Comparison of the impact of prolonged low-pressure and standard-pressure pneumoperitoneum on myocardial injury after robot-assisted surgery in the Trendelenburg position: study protocol for a randomized controlled trial

Xixue Zhang, Jionglin Wei, Xiaoxing Song, Yuhao Zhang, Weiqing Qian, Lu Sheng, Zhoujun Shen, Lvjun Yang, Rong Dong, Weidong Gu, Xixue Zhang, Jionglin Wei, Xiaoxing Song, Yuhao Zhang, Weiqing Qian, Lu Sheng, Zhoujun Shen, Lvjun Yang, Rong Dong, Weidong Gu

Abstract

Background: Robot-assisted laparoscopic radical prostatectomy and robot-assisted radical cystectomy have gradually become the preferred choices for urologists as they allow surgeons to perform complex procedures more precisely and effectively. The pneumoperitoneum, which is normally applied in these surgeries to provide visual clarity and space to perform the procedure, may cause hemodynamic disturbance, potentially myocardial injury. Thus surgeons have recently considered opting for the low-pressure pneumoperitoneum to lower this negative impact. Herein we describe a protocol for a clinical trial to compare the impact of prolonged low-pressure and standard-pressure pneumoperitoneum on myocardial injury after robot-assisted surgery.

Methods/design: This study is designed to be a bicenter clinical trial. In total 280 patients scheduled to undergo robot-assisted laparoscopic radical prostatectomy or robot-assisted radical cystectomy will be enrolled and randomized into two groups, with standard- (12-16 mmHg) and low-pressure (7-10 mmHg) pneumoperitoneum, respectively. Troponin T will be measured as the primary endpoint to assess the extent of myocardial injury. Nt-proBNP and hemodynamic indexes will also be recorded for further analysis.

Discussion: The significance of this study is emphasized by the fact that there are few studies that have focused on the impact of prolonged pneumoperitoneum on myocardial injury, which is relevant to postoperative mortality. We hope that the conclusions drawn from this study could provide reference and basis to the future of the pneumoperitoneum in clinical practice.

Trial registration: Registered at https://www.clinicaltrials.gov with the Identifier NCT02600481 on November 5, 2015.

Keywords: Low-pressure pneumoperitoneum; Myocardial injury; Robot-assisted urological surgery; Standard-pressure pneumoperitoneum; Trendelenburg position; Troponin T.

Figures

Fig. 1
Fig. 1
Study design and participant flow chart. RALRP robot-assisted laparoscopic radical prostatectomy, RARC robot-assisted radical cystectomy

References

    1. Rassweiler J, Frede T, Seemann O, Stock C, Sentker L. Telesurgical laparoscopic radical prostatectomy. Initial experience. Eur Urol. 2001;40:75–83. doi: 10.1159/000049752.
    1. Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G. Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol. 2001;40:70–4. doi: 10.1159/000049751.
    1. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87:408–10. doi: 10.1046/j.1464-410x.2001.00115.x.
    1. Menon M, Hemal AK, Tewari A, Shrivastava A, Shoma AM, El-Tabey NA, Shaaban A, Abol-Enein H, Ghoneim MA. Nerve-sparing robot-assisted radical cystoprostatectomy and urinary diversion. BJU Int. 2003;92:232–6. doi: 10.1046/j.1464-410X.2003.04329.x.
    1. Finkelstein J, Eckersberger E, Sadri H, Taneja SS, Lepor H, Djavan B. Open versus laparoscopic versus robot-assisted laparoscopic prostatectomy: the European and US experience. Rev Urol. 2010;12:35–43.
    1. Orvieto MA, Patel VR. Evolution of robot-assisted radical prostatectomy. Scand J Surg. 2009;98:76–88.
    1. Hakimi AA, Feder M, Ghavamian R. Minimally invasive approaches to prostate cancer: a review of the current literature. Urol J. 2007;4:130–7.
    1. Pruthi RS, Wallen EM. Current status of robotic prostatectomy: promises fulfilled. J Urol. 2009;181:2420–1. doi: 10.1016/j.juro.2009.03.028.
    1. Takenaka A. Current status of robot-assisted radical cystectomy: what is the real benefit? Yonago Acta Med. 2015;58:95–9.
    1. Leow JJ, Reese SW, Jiang W, Lipsitz SR, Bellmunt J, Trinh Q-D, Chung BI, Kibel AS, Chang SL. Propensity-matched comparison of morbidity and costs of open and robot-assisted radical cystectomies: a contemporary population-based analysis in the United States. Eur Urol. 2014;66:569–76. doi: 10.1016/j.eururo.2014.01.029.
    1. Meininger D, Byhahn C, Bueck M, Binder J, Kramer W, Kessler P, Westphal K. Effects of prolonged pneumoperitoneum on hemodynamics and acid-base balance during totally endoscopic robot-assisted radical prostatectomies. World J Surg. 2002;26:1423–7. doi: 10.1007/s00268-002-6404-7.
    1. Yiannakopoulou EC, Nikiteas N, Perrea D, Tsigris C. Effect of laparoscopic surgery on oxidative stress response: systematic review. Surg Laparosc Endosc Percutan Tech. 2013;23:101–8. doi: 10.1097/SLE.0b013e3182827b33.
    1. Sharma KC, Kabinoff G, Ducheine Y, Tierney J, Brandstetter RD. Laparoscopic surgery and its potential for medical complications. Heart Lung. 1997;26:52–67. doi: 10.1016/S0147-9563(97)90009-1.
    1. Leduc L-J, Mitchell A. Intestinal ischemia after laparoscopic cholecystectomy. JSLS. 2006;10:236–8.
    1. de Cleva R, Silva FP, Zilberstein B, Machado DJ. Acute renal failure due to abdominal compartment syndrome: report on four cases and literature review. Rev Hosp Clin Fac Med Sao Paulo. 2001;56:123–30. doi: 10.1590/S0041-87812001000400006.
    1. Imamoglu M, Sapan L, Tekelioglu Y, Sarihan H. Long-term effects of elevated intra-abdominal pressure on testes: an experimental model of laparoscopy. Urol J. 2013;10:953–9.
    1. Joris JL, Chiche JD, Canivet JLM, Jacquet NJ, Legros JJY, Lamy ML. Hemodynamic changes induced by laparoscopy and their endocrine correlates: effects of clonidine. J Am Coll Cardiol. 1998;32:1389–96. doi: 10.1016/S0735-1097(98)00406-9.
    1. Russo A, Marana E, Viviani D, Polidori L, Colicci S, Mettimano M, Proietti R, Di Stasio E. Diastolic function: the influence of pneumoperitoneum and Trendelenburg positioning during laparoscopic hysterectomy. Eur J Anaesthesiol. 2009;26:923–7. doi: 10.1097/EJA.0b013e32832cb3c9.
    1. Sharma KC, Brandstetter RD, Brensilver JM, Jung LD. Cardiopulmonary physiology and pathophysiology as a consequence of laparoscopic surgery. Chest. 1996;110:810–5. doi: 10.1378/chest.110.3.810.
    1. Wahba RW, Béïque F, Kleiman SJ. Cardiopulmonary function and laparoscopic cholecystectomy. Can J Anaesth. 1995;42:51–63. doi: 10.1007/BF03010572.
    1. von Strauss Und Torney M, Dell-Kuster S, Hoffmann H, von Holzen U, Oertli D, Rosenthal R. Microcomplications in laparoscopic cholecystectomy: impact on duration of surgery and costs. Surg Endosc. 2015. doi:10.1007/s00464-015-4512-3.
    1. Umar A, Mehta KS, Mehta N. Evaluation of hemodynamic changes using different intra-abdominal pressures for laparoscopic cholecystectomy. Indian J Surg. 2013;75:284–9. doi: 10.1007/s12262-012-0484-x.
    1. Barczynski M, Herman RM. Influence of different pressures of pneumoperitoneum on the autonomic system function during laparoscopy. Folia Med Cracov. 2002;43:51–8.
    1. Ekici Y, Bozbas H, Karakayali F, Salman E, Moray G, Karakayali H, Haberal M. Effect of different intra-abdominal pressure levels on QT dispersion in patients undergoing laparoscopic cholecystectomy. Surg Endosc. 2009;23:2543–9. doi: 10.1007/s00464-009-0388-4.
    1. Jakimowicz J, Stultiens G, Smulders F. Laparoscopic insufflation of the abdomen reduces portal venous flow. Surg Endosc. 1998;12:129–32. doi: 10.1007/s004649900612.
    1. Kanwer DB, Kaman L, Nedounsejiane M, Medhi B, Verma GR, Bala I. Comparative study of low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy--a randomised controlled trial. Trop Gastroenterol. 2009;30:171–4.
    1. Hua J, Gong J, Yao L, Zhou B, Song Z. Low-pressure versus standard-pressure pneumoperitoneum for laparoscopic cholecystectomy: a systematic review and meta-analysis. Am J Surg. 2014;208:143–50. doi: 10.1016/j.amjsurg.2013.09.027.
    1. Van Waes JAR, Nathoe HM, De Graaff JC, Kemperman H, De Borst GJ, Peelen LM, Van Klei WA. Myocardial injury after noncardiac surgery and its association with short-term mortality. Circulation. 2013;127:2264–71. doi: 10.1161/CIRCULATIONAHA.113.002128.
    1. Botto F, Alonso-Coello P, Chan MT V, Villar JC, Xavier D, Srinathan S, Guyatt G, Cruz P, Graham M, Wang CY, Berwanger O, Pearse RM, Biccard BM, Abraham V, Malaga G, Hillis GS, Rodseth RN, Cook D, Polanczyk CA, Szczeklik W, Sessler DI, Sheth T, Ackland GL, Leuwer M, Garg AX, Lemanach Y, Pettit S, Heels-Ansdell D, Luratibuse G, Walsh M, et al. Myocardial injury after noncardiac surgery: a large, international, prospective cohort study establishing diagnostic criteria, characteristics, predictors, and 30-day outcomes. Anesthesiology. 2014;120:564–78. doi: 10.1097/ALN.0000000000000113.
    1. Ozturk TC, Unluer E, Denizbasi A, Guneysel O, Onur O. Can NT-proBNP be used as a criterion for heart failure hospitalization in emergency room? J Res Med Sci. 2011;16:1564–71.
    1. Argyra E, Theodoraki K, Rellia P, Marinis A, Voros D, Polymeneas G. Atrial and brain natriuretic peptide changes in an experimental model of intra-abdominal hypertension. J Surg Res. 2013;184:937–43. doi: 10.1016/j.jss.2013.03.036.
    1. Association between postoperative troponin levels and 30-day mortality among patients undergoing noncardiac surgery. Alternative title: Postoperative troponin levels and 30-day mortality. JAMA. 2012:2295. doi:10.1001/jama.2012.5502.
    1. Davarcı I, Karcıoğlu M, Tuzcu K, İnanoğlu K, Yetim TD, Motor S, Ulutaş KT, Yüksel R. Evidence for negative effects of elevated intra-abdominal pressure on pulmonary mechanics and oxidative stress. Sci World J. 2015;2015:1–8. doi: 10.1155/2015/612642.
    1. O’Leary E, Hubbard K, Tormey W, Cunningham AJ. Laparoscopic cholecystectomy: haemodynamic and neuroendocrine responses after pneumoperitoneum and changes in position. Br J Anaesth. 1996;76:640–4. doi: 10.1093/bja/76.5.640.
    1. Falabella A, Moore-Jeffries E, Sullivan MJ, Nelson R, Lew M. Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: a trans-oesophageal Doppler probe study. Int J Med Rob Comput Assisted Surg. 2007;3:312–5. doi: 10.1002/rcs.165.
    1. Whiteley JR, Taylor J, Henry M, Epperson TI, Hand WR. Detection of elevated intracranial pressure in robot-assisted laparoscopic radical prostatectomy using ultrasonography of optic nerve sheath diameter. J Neurosurg Anesthesiol. 2015;27:155–9. doi: 10.1097/ANA.0000000000000106.
    1. Demyttenaere S, Feldman LS, Fried GM. Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc. 2007;21:152–60. doi: 10.1007/s00464-006-0250-x.
    1. Gutt CN, Schmedt CG, Schmandra T, Heupel O, Schemmer P, Buchler MW. Insufflation profile and body position influence portal venous blood flow during pneumoperitoneum. Surg Endosc. 2003;17:1951–7. doi: 10.1007/s00464-002-9228-5.
    1. Rauh R, Hemmerling TM, Rist M, Jacobi KE. Influence of pneumoperitoneum and patient positioning on respiratory system compliance. J Clin Anesth. 2001;13:361–5. doi: 10.1016/S0952-8180(01)00286-0.
    1. Walder AD, Aitkenhead AR. Role of vasopressin in the haemodynamic response to laparoscopic cholecystectomy. Br J Anaesth. 1997;78:264–6. doi: 10.1093/bja/78.3.264.

Source: PubMed

3
Subscribe