petrof B, Sandri M, Burelle Y, Hussain SN. Autophagy and skeletal muscles in sepsis. PLoS One. 2012;7:e47265. doi: 10.1371/journal.pone.0047265
    1. Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80:30–39. doi: 10.1093/cvr/cvn184
    1. Leger T, Azarnoush K, Traoré A, Cassagnes L, Rigaudière JP, Jouve C, Pagès G, Bouvier D, Sapin V, Pereira B, et al. . Antioxidant and cardioprotective effects of EPA on early low-severity sepsis through UCP3 and SIRT3 upholding of the mitochondrial redox potential. Oxid Med Cell Longev. 2019;2019:9710352. doi: 10.1155/2019/9710352
    1. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955;217:409–427.
    1. Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955;217:383–393.
    1. Andrich DE, Ou Y, Melbouci L, Leduc-Gaudet JP, Auclair N, Mercier J, Secco B, Tomaz LM, Gouspillou G, Danialou G, et al. . Altered lipid metabolism impairs skeletal muscle force in young rats submitted to a short-term high-fat diet. Front Physiol. 2018;9:1327. doi: 10.3389/fphys.2018.01327
    1. Mehlem A, Hagberg CE, Muhl L, Eriksson U, Falkevall A. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease. Nat Protoc. 2013;8:1149–1154. doi: 10.1038/nprot.2013.055
    1. Schiattarella GG, Altamirano F, Kim SY, Tong D, Ferdous A, Piristine H, Dasgupta S, Wang X, French KM, Villalobos E, et al. . Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat Commun. 2021;12:1684. doi: 10.1038/s41467-021-21931-9
    1. Cagnone G, Vaghjiani V, Lee W, Sun C, Johnson J, Yeung KY, St John JC. Analysis of the mitochondrial DNA and its replicative capacity in induced pluripotent stem cells. Methods Mol Biol. 2016;1357:231–267. doi: 10.1007/7651_2014_156
    1. Ackers-Johnson M, Li PY, Holmes AP, O’Brien SM, Pavlovic D, Foo RS. A simplified, langendorff-free method for concomitant isolation of viable cardiac myocytes and nonmyocytes from the adult mouse heart. Circ Res. 2016;119:909–920. doi: 10.1161/CIRCRESAHA.116.309202
    1. Omatsu-Kanbe M, Yoshioka K, Fukunaga R, Sagawa H, Matsuura H. A simple antegrade perfusion method for isolating viable single cardiomyocytes from neonatal to aged mice. Physiol Rep. 2018;6:e13688. doi: 10.14814/phy2.13688
    1. Andersson DC, Fauconnier J, Yamada T, Lacampagne A, Zhang SJ, Katz A, Westerblad H. Mitochondrial production of reactive oxygen species contributes to the β-adrenergic stimulation of mouse cardiomycytes. J Physiol. 2011;589:1791–1801. doi: 10.1113/jphysiol.2010.202838
    1. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713. quiz 786. doi: 10.1016/j.echo.2010.05.010
    1. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr. 2009;10:165–193. doi: 10.1093/ejechocard/jep007
    1. Kamlin CO, O’Donnell CP, Davis PG, Morley CJ. Oxygen saturation in healthy infants immediately after birth. J Pediatr. 2006;148:585–589. doi: 10.1016/j.jpeds.2005.12.050
    1. Benny M, Hernandez DR, Sharma M, Yousefi K, Kulandavelu S, Batlahally S, Zambrano R, Chen P, Martinez EC, Schmidt AF, et al. . Neonatal hyperoxia exposure induces aortic biomechanical alterations and cardiac dysfunction in juvenile rats. Physiol Rep. 2020;8:e14334. doi: 10.14814/phy2.14334
    1. Goss KN, Kumari S, Tetri LH, Barton G, Braun RK, Hacker TA, Eldridge MW. Postnatal hyperoxia exposure durably impairs right ventricular function and mitochondrial biogenesis. Am J Respir Cell Mol Biol. 2017;56:609–619. doi: 10.1165/rcmb.2016-0256OC
    1. Lewandowski AJ, Levy PT, Bates ML, McNamara PJ, Nuyt AM, Goss KN. Impact of the vulnerable preterm heart and circulation on adult cardiovascular disease risk. Hypertension. 2020;76:1028–1037. doi: 10.1161/HYPERTENSIONAHA.120.15574
    1. Lewandowski AJ, Raman B, Bertagnolli M, Mohamed A, Williamson W, Pelado JL, McCance A, Lapidaire W, Neubauer S, Leeson P. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J Am Coll Cardiol. 2021;78:683–692. doi: 10.1016/j.jacc.2021.05.053
    1. Krishnan J, Suter M, Windak R, Krebs T, Felley A, Montessuit C, Tokarska-Schlattner M, Aasum E, Bogdanova A, Perriard E, et al. . Activation of a HIF1alpha-PPARgamma axis underlies the integration of glycolytic and lipid anabolic pathways in pathologic cardiac hypertrophy. Cell Metab. 2009;9:512–524. doi: 10.1016/j.cmet.2009.05.005
    1. Doenst T, Pytel G, Schrepper A, Amorim P, Färber G, Shingu Y, Mohr FW, Schwarzer M. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc Res. 2010;86:461–470. doi: 10.1093/cvr/cvp414
    1. Lehman JJ, Kelly DP. Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol. 2002;29:339–345. doi: 10.1046/j.1440-1681.2002.03655.x
    1. Neary MT, Ng KE, Ludtmann MH, Hall AR, Piotrowska I, Ong SB, Hausenloy DJ, Mohun TJ, Abramov AY, Breckenridge RA. Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. J Mol Cell Cardiol. 2014;74:340–352. doi: 10.1016/j.yjmcc.2014.06.013
    1. Cohen ED, Yee M, Porter GA, Jr, Ritzer E, McDavid AN, Brookes PS, Pryhuber GS, O’Reilly MA. Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight. 2021;6:140785. doi: 10.1172/jci.insight.140785
    1. Wredenberg A, Wibom R, Wilhelmsson H, Graff C, Wiener HH, Burden SJ, Oldfors A, Westerblad H, Larsson NG. Increased mitochondrial mass in mitochondrial myopathy mice. Proc Natl Acad Sci U S A. 2002;99:15066–15071. doi: 10.1073/pnas.232591499
    1. Oka T, Lam VH, Zhang L, Keung W, Cadete VJ, Samokhvalov V, Tanner BA, Beker DL, Ussher JR, Huqi A, et al. . Cardiac hypertrophy in the newborn delays the maturation of fatty acid β-oxidation and compromises postischemic functional recovery. Am J Physiol Heart Circ Physiol. 2012;302:H1784–H1794. doi: 10.1152/ajpheart.00804.2011
    1. Turrens JF, Freeman BA, Levitt JG, Crapo JD. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys. 1982;217:401–410. doi: 10.1016/0003-9861(82)90518-5
    1. Tsushima M, Liu J, Hirao W, Yamazaki H, Tomita H, Itoh K. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res. 2020;43:286–296. doi: 10.1007/s12272-019-01188-z
    1. Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010;35:505–513. doi: 10.1016/j.tibs.2010.04.002
    1. Kandasamy J, Olave N, Ballinger SW, Ambalavanan N. Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants. Am J Respir Crit Care Med. 2017;196:1040–1049. doi: 10.1164/rccm.201702-0353OC
    1. Kumari S, Barton GP, Goss KN. Increased mitochondrial oxygen consumption in adult survivors of preterm birth. Pediatr Res. 2021. doi: 10.1038/s41390-021-01387-9
    1. Lue Y, Gao C, Swerdloff R, Hoang J, Avetisyan R, Jia Y, Rao M, Ren S, Atienza V, Yu J, et al. . Humanin analog enhances the protective effect of dexrazoxane against doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol. 2018;315:H634–H643. doi: 10.1152/ajpheart.00155.2018
    1. Klein LE, Cui L, Gong Z, Su K, Muzumdar R. A humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts. Biochem Biophys Res Commun. 2013;440:197–203. doi: 10.1016/j.bbrc.2013.08.055
    1. Sutherland MR, Béland C, Lukaszewski MA, Cloutier A, Bertagnolli M, Nuyt AM. Age- and sex-related changes in rat renal function and pathology following neonatal hyperoxia exposure. Physiol Rep. 2016;4:e12887. doi: 10.14814/phy2.12887
    1. Flahault A, Dartora DR, Pontes CNR, He Y, Lachance C, Luu TM, Nuyt AM. Exposure to high levels of oxygen in neonatal rats induce a decrease in hemoglobin levels. Pediatr Res. Published online October 30, 2021; doi: 10.1038/s41390-021-01802-1
    1. Binet ME, Bujold E, Lefebvre F, Tremblay Y, Piedboeuf B; Canadian Neonatal Network™. Role of gender in morbidity and mortality of extremely premature neonates. Am J Perinatol. 2012;29:159–166. doi: 10.1055/s-0031-1284225
    1. Crump C. An overview of adult health outcomes after preterm birth. Early Hum Dev. 2020;150:105187. doi: 10.1016/j.earlhumdev.2020.105187
    1. Crump C. Preterm birth and mortality in adulthood: a systematic review. J Perinatol. 2020;40:833–843. doi: 10.1038/s41372-019-0563-y
    1. Dartora DR, Flahault A, Luu TM, Cloutier A, Simoneau J, White M, Lapointe A, Villeneuve A, Bigras JL, Altit G, et al. . Association of bronchopulmonary dysplasia and right ventricular systolic function in young adults born preterm. Chest. 2021;160:287–296. doi: 10.1016/j.chest.2021.01.079
    1. Flahault A, Girard-Bock C, Fernandes RO, Cloutier A, Pastore YD, Luu TM, Nuyt AM. Duration of neonatal oxygen supplementation, erythropoiesis and blood pressure in young adults born preterm. Thorax. 2020;75:494–502. doi: 10.1136/thoraxjnl-2019-214307

Source: PubMed

3
Subscribe