The Prediction of Acute Postoperative Pain Based on Neural Oscillations Measured before the Surgery

Qi Han, Lupeng Yue, Fei Gao, Libo Zhang, Li Hu, Yi Feng, Qi Han, Lupeng Yue, Fei Gao, Libo Zhang, Li Hu, Yi Feng

Abstract

Even with an improved understanding of pain mechanisms and advances in perioperative pain management, inadequately controlled postoperative pain remains. Predicting acute postoperative pain based on presurgery physiological measures could provide valuable insights into individualized, effective analgesic strategies, thus helping improve the analgesic efficacy. Considering the strong correlation between pain perception and neural oscillations, we hypothesize that acute postoperative pain could be predicted by neural oscillations measured shortly before the surgery. Here, we explored the relationship between neural oscillations 2 hours before the thoracoscopic surgery and the subjective intensity of acute postoperative pain. The spectral power density of resting-state beta and gamma band oscillations at the frontocentral region was significantly different between patients with different levels of acute postoperative pain (i.e., low pain vs. moderate/high pain). A positive correlation was also observed between the spectral power density of resting-state beta and gamma band oscillations and subjective reports of postoperative pain. Then, we predicted the level of acute postoperative pain based on features of neural oscillations using machine learning techniques, which achieved a prediction accuracy of 92.54% and a correlation coefficient between the real pain intensities and the predicted pain intensities of 0.84. Altogether, the prediction of acute postoperative pain based on neural oscillations measured before the surgery is feasible and could meet the clinical needs in the future for better control of postoperative pain and other unwanted negative effects. The study was registered on the Clinical Trial Registry (https://ichgcp.net/clinical-trials-registry/NCT03761576?term=NCT03761576&draw=2&rank=1) with the registration number NCT03761576.

Conflict of interest statement

All authors declare no competing interests.

Copyright © 2021 Qi Han et al.

Figures

Figure 1
Figure 1
(a) Study design and the (b) flow of participants.
Figure 2
Figure 2
The difference of spectral power density of resting-state neural oscillations between patients with different levels of acute postoperative pain, i.e., moderate/high pain and low pain.
Figure 3
Figure 3
The relationship between postoperative pain and resting-state EEG powers at beta (14-30 Hz) and gamma (31-50 Hz) frequency bands. Left: partial correlation was performed after controlling age and removing outliers. Right: independent-sample t-tests were performed between patients with different levels of acute postoperative pain, i.e., moderate/high pain and low pain.
Figure 4
Figure 4
The contribution of presurgery EEG features on the performance of classification and regression to predict the intensity of postoperative pain ((a, b) in the frequency domain; (c, d) in the spatial domain).
Figure 5
Figure 5
The correlation between subjective ratings of postoperative pain and the predicted ratings of postoperative pain by multiple linear regression with LOOCV.

References

    1. Pogatzki-Zahn E. M., Segelcke D., Schug S. A. Postoperative pain—from mechanisms to treatment. Pain reports. 2017;2(2):e588–e588. doi: 10.1097/PR9.0000000000000588.
    1. Mei W., Seeling M., Franck M., et al. Independent risk factors for postoperative pain in need of intervention early after awakening from general anaesthesia. European journal of pain. 2010;14(2) doi: 10.1016/j.ejpain.2009.03.009.
    1. Denk F., McMahon S. B., Tracey I. Pain vulnerability: a neurobiological perspective. Nature Neuroscience. 2014;17(2):192–200. doi: 10.1038/nn.3628.
    1. Wartolowska K., Tracey I. Neuroimaging as a tool for pain diagnosis and analgesic development. Neurotherapeutics. 2009;6(4):755–760. doi: 10.1016/j.nurt.2009.08.003.
    1. Hu L., Iannetti G. D. Neural indicators of perceptual variability of pain across species. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(5):1782–1791. doi: 10.1073/pnas.1812499116.
    1. Ploner M., Gross J., Timmermann L., Pollok B., Schnitzler A. Pain suppresses spontaneous brain rhythms. Cerebral Cortex. 2006;16(4):537–540. doi: 10.1093/cercor/bhj001.
    1. Buzsáki G., Christen Y. Micro-, Meso- and Macro-Dynamics of the Brain. Springer Open; 2016.
    1. Lim M., Kim J. S., Kim D. J., Chung C. K. Increased low- and high-frequency oscillatory activity in the prefrontal cortex of fibromyalgia patients. Frontiers in Human Neuroscience. 2016;10 doi: 10.3389/fnhum.2016.00111.
    1. May E. S., Nickel M. M., Dinh S. T., et al. Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Human Brain Mapping. 2018;40(1):293–305. doi: 10.1002/hbm.24373.
    1. Peng W., Hu L., Zhang Z., Hu Y. Changes of spontaneous oscillatory activity to tonic heat pain. PLoS One. 2014;9(3, article e91052) doi: 10.1371/journal.pone.0091052.
    1. Yue L., Iannetti G. D., Hu L. The neural origin of nociceptive-induced gamma-band oscillations. The Journal of Neuroscience. 2020;40(17):3478–3490. doi: 10.1523/JNEUROSCI.0255-20.2020.
    1. Zhou R., Wang J., Qi W., et al. Elevated resting state gamma oscillatory activities in electroencephalogram of patients with post-herpetic neuralgia. Frontiers in Neuroscience. 2018;12:p. 750. doi: 10.3389/fnins.2018.00750.
    1. Fallon N., Chiu Y., Nurmikko T., Stancak A. Altered theta oscillations in resting EEG of fibromyalgia syndrome patients. European Journal of Pain. 2018;22(1):49–57. doi: 10.1002/ejp.1076.
    1. Peng W., Xia X., Yi M., et al. Brain oscillations reflecting pain-related behavior in freely moving rats. Pain. 2018;159(1):106–118. doi: 10.1097/j.pain.0000000000001069.
    1. Misra G., Wang W. E., Archer D. B., Roy A., Coombes S. A. Automated classification of pain perception using high-density electroencephalography data. Journal of Neurophysiology. 2017;117(2):786–795. doi: 10.1152/jn.00650.2016.
    1. Schulz E., May E. S., Postorino M., et al. Prefrontal gamma oscillations encode tonic pain in humans. Cerebral Cortex. 2015;25(11):4407–4414. doi: 10.1093/cercor/bhv043.
    1. Tu Y., Zhang Z., Tan A., et al. Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Human Brain Mapping. 2016;37(2):501–514. doi: 10.1002/hbm.23048.
    1. Babiloni C., Brancucci A., Percio C. D., et al. Anticipatory electroencephalography alpha rhythm predicts subjective perception of pain intensity. The Journal of Pain. 2006;7(10):709–717. doi: 10.1016/j.jpain.2006.03.005.
    1. Cao Z. A review of artificial intelligence for EEG-based brain−computer interfaces and applications. Brain Science Advances. 2020;6(3):162–170. doi: 10.26599/BSA.2020.9050017.
    1. Hu L., Zhang Z. EEG Signal Processing and Feature Extraction. Springer Singapore Pte. Limited: 2019.
    1. Lee J., Mawla I., Kim J., et al. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain (Amsterdam) 2019;160(3):550–560. doi: 10.1097/j.pain.0000000000001417.
    1. Levitt J., Saab C. Y. What does a pain ‘biomarker’ mean and can a machine be taught to measure pain? Neuroscience Letters. 2019;702:40–43. doi: 10.1016/j.neulet.2018.11.038.
    1. Zalon M. L. Mild, moderate, and severe pain in patients recovering from major abdominal surgery. Pain Management Nursing. 2014;15(2):e1–12. doi: 10.1016/j.pmn.2012.03.006.
    1. Duan W., Chen X., Wang Y. J., Zhao W., Yuan H., Lei X. Reproducibility of power spectrum, functional connectivity and network construction in resting-state EEG. Journal of Neuroscience Methods. 2021;348:p. 108985. doi: 10.1016/j.jneumeth.2020.108985.
    1. Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods. 2004;134(1):9–21. doi: 10.1016/j.jneumeth.2003.10.009.
    1. Chaumon M., Bishop D. V., Busch N. A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods. 2015;250:47–63. doi: 10.1016/j.jneumeth.2015.02.025.
    1. Delorme A., Sejnowski T., Makeig S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage (Orlando, Fla.) 2007;34(4):1443–1449. doi: 10.1016/j.neuroimage.2006.11.004.
    1. Li J., Stoica P., Wang Y. Spectral Analysis of Signals. Morgan & Claypool Publishers; 2006.
    1. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B: Methodological. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Grubbs F. E. Procedures for detecting outlying observations in samples. Technometrics. 1969;11(1):1–21. doi: 10.1080/00401706.1969.10490657.
    1. Krzanowski W. J. Principles of Multivariate Analysis: A User’s Perspective. Vol. 3. Clarendon Press; 1988.
    1. Kutner M. H. Applied Linear Statistical Models. 5th. McGraw-Hill Irwin; 2005.
    1. Molinaro A. M., Simon R., Pfeiffer R. M. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21(15):3301–3307. doi: 10.1093/bioinformatics/bti499.
    1. Pudil P., Novovičová J., Kittler J. Floating search methods in feature selection. Pattern Recognition Letters. 1994;15(11):1119–1125. doi: 10.1016/0167-8655(94)90127-9.
    1. Ding W., Chen Y., Li D., et al. Investigation of single-dose thoracic paravertebral analgesia for postoperative pain control after thoracoscopic lobectomy - a randomized controlled trial. International Journal of Surgery. 2018;57:8–14. doi: 10.1016/j.ijsu.2018.07.006.
    1. Ekinci M., Ciftci B., MD, Gölboyu B. E., Demiraran Y., Bayrak Y., Tulgar S. A randomized trial to compare serratus anterior plane block and erector spinae plane block for pain management following thoracoscopic surgery. Pain Medicine. 2020;21(6):1248–1254. doi: 10.1093/pm/pnaa101.
    1. Finnerty D. T., McMahon A., McNamara J. R., Hartigan S. D., Griffin M., Buggy D. J. Comparing erector spinae plane block with serratus anterior plane block for minimally invasive thoracic surgery: a randomised clinical trial. British journal of anaesthesia : BJA. 2020;125(5):802–810. doi: 10.1016/j.bja.2020.06.020.
    1. Wojtyś M. E., Wąsikowski J., Wójcik N., et al. Assessment of postoperative pain management and comparison of effectiveness of pain relief treatment involving paravertebral block and thoracic epidural analgesia in patients undergoing posterolateral thoracotomy. Journal of Cardiothoracic Surgery. 2019;14(1):p. 78. doi: 10.1186/s13019-019-0901-3.
    1. Chou R., Gordon D. B., de Leon-Casasola O. A., et al. Management of postoperative pain: a clinical practice guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. The Journal of Pain. 2016;17(2):131–157. doi: 10.1016/j.jpain.2015.12.008.
    1. Wang H., Li S., Liang N., Liu W., Liu H., Liu H. Postoperative pain experiences in Chinese adult patients after thoracotomy and video-assisted thoracic surgery. Journal of Clinical Nursing. 2017;26(17-18):2744–2754. doi: 10.1111/jocn.13789.
    1. Apfelbaum J. L., Chen C., Mehta S. S., Gan T. J. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesthesia & Analgesia. 2003;97(2):534–540. doi: 10.1213/01.ane.0000068822.10113.9e.
    1. Bendixen M., Jorgensen O. D., Kronborg C., Andersen C., Licht P. B. Postoperative pain and quality of life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early stage lung cancer: a randomised controlled trial. The Lancet Oncology. 2016;17(6):836–844. doi: 10.1016/S1470-2045(16)00173-X.
    1. Case M., Zhang H., Mundahl J., et al. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease. NeuroImage clinical. 2017;14:1–17. doi: 10.1016/j.nicl.2016.12.024.
    1. Gonzalez-Roldan A. M., Cifre I., Sitges C., Montoya P. Altered dynamic of EEG oscillations in fibromyalgia patients at rest. Pain Medicine. 2016;17 doi: 10.1093/pm/pnw023.
    1. Vanneste S., Ost J., Van Havenbergh T., De Ridder D. Resting state electrical brain activity and connectivity in fibromyalgia. PLoS One. 2017;12(6, article e0178516) doi: 10.1371/journal.pone.0178516.
    1. Androulidakis A. G., Kuhn A. A., Chu Chen C., et al. Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson’s disease. Brain. 2007;130(2):457–468. doi: 10.1093/brain/awl358.
    1. Engel A. K., Fries P. Beta-band oscillations -- signalling the status quo? Current Opinion in Neurobiology. 2010;20(2):156–165. doi: 10.1016/j.conb.2010.02.015.
    1. Lu X., Yao X., Thompson W. F., Hu L. Movement-induced hypoalgesia: behavioral characteristics and neural mechanisms. Annals of the New York Academy of Sciences. 2021 doi: 10.1111/nyas.14587.
    1. Jensen O., Kaiser J., Lachaux J. P. Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences. 2007;30(7):317–324. doi: 10.1016/j.tins.2007.05.001.
    1. Rossiter H. E., Worthen S. F., Witton C., Hall S. D., Furlong P. L. Gamma oscillatory amplitude encodes stimulus intensity in primary somatosensory cortex. Frontiers in Human Neuroscience. 2013;7 doi: 10.3389/fnhum.2013.00362.
    1. Zhang Z. G., Hu L., Hung Y. S., Mouraux A., Iannetti G. D. Gamma-band oscillations in the primary somatosensory cortex--a direct and obligatory correlate of subjective pain intensity. The Journal of Neuroscience. 2012;32(22):7429–7438. doi: 10.1523/JNEUROSCI.5877-11.2012.
    1. Gross J., Schnitzler A., Timmermann L., Ploner M. Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biology. 2007;5(5):e133–1173. doi: 10.1371/journal.pbio.0050133.
    1. Schulz E., Zherdin A., Tiemann L., Plant C., Ploner M. Decoding an individual's sensitivity to pain from the multivariate analysis of EEG data. Cerebral Cortex. 2012;22(5):1118–1123. doi: 10.1093/cercor/bhr186.
    1. Saleem A. B., Lien A. D., Krumin M., et al. Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron. 2017;93(2):315–322. doi: 10.1016/j.neuron.2016.12.028.
    1. Hashmi J. A., Baliki M. N., Huang L., et al. Shape shifting pain: chronification of back pain shifts brain representation from nociceptive to emotional circuits. Brain. 2013;136(9):2751–2768. doi: 10.1093/brain/awt211.
    1. Etkin A., Egner T., Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences. 2011;15(2):85–93. doi: 10.1016/j.tics.2010.11.004.

Source: PubMed

3
Subscribe