Improving rational use of ACTs through diagnosis-dependent subsidies: Evidence from a cluster-randomized controlled trial in western Kenya

Wendy Prudhomme O'Meara, Diana Menya, Jeremiah Laktabai, Alyssa Platt, Indrani Saran, Elisa Maffioli, Joseph Kipkoech, Manoj Mohanan, Elizabeth L Turner, Wendy Prudhomme O'Meara, Diana Menya, Jeremiah Laktabai, Alyssa Platt, Indrani Saran, Elisa Maffioli, Joseph Kipkoech, Manoj Mohanan, Elizabeth L Turner

Abstract

Background: More than half of artemisinin combination therapies (ACTs) consumed globally are dispensed in the retail sector, where diagnostic testing is uncommon, leading to overconsumption and poor targeting. In many malaria-endemic countries, ACTs sold over the counter are available at heavily subsidized prices, further contributing to their misuse. Inappropriate use of ACTs can have serious implications for the spread of drug resistance and leads to poor outcomes for nonmalaria patients treated with incorrect drugs. We evaluated the public health impact of an innovative strategy that targets ACT subsidies to confirmed malaria cases by coupling free diagnostic testing with a diagnosis-dependent ACT subsidy.

Methods and findings: We conducted a cluster-randomized controlled trial in 32 community clusters in western Kenya (population approximately 160,000). Eligible clusters had retail outlets selling ACTs and existing community health worker (CHW) programs and were randomly assigned 1:1 to control and intervention arms. In intervention areas, CHWs were available in their villages to perform malaria rapid diagnostic tests (RDTs) on demand for any individual >1 year of age experiencing a malaria-like illness. Malaria RDT-positive individuals received a voucher for a discount on a quality-assured ACT, redeemable at a participating retail medicine outlet. In control areas, CHWs offered a standard package of health education, prevention, and referral services. We conducted 4 population-based surveys-at baseline, 6 months, 12 months, and 18 months-of a random sample of households with fever in the last 4 weeks to evaluate predefined, individual-level outcomes. The primary outcome was uptake of malaria diagnostic testing at 12 months. The main secondary outcome was rational ACT use, defined as the proportion of ACTs used by test-positive individuals. Analyses followed the intention-to-treat principle using generalized estimating equations (GEEs) to account for clustering with prespecified adjustment for gender, age, education, and wealth. All descriptive statistics and regressions were weighted to account for sampling design. Between July 2015 and May 2017, 32,404 participants were tested for malaria, and 10,870 vouchers were issued. A total of 7,416 randomly selected participants with recent fever from all 32 clusters were surveyed. The majority of recent fevers were in children under 18 years (62.9%, n = 4,653). The gender of enrolled participants was balanced in children (49.8%, n = 2,318 boys versus 50.2%, n = 2,335 girls), but more adult women were enrolled than men (78.0%, n = 2,139 versus 22.0%, n = 604). At baseline, 67.6% (n = 1,362) of participants took an ACT for their illness, and 40.3% (n = 810) of all participants took an ACT purchased from a retail outlet. At 12 months, 50.5% (n = 454) in the intervention arm and 43.4% (n = 389) in the control arm had a malaria diagnostic test for their recent fever (adjusted risk difference [RD] = 9 percentage points [pp]; 95% CI 2-15 pp; p = 0.015; adjusted risk ratio [RR] = 1.20; 95% CI 1.05-1.38; p = 0.015). By 18 months, the ARR had increased to 1.25 (95% CI 1.09-1.44; p = 0.005). Rational use of ACTs in the intervention area increased from 41.7% (n = 279) at baseline to 59.6% (n = 403) and was 40% higher in the intervention arm at 18 months (ARR 1.40; 95% CI 1.19-1.64; p < 0.001). While intervention effects increased between 12 and 18 months, we were not able to estimate longer-term impact of the intervention and could not independently evaluate the effects of the free testing and the voucher on uptake of testing.

Conclusions: Diagnosis-dependent ACT subsidies and community-based interventions that include the private sector can have an important impact on diagnostic testing and population-wide rational use of ACTs. Targeting of the ACT subsidy itself to those with a positive malaria diagnostic test may also improve sustainability and reduce the cost of retail-sector ACT subsidies.

Trial registration: ClinicalTrials.gov NCT02461628.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Map of the study area…
Fig 1. Map of the study area showing intervention and comparison clusters (i.e., CUs).
Bungoma East was divided into multiple subcounties after the study began. Webuye West and Webuye East were previously divisions within Bungoma East subcounty and are now separate subcounties. In Laktabai and colleagues [10], we refer to Bungoma East and Kiminini. Here, we have used the updated administrative structure. CU, community unit.
Fig 2. CONSORT diagram.
Fig 2. CONSORT diagram.
Thirty-two clusters were randomized to 2 arms. All clusters were analyzed at each time point. CHW, community health worker; CONSORT, CONsolidated Standards Of Reporting Trials; IQR, interquartile range.
Fig 3. Number of positive (red portion)…
Fig 3. Number of positive (red portion) and negative (grey portion) RDTs performed by CHWs per month over the study period in 16 intervention CUs.
The first full month of testing for the first 11 CUs was September 2015, and the first full month of testing for the remaining 5 CUs was October 2015. The study continued until the last CU had participated for 19 months (April 2017). Survey periods of 6, 12, and 18 months are indicated. Monthly fluctuations in testing rates are related to fever prevalence and possibly holiday travel (December–January). Seasonal rains in March–June usher in the high malaria season, which typically continues through July. Annual variations in rainfall and overall transmission are common. CHW, community health worker; CU, community unit; RDT, rapid diagnostic test.
Fig 4. Proportion of ACT consumed by…
Fig 4. Proportion of ACT consumed by those with a febrile illness in the last month according to their testing uptake and result (positive or negative).
Results are reported by intervention arm and survey period. The total number of ACT courses taken is indicated for each bar. ACT, artemisinin combination therapy.
Fig 5. Adjusted modeled RRs and 95%…
Fig 5. Adjusted modeled RRs and 95% CIs for the primary outcome of uptake of testing and 3 composite outcomes.
Test adherence is defined as those who take ACT with a positive test or do not take ACT with a negative test among those tested. Targeted ACT use is defined as the proportion of all fevers that have a positive test and take ACT or a negative test and do not take ACT. Rational ACT use is defined as the proportion of all ACT courses consumed by individuals with a positive test. ACT, artemisinin combination therapy; RR, risk ratio.

References

    1. World Health Organization. World Malaria Report 2015. Geneva: 2015.
    1. Arrow KJ, Panosian C, Gelband H. Saving Lives, Buying Time: Economics of Malaria Drugs in an Age of Resistance Institute of Medicine Committee on the Economics of Antimalarial Drugs. Washington (DC): National Academies Press (US); 2004.
    1. Tougher S, Ye Y, Amuasi JH, Kourgueni IA, Thomson R, Goodman C, et al. Effect of the Affordable Medicines Facility—malaria (AMFm) on the availability, price, and market share of quality-assured artemisinin-based combination therapies in seven countries: a before-and-after analysis of outlet survey data. Lancet. 2012;380:1916–26. 10.1016/S0140-6736(12)61732-2
    1. Tougher S, Hanson K, Goodman C. What happened to anti-malarial markets after the Affordable Medicines Facility-malaria pilot? Trends in ACT availability, price and market share from five African countries under continuation of the private sector co-payment mechanism. Malar J. 2017;16(1):173 Epub 2017/04/27. 10.1186/s12936-017-1814-z ; PubMed Central PMCID: PMCPmc5405529.
    1. UNITAID. GLOBAL MALARIA DIAGNOSTIC AND ARTEMISININ TREATMENT COMMODITIES DEMAND FORECAST; 2017–2020. 2017.
    1. World Health Organization. World Malaria Report 2016. Geneva: 2016.
    1. Cohen J, Dupas P, Schaner S. Price Subsidies, Diagnostic Tests, and Targeting of Malaria Treatment: Evidence from a Randomized Controlled Trial. American Economic Review. 2015;105(2):609–45. 10.1257/aer.20130267
    1. Briggs MA, Kalolella A, Bruxvoort K, Wiegand R, Lopez G, Festo C, et al. Prevalence of malaria parasitemia and purchase of artemisinin-based combination therapies (ACTs) among drug shop clients in two regions in Tanzania with ACT subsidies. PLoS ONE. 2014;9(4):e94074 10.1371/journal.pone.0094074 ; PubMed Central PMCID: PMC3986050.
    1. Mbonye AK, Lal S, Cundill B, Hansen KS, Clarke S, Magnussen P. Treatment of fevers prior to introducing rapid diagnostic tests for malaria in registered drug shops in Uganda. Malar J. 2013;12:131 Epub 2013/04/17. 10.1186/1475-2875-12-131 ; PubMed Central PMCID: PMCPmc3637132.
    1. Gething PW, Casey DC, Weiss DJ, Bisanzio D, Bhatt S, Cameron E, et al. Mapping Plasmodium falciparum Mortality in Africa between 1990 and 2015. N Engl J Med. 2016;375(25):2435–45. Epub 2016/10/11. 10.1056/NEJMoa1606701 ; PubMed Central PMCID: PMCPmc5484406.
    1. Opoka RO, Xia Z, Bangirana P, John CC. Inpatient mortality in children with clinically diagnosed malaria as compared with microscopically confirmed malaria. Pediatr Infect Dis J. 2008;27(4):319–24. 10.1097/INF.0b013e31815d74dd .
    1. Ameyaw E, Nguah SB, Ansong D, Page I, Guillerm M, Bates I. The outcome of a test-treat package versus routine outpatient care for Ghanaian children with fever: a pragmatic randomized control trial. Malar J. 2014;13:461 Epub 2014/11/28. 10.1186/1475-2875-13-461 ; PubMed Central PMCID: PMCPmc4259007.
    1. O'Meara WP, Smith DL, McKenzie FE. Potential impact of intermittent preventive treatment (IPT) on spread of drug-resistant malaria. PLoS Med. 2006;3(5):e141 10.1371/journal.pmed.0030141 .
    1. Nsanzabana C, Hastings IM, Marfurt J, Muller I, Baea K, Rare L, et al. Quantifying the evolution and impact of antimalarial drug resistance: drug use, spread of resistance, and drug failure over a 12-year period in Papua New Guinea. J Infect Dis. 2010;201(3):435–43. Epub 2010/01/06. 10.1086/649784 .
    1. Hastings IM. Modelling parasite drug resistance: lessons for management and control strategies. Tropical Medicine & International Health. 2001;6(11):883–90. PubMed PMID: ISI:000172100000007.
    1. Pongtavornpinyo W, Yeung S, Hastings IM, Dondorp AM, Day NP, White NJ. Spread of anti-malarial drug resistance: mathematical model with implications for ACT drug policies. Malar J. 2008;7:229 10.1186/1475-2875-7-229 .
    1. Severini C, Menegon M. Resistance to antimalarial drugs: An endless world war against Plasmodium that we risk losing. Journal of global antimicrobial resistance. 2015;3(2):58–63. Epub 2015/06/01. 10.1016/j.jgar.2015.02.002 .
    1. Lubell Y, Dondorp A, Guérin PJ, Drake T, Meek S, Ashley E, et al. Artemisinin resistance–modelling the potential human and economic costs. Malaria Journal. 2014;13(1):452 10.1186/1475-2875-13-452
    1. Lubell Y, Reyburn H, Mbakilwa H, Mwangi R, Chonya S, Whitty CJ, et al. The impact of response to the results of diagnostic tests for malaria: cost-benefit analysis. BMJ. 2008;336(7637):202–5. Epub 2008/01/18. 10.1136/bmj.39395.696065.47 ; PubMed Central PMCID: PMCPmc2213875.
    1. Shillcutt S, Morel C, Goodman C, Coleman P, Bell D, Whitty CJ, et al. Cost-effectiveness of malaria diagnostic methods in sub-Saharan Africa in an era of combination therapy. Bull World Health Organ. 2008;86(2):101–10. Epub 2008/02/26. 10.2471/BLT.07.042259 ; PubMed Central PMCID: PMCPmc2647374.
    1. Phillips V, Njau J, Li S, Kachur P. Simulations Show Diagnostic Testing For Malaria In Young African Children Can Be Cost-Saving Or Cost-Effective. Health affairs (Project Hope). 2015;34(7):1196–203. Epub 2015/07/15. 10.1377/hlthaff.2015.0095 ; PubMed Central PMCID: PMCPmc4675960.
    1. Tawiah T, Hansen KS, Baiden F, Bruce J, Tivura M, Delimini R, et al. Cost-Effectiveness Analysis of Test-Based versus Presumptive Treatment of Uncomplicated Malaria in Children under Five Years in an Area of High Transmission in Central Ghana. PLoS ONE. 2016;11(10):e0164055 10.1371/journal.pone.0164055 ; PubMed Central PMCID: PMC5047443.
    1. Hansen KS, Ndyomugyenyi R, Magnussen P, Lal S, Clarke SE. Cost-effectiveness analysis of malaria rapid diagnostic tests for appropriate treatment of malaria at the community level in Uganda. Health Policy Plan. 2017;32(5):676–89. Epub 2017/04/30. 10.1093/heapol/czw171 ; PubMed Central PMCID: PMCPmc5406761.
    1. Hanson K, Goodman C. Testing times: trends in availability, price, and market share of malaria diagnostics in the public and private healthcare sector across eight sub-Saharan African countries from 2009 to 2015. Malar J. 2017;16(1):205 Epub 2017/05/21. 10.1186/s12936-017-1829-5 ; PubMed Central PMCID: PMCPmc5438573.
    1. National Malaria Control Programme (NMCP) Kenya National Bureau of Statistics, and ICF, International. Kenya Malaria Indicator Survey 2015. Nairobi, Kenya and Rockville, Maryland, USA: NMCP, KNBS, and ICF International, 2016.
    1. O'Meara WP, Karuru S, Fazen LE, Koech J, Kizito B, Tarus C, et al. Heterogeneity in health seeking behaviour for treatment, prevention and urgent care in four districts in western Kenya. Public health. 2014;128(11):993–1008. Epub 2014/12/03. 10.1016/j.puhe.2014.08.010 .
    1. Laktabai J, Lesser A, Platt A, Maffioli E, Mohanan M, Menya D, et al. Innovative public-private partnership to target subsidised antimalarials: a study protocol for a cluster randomised controlled trial to evaluate a community intervention in Western Kenya. BMJ open. 2017;7(3):e013972 Epub 2017/03/23. 10.1136/bmjopen-2016-013972 ; PubMed Central PMCID: PMCPmc5372155.
    1. Kenya Integrated Household Budget Survey 2005–2006. Nairobi: 2013.
    1. Kenya Ministry of Health. Taking the Kenya Essential Package for Health to the COMMUNITY: A Strategy for the Delivery of LEVEL ONE SERVICES Nairobi: 2006.
    1. Musuva A, Ejersa W, Kiptui R, Memusi D, Abwao E. The malaria testing and treatment landscape in Kenya: results from a nationally representative survey among the public and private sector in 2016. Malaria Journal. 2017;16(1):494 10.1186/s12936-017-2089-0
    1. Hayes RJ, Moulton LH. Cluster Randomized Trials. Chapman & Hall/CRC Press Interdisciplinary Statistics, 2009.
    1. Aickin M, Gensler H. Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. American journal of public health. 1996;86(5):726–8. Epub 1996/05/01. ; PubMed Central PMCID: PMCPmc1380484.
    1. Zou G, Donner A. Extension of the modified Poisson regression model to prospective studies with correlated binary data. Statistical Methods in Medical Research. 2013;22(6):661–70. 10.1177/0962280211427759 .
    1. Kauermann G, Carroll RJ. A Note on the Efficiency of Sandwich Covariance Matrix Estimation. Journal of the American Statistical Association. 2001;96(456):1387–96. 10.1198/016214501753382309
    1. Ukoumunne OC, Thompson SG. Analysis of cluster randomized trials with repeated cross-sectional binary measurements. Statistics in medicine. 2001;20(3):417–33. Epub 2001/02/17. .
    1. Kolenikov S, Angeles G. The Use of Discrete Data in Principal Component Analysis With Applications to Socio-Economic Indices. CPC/MEASURE. 2004;Working paper No. WP-04-85.
    1. Cheung YB. A modified least-squares regression approach to the estimation of risk difference. American journal of epidemiology. 2007;166(11):1337–44. Epub 2007/11/15. 10.1093/aje/kwm223 .
    1. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289–300.
    1. Prudhomme O'Meara W, (2018) Data from: Improving rational use of ACTs through diagnosis-dependent subsidies: evidence from a cluster-randomized controlled trial in western Kenya. Dryad Digital Repository. Available from: 10.5061/dryad.59p4111. [cited 22 June 2018].
    1. World Health Organization. World Malaria Report 2017. Geneva: 2017.
    1. Hastings IM, D'Alessandro U. Modelling a predictable disaster: the rise and spread of drug-resistant malaria. Parasitology today (Personal ed). 2000;16(8):340–7. Epub 2000/07/20. .
    1. Visser T, Bruxvoort K, Maloney K, Leslie T, Barat LM, Allan R, et al. Introducing malaria rapid diagnostic tests in private medicine retail outlets: A systematic literature review. PLoS ONE. 2017;12(3):e0173093 10.1371/journal.pone.0173093 ; PubMed Central PMCID: PMC5333947.
    1. Yeboah-Antwi K, Pilingana P, Macleod WB, Semrau K, Siazeele K, Kalesha P, et al. Community case management of fever due to malaria and pneumonia in children under five in Zambia: a cluster randomized controlled trial. PLoS Med. 2010;7(9):e1000340 10.1371/journal.pmed.1000340 ; PubMed Central PMCID: PMC2943441.
    1. Singlovic J, Ajayi IO, Nsungwa-Sabiiti J, Siribie M, Sanou AK, Jegede AS, et al. Compliance With Malaria Rapid Diagnostic Testing by Community Health Workers in 3 Malaria-Endemic Countries of Sub-Saharan Africa: An Observational Study. Clin Infect Dis. 2016;63(suppl 5):S276–s82. Epub 2016/12/13. 10.1093/cid/ciw626 ; PubMed Central PMCID: PMCPmc5146698.
    1. Ndyomugyenyi R, Magnussen P, Lal S, Hansen K, Clarke SE. Appropriate targeting of artemisinin-based combination therapy by community health workers using malaria rapid diagnostic tests: findings from randomized trials in two contrasting areas of high and low malaria transmission in south-western Uganda. Trop Med Int Health. 2016;21(9):1157–70. Epub 2016/07/08. 10.1111/tmi.12748 ; PubMed Central PMCID: PMCPmc5031222.
    1. Mukanga D, Tiono AB, Anyorigiya T, Kallander K, Konate AT, Oduro AR, et al. Integrated community case management of fever in children under five using rapid diagnostic tests and respiratory rate counting: a multi-country cluster randomized trial. Am J Trop Med Hyg. 2012;87(5 Suppl):21–9. Epub 2013/01/03. 10.4269/ajtmh.2012.11-0816 ; PubMed Central PMCID: PMCPmc3748518.
    1. Mubi M, Janson A, Warsame M, Martensson A, Kallander K, Petzold MG, et al. Malaria rapid testing by community health workers is effective and safe for targeting malaria treatment: randomised cross-over trial in Tanzania. PLoS ONE. 2011;6(7):e19753 10.1371/journal.pone.0019753 .
    1. Cohen J, Fink G, Maloney K, Berg K, Jordan M, Svoronos T, et al. Introducing rapid diagnostic tests for malaria to drug shops in Uganda: a cluster-randomized controlled trial. Bull World Health Organ. 2015;93:143–51.
    1. Prudhomme O'Meara W, Mohanan M, Laktabai J, Lesser A, Platt A, Maffioli E, et al. Assessing the independent and combined effects of subsidies for antimalarials and rapid diagnostic testing on fever management decisions in the retail sector: results from a factorial randomised trial in western Kenya. BMJ Global Health. 2016;1(2):e000101 Epub 2017/06/08. 10.1136/bmjgh-2016-000101 ;
    1. Ajayi IO, Nsungwa-Sabiiti J, Siribié M, Falade CO, Sermé L, Balyeku A, et al. Feasibility of Malaria Diagnosis and Management in Burkina Faso, Nigeria, and Uganda: A Community-Based Observational Study. Clinical Infectious Diseases 2016;63(Suppl 5):S245–S55. 10.1093/cid/ciw622 .
    1. Chanda P, Hamainza B, Moonga HB, Chalwe V, Pagnoni F. Community case management of malaria using ACT and RDT in two districts in Zambia: achieving high adherence to test results using community health workers. Malar J. 2011;10:158 10.1186/1475-2875-10-158 .
    1. Thiam S, Thwing J, Diallo I, Fall FB, Diouf MB, Perry R, et al. Scale-up of home-based management of malaria based on rapid diagnostic tests and artemisinin-based combination therapy in a resource-poor country: results in Senegal. Malar J. 2012;11:334 10.1186/1475-2875-11-334 .
    1. Tami A, Mbati J, Nathan R, Mponda H, Lengeler C, Schellenberg JR. Use and misuse of a discount voucher scheme as a subsidy for insecticide-treated nets for malaria control in southern Tanzania. Health Policy Plan. 2006;21(1):1–9. Epub 2005/11/23. 10.1093/heapol/czj005 .

Source: PubMed

3
Subscribe