Fibroblasts in fibrosis: novel roles and mediators

Ryan T Kendall, Carol A Feghali-Bostwick, Ryan T Kendall, Carol A Feghali-Bostwick

Abstract

Fibroblasts are the most common cell type of the connective tissues found throughout the body and the principal source of the extensive extracellular matrix (ECM) characteristic of these tissues. They are also the central mediators of the pathological fibrotic accumulation of ECM and the cellular proliferation and differentiation that occurs in response to prolonged tissue injury and chronic inflammation. The transformation of the fibroblast cell lineage involves classical developmental signaling programs and includes a surprisingly diverse range of precursor cell types-most notably, myofibroblasts that are the apex of the fibrotic phenotype. Myofibroblasts display exaggerated ECM production; constitutively secrete and are hypersensitive to chemical signals such as cytokines, chemokines, and growth factors; and are endowed with a contractile apparatus allowing them to manipulate the ECM fibers physically to close open wounds. In addition to ECM production, fibroblasts have multiple concomitant biological roles, such as in wound healing, inflammation, and angiogenesis, which are each interwoven with the process of fibrosis. We now recognize many common fibroblast-related features across various physiological and pathological protracted processes. Indeed, a new appreciation has emerged for the role of non-cancerous fibroblast interactions with tumors in cancer progression. Although the predominant current clinical treatments of fibrosis involve non-specific immunosuppressive and anti-proliferative drugs, a variety of potential therapies under investigation specifically target fibroblast biology.

Keywords: endostatin; extracellular matrix; fibroblast; fibrosis; idiopathic pulmonary fibrosis; myofibroblast; scleroderma.

Figures

Figure 1
Figure 1
Overview of factors involved with the promotion of a profibrotic myofibroblast phenotype.
Figure 2
Figure 2
Myofibroblasts can differentiate from a variety of precursor cell types.

References

    1. Abdalla M., Goc A., Segar L., Somanath P. R. (2013). Akt1 mediates alpha-smooth muscle actin expression and myofibroblast differentiation via myocardin and serum response factor. J. Biol. Chem. 288, 33483–33493 10.1074/jbc.M113.504290
    1. Abraham D. J., Varga J. (2005). Scleroderma: from cell and molecular mechanisms to disease models. Trends Immunol. 26, 587–595 10.1016/j.it.2005.09.004
    1. Akhmetshina A., Palumbo K., Dees C., Bergmann C., Venalis P., Zerr P., et al. (2012). Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat. Commun. 3, 735 10.1038/ncomms1734
    1. Akita S., Kubota K., Kobayashi A., Misawa R., Shimizu A., Nakata T., et al. (2012). Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochem. Biophys. Res. Commun. 420, 743–749 10.1016/j.bbrc.2012.03.060
    1. Amara N., Goven D., Prost F., Muloway R., Crestani B., Boczkowski J. (2010). NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGFbeta1-induced fibroblast differentiation into myofibroblasts. Thorax 65, 733–738 10.1136/thx.2009.113456
    1. Arcasoy S. M., Christie J. D., Pochettino A., Rosengard B. R., Blumenthal N. P., Bavaria J. E., et al. (2001). Characteristics and outcomes of patients with sarcoidosis listed for lung transplantation. Chest 120, 873–880 10.1378/chest.120.3.873
    1. Armelin H. A. (1973). Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc. Natl. Acad. Sci. U.S.A. 70, 2702–2706 10.1073/pnas.70.9.2702
    1. Armulik A., Genove G., Mae M., Nisancioglu M. H., Wallgard E., Niaudet C., et al. (2010). Pericytes regulate the blood-brain barrier. Nature 468, 557–561 10.1038/nature09522
    1. Arnson Y., Amital H., Agmon-Levin N., Alon D., Sanchez-Castanon M., Lopez-Hoyos M., et al. (2011). Serum 25-OH vitamin D concentrations are linked with various clinical aspects in patients with systemic sclerosis: a retrospective cohort study and review of the literature. Autoimmun. Rev. 10, 490–494 10.1016/j.autrev.2011.02.002
    1. Atanelishvili I., Liang J., Akter T., Spyropoulos D. D., Silver R. M., Bogatkevich G. S. (2014). Thrombin increases lung fibroblast survival while promoting alveolar epithelial cell apoptosis via the endoplasmic reticulum stress marker, CCAAT enhancer-binding homologous protein. Am. J. Respir. Cell Mol. Biol. 50, 893–902 10.1165/rcmb.2013-0317OC
    1. Barisic-Dujmovic T., Boban I., Clark S. H. (2010). Fibroblasts/myofibroblasts that participate in cutaneous wound healing are not derived from circulating progenitor cells. J. Cell. Physiol. 222, 703–712 10.1002/jcp.21997
    1. Beaulieu J. M., Marion S., Rodriguiz R. M., Medvedev I. O., Sotnikova T. D., Ghisi V., et al. (2008). A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132, 125–136 10.1016/j.cell.2007.11.041
    1. Beaulieu J. M., Sotnikova T. D., Marion S., Lefkowitz R. J., Gainetdinov R. R., Caron M. G. (2005). An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122, 261–273 10.1016/j.cell.2005.05.012
    1. Beaulieu J. M., Sotnikova T. D., Yao W. D., Kockeritz L., Woodgett J. R., Gainetdinov R. R., et al. (2004). Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc. Natl. Acad. Sci. U.S.A. 101, 5099–5104 10.1073/pnas.0307921101
    1. Berk B. C., Fujiwara K., Lehoux S. (2007). ECM remodeling in hypertensive heart disease. J. Clin. Invest. 117, 568–575 10.1172/JCI31044
    1. Bhattacharyya S., Kelley K., Melichian D. S., Tamaki Z., Fang F., Su Y., et al. (2013). Toll-like receptor 4 signaling augments transforming growth factor-beta responses: a novel mechanism for maintaining and amplifying fibrosis in scleroderma. Am. J. Pathol. 182, 192–205 10.1016/j.ajpath.2012.09.007
    1. Bhattacharyya S., Wei J., Tourtellotte W. G., Hinchcliff M., Gottardi C. G., Varga J. (2012). Fibrosis in systemic sclerosis: common and unique pathobiology. Fibrogenesis Tissue Repair 5(Suppl. 1):S18 10.1186/1755-1536-5-S1-S18
    1. Binai N., O'Reilly S., Griffiths B., van Laar J. M., Hugle T. (2012). Differentiation potential of CD14+ monocytes into myofibroblasts in patients with systemic sclerosis. PLoS ONE 7:e33508 10.1371/journal.pone.0033508
    1. Blaauboer M. E., Boeijen F. R., Emson C. L., Turner S. M., Zandieh-Doulabi B., Hanemaaijer R., et al. (2013). Extracellular matrix proteins: a positive feedback loop in lung fibrosis? Matrix Biol. 34, 170–178 10.1016/j.matbio.2013.11.002
    1. Bogatkevich G. S., Gustilo E., Oates J. C., Feghali-Bostwick C., Harley R. A., Silver R. M., et al. (2005). Distinct PKC isoforms mediate cell survival and DNA synthesis in thrombin-induced myofibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L190–L201 10.1152/ajplung.00448.2003
    1. Bogatkevich G. S., Ludwicka-Bradley A., Highland K. B., Hant F., Nietert P. J., Singleton C. B., et al. (2007a). Impairment of the antifibrotic effect of hepatocyte growth factor in lung fibroblasts from African Americans: possible role in systemic sclerosis. Arthritis Rheum. 56, 2432–2442 10.1002/art.22713
    1. Bogatkevich G. S., Ludwicka-Bradley A., Highland K. B., Hant F., Nietert P. J., Singleton C. B., et al. (2007b). Down-regulation of collagen and connective tissue growth factor expression with hepatocyte growth factor in lung fibroblasts from white scleroderma patients via two signaling pathways. Arthritis Rheum. 56, 3468–3477 10.1002/art.22874
    1. Bondi C. D., Manickam N., Lee D. Y., Block K., Gorin Y., Abboud H. E., et al. (2010). NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J. Am. Soc. Nephrol. 21, 93–102 10.1681/ASN.2009020146
    1. Bonniaud P., Margetts P. J., Kolb M., Schroeder J. A., Kapoun A. M., Damm D., et al. (2005). Progressive transforming growth factor beta1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am. J. Respir. Crit. Care Med. 171, 889–898 10.1164/rccm.200405-612OC
    1. Brissett M., Veraldi K. L., Pilewski J. M., Medsger T. A., Jr., Feghali-Bostwick C. A. (2012). Localized expression of tenascin in systemic sclerosis-associated pulmonary fibrosis and its regulation by insulin-like growth factor binding protein 3. Arthritis Rheum. 64, 272–280 10.1002/art.30647
    1. Bucala R., Spiegel L. A., Chesney J., Hogan M., Cerami A. (1994). Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81
    1. Caramaschi P., Dalla Gassa A., Ruzzenente O., Volpe A., Ravagnani V., Tinazzi I., et al. (2010). Very low levels of vitamin D in systemic sclerosis patients. Clin. Rheumatol. 29, 1419–1425 10.1007/s10067-010-1478-3
    1. Chang H. Y., Chi J. T., Dudoit S., Bondre C., van de Rijn M., Botstein D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 99, 12877–12882 10.1073/pnas.162488599
    1. Chen R. H., Ding W. V., McCormick F. (2000). Wnt signaling to beta-catenin involves two interactive components. Glycogen synthase kinase-3beta inhibition and activation of protein kinase C. J. Biol. Chem. 275, 17894–17899 10.1074/jbc.M905336199
    1. Chibana K., Ishii Y., Asakura T., Fukuda T. (2003). Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin. J. Immunol. 170, 4290–4295 10.4049/jimmunol.170.8.4290
    1. Chung C. Y., Zardi L., Erickson H. P. (1995). Binding of tenascin-C to soluble fibronectin and matrix fibrils. J. Biol. Chem. 270, 29012–29017 10.1074/jbc.270.48.29012
    1. Coward W. R., Watts K., Feghali-Bostwick C. A., Knox A., Pang L. (2009). Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol. Cell. Biol. 29, 4325–4339 10.1128/MCB.01776-08
    1. Cox T. R., Bird D., Baker A. M., Barker H. E., Ho M. W., Lang G., et al. (2013). LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 10.1158/0008-5472.CAN-12-2233
    1. Crestani B., Marchand-Adam S., Quesnel C., Plantier L., Borensztajn K., Marchal J., et al. (2012). Hepatocyte growth factor and lung fibrosis. Proc. Am. Thorac. Soc. 9, 158–163 10.1513/pats.201202-018AW
    1. De Laporte L., Rice J. J., Tortelli F., Hubbell J. A. (2013). Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain. PLoS ONE 8:e62076 10.1371/journal.pone.0062076
    1. Ding H., Zhou D., Hao S., Zhou L., He W., Nie J., et al. (2012). Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J. Am. Soc. Nephrol. 23, 801–813 10.1681/ASN.2011060614
    1. Dionne C. A., Jaye M., Schlessinger J. (1991). Structural diversity and binding of FGF receptors. Ann. N. Y. Acad. Sci. 638, 161–166 10.1111/j.1749-6632.1991.tb49026.x
    1. Dunn I. F., Heese O., Black P. M. (2000). Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J. Neurooncol. 50, 121–137 10.1023/A:1006436624862
    1. Eap R., Jacques E., Semlali A., Plante S., Chakir J. (2012). Cysteinyl leukotrienes regulate TGF-beta(1) and collagen production by bronchial fibroblasts obtained from asthmatic subjects. Prostaglandins Leukot. Essent. Fatty Acids 86, 127–133 10.1016/j.plefa.2011.11.001
    1. Erre G. L., Passiu G. (2009). Antioxidant effect of Iloprost: current knowledge and therapeutic implications for systemic sclerosis. Reumatismo 61, 90–97 10.4081/reumatismo.2009.90
    1. Fang X., Yu S. X., Lu Y., Bast R. C., Woodgett J. R., Mills G. B. (2000). Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl. Acad. Sci. U.S.A. 97, 11960–11965 10.1073/pnas.220413597
    1. Feghali C. A., Bost K. L., Boulware D. W., Levy L. S. (1992). Mechanisms of pathogenesis in scleroderma. I. Overproduction of interleukin 6 by fibroblasts cultured from affected skin sites of patients with scleroderma. J. Rheumatol. 19, 1207–1211
    1. Feghali C. A., Wright T. M. (1997). Cytokines in acute and chronic inflammation. Front. Biosci. 2, d12–d26
    1. Felbor U., Dreier L., Bryant R. A., Ploegh H. L., Olsen B. R., Mothes W. (2000). Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 19, 1187–1194 10.1093/emboj/19.6.1187
    1. Flavell S. J., Hou T. Z., Lax S., Filer A. D., Salmon M., Buckley C. D. (2008). Fibroblasts as novel therapeutic targets in chronic inflammation. Br. J. Pharmacol. 153(Suppl. 1), S241–S246 10.1038/sj.bjp.0707487
    1. Fu R., Wu J., Ding J., Sheng J., Hong L., Sun Q., et al. (2011). Targeting transforming growth factor betaRII expression inhibits the activation of hepatic stellate cells and reduces collagen synthesis. Exp. Biol. Med. (Maywood) 236, 291–297 10.1258/ebm.2010.010231
    1. Fukumoto S., Hsieh C. M., Maemura K., Layne M. D., Yet S. F., Lee K. H., et al. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. J. Biol. Chem. 276, 17479–17483 10.1074/jbc.C000880200
    1. Fuschiotti P. (2011). Role of IL-13 in systemic sclerosis. Cytokine 56, 544–549 10.1016/j.cyto.2011.08.030
    1. Fuschiotti P., Larregina A. T., Ho J., Feghali-Bostwick C., Medsger T. A., Jr. (2013). Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis Rheum. 65, 236–246 10.1002/art.37706
    1. Gabbiani G. (2003). The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 200, 500–503 10.1002/path.1427
    1. Gan Q., Yoshida T., Li J., Owens G. K. (2007). Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression. Circ. Res. 101, 883–892 10.1161/CIRCRESAHA.107.154831
    1. Gharaee-Kermani M., Kasina S., Moore B. B., Thomas D., Mehra R., Macoska J. A. (2012). CXC-type chemokines promote myofibroblast phenoconversion and prostatic fibrosis. PLoS ONE 7:e49278 10.1371/journal.pone.0049278
    1. Gharaee-Kermani M., McCullumsmith R. E., Charo I. F., Kunkel S. L., Phan S. H. (2003). CC-chemokine receptor 2 required for bleomycin-induced pulmonary fibrosis. Cytokine 24, 266–276 10.1016/j.cyto.2003.08.003
    1. Gilbane A. J., Denton C. P., Holmes A. M. (2013). Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res. Ther. 15, 215 10.1186/ar4230
    1. Glenisson W., Castronovo V., Waltregny D. (2007). Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim. Biophys. Acta 1773, 1572–1582 10.1016/j.bbamcr.2007.05.016
    1. Goldstein R. H., Polgar P. (1982). The effect and interaction of bradykinin and prostaglandins on protein and collagen production by lung fibroblasts. J. Biol. Chem. 257, 8630–8633
    1. Gospodarowicz D. (1974). Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249, 123–127 10.1038/249123a0
    1. Hashimoto N., Jin H., Liu T., Chensue S. W., Phan S. H. (2004). Bone marrow-derived progenitor cells in pulmonary fibrosis. J. Clin. Invest. 113, 243–252 10.1172/JCI200418847
    1. Hebbar M., Peyrat J. P., Hornez L., Hatron P. Y., Hachulla E., Devulder B. (2000). Increased concentrations of the circulating angiogenesis inhibitor endostatin in patients with systemic sclerosis. Arthritis Rheum. 43, 889–893 10.1002/1529-0131(200004)43:4<889::AID-ANR21>;2-5
    1. Heljasvaara R., Nyberg P., Luostarinen J., Parikka M., Heikkila P., Rehn M., et al. (2005). Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp. Cell Res. 307, 292–304 10.1016/j.yexcr.2005.03.021
    1. Hemmatazad H., Rodrigues H. M., Maurer B., Brentano F., Pileckyte M., Distler J. H., et al. (2009). Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum. 60, 1519–1529 10.1002/art.24494
    1. Henke C., Fiegel V., Peterson M., Wick M., Knighton D., McCarthy J., et al. (1991). Identification and partial characterization of angiogenesis bioactivity in the lower respiratory tract after acute lung injury. J. Clin. Invest. 88, 1386–1395 10.1172/JCI115445
    1. Howell D. C., Johns R. H., Lasky J. A., Shan B., Scotton C. J., Laurent G. J., et al. (2005). Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am. J. Pathol. 166, 1353–1365 10.1016/S0002-9440(10)62354-1
    1. Hoyles R. K., Derrett-Smith E. C., Khan K., Shiwen X., Howat S. L., Wells A. U., et al. (2011). An essential role for resident fibroblasts in experimental lung fibrosis is defined by lineage-specific deletion of high-affinity type II transforming growth factor beta receptor. Am. J. Respir. Crit. Care Med. 183, 249–261 10.1164/rccm.201002-0279OC
    1. Humphreys B. D., Lin S. L., Kobayashi A., Hudson T. E., Nowlin B. T., Bonventre J. V., et al. (2010). Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 10.2353/ajpath.2010.090517
    1. Hung C., Linn G., Chow Y. H., Kobayashi A., Mittelsteadt K., Altemeier W. A., et al. (2013). Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 188, 820–830 10.1164/rccm.201212-2297OC
    1. Igarashi A., Okochi H., Bradham D. M., Grotendorst G. R. (1993). Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol. Biol. Cell 4, 637–645 10.1091/mbc.4.6.637
    1. Inoue Y., King T. E., Jr., Barker E., Daniloff E., Newman L. S. (2002). Basic fibroblast growth factor and its receptors in idiopathic pulmonary fibrosis and lymphangioleiomyomatosis. Am. J. Respir. Crit. Care Med. 166, 765–773 10.1164/rccm.2010014
    1. Inoue Y., King T. E., Jr., Tinkle S. S., Dockstader K., Newman L. S. (1996). Human mast cell basic fibroblast growth factor in pulmonary fibrotic disorders. Am. J. Pathol. 149, 2037–2054
    1. Jelaska A., Korn J. H. (2000). Role of apoptosis and transforming growth factor beta1 in fibroblast selection and activation in systemic sclerosis. Arthritis Rheum. 43, 2230–2239 10.1002/1529-0131(200010)43:10<2230::AID-ANR10>;2-8
    1. Jinde K., Nikolic-Paterson D. J., Huang X. R., Sakai H., Kurokawa K., Atkins R. C., et al. (2001). Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am. J. Kidney Dis. 38, 761–769 10.1053/ajkd.2001.27693
    1. Kajihara I., Jinnin M., Honda N., Makino K., Makino T., Masuguchi S., et al. (2013). Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor beta signaling. Mod. Rheumatol. 23, 516–524 10.3109/s10165-012-0698-6
    1. Kalluri R., Zeisberg M. (2006). Fibroblasts in cancer. Nat. Rev. Cancer 6, 392–401 10.1038/nrc1877
    1. Kapoor M., Liu S., Shi-wen X., Huh K., McCann M., Denton C. P., et al. (2008). GSK-3beta in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1-dependent mechanism. J. Clin. Invest. 118, 3279–3290 R1 10.1172/JCI35381
    1. Kavian N., Servettaz A., Weill B., Batteux F. (2012). New insights into the mechanism of notch signalling in fibrosis. Open Rheumatol. J. 6, 96–102 10.2174/1874312901206010096
    1. Kawelke N., Vasel M., Sens C., Au A., Dooley S., Nakchbandi I. A. (2011). Fibronectin protects from excessive liver fibrosis by modulating the availability of and responsiveness of stellate cells to active TGF-beta. PLoS ONE 6:e28181 10.1371/journal.pone.0028181
    1. Keerthisingam C. B., Jenkins R. G., Harrison N. K., Hernandez-Rodriguez N. A., Booth H., Laurent G. J., et al. (2001). Cyclooxygenase-2 deficiency results in a loss of the anti-proliferative response to transforming growth factor-beta in human fibrotic lung fibroblasts and promotes bleomycin-induced pulmonary fibrosis in mice. Am. J. Pathol. 158, 1411–1422 10.1016/S0002-9440(10)64092-8
    1. Kendall R. T., Strungs E. G., Rachidi S. M., Lee M. H., El-Shewy H. M., Luttrell D. K., et al. (2011). The beta-arrestin pathway-selective type 1A angiotensin receptor (AT1A) agonist [Sar1,Ile4,Ile8]angiotensin II regulates a robust G protein-independent signaling network. J. Biol. Chem. 286, 19880–19891 10.1074/jbc.M111.233080
    1. Khan K., Xu S., Nihtyanova S., Derrett-Smith E., Abraham D., Denton C. P., et al. (2012). Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis. Ann. Rheum. Dis. 71, 1235–1242 10.1136/annrheumdis-2011-200955
    1. King T. E., Jr., Tooze J. A., Schwarz M. I., Brown K. R., Cherniack R. M. (2001). Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. Am. J. Respir. Crit. Care Med. 164, 1171–1181 10.1164/ajrccm.164.7.2003140
    1. Kisseleva T., Uchinami H., Feirt N., Quintana-Bustamante O., Segovia J. C., Schwabe R. F., et al. (2006). Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol. 45, 429–438 10.1016/j.jhep.2006.04.014
    1. Kolb M., Margetts P. J., Galt T., Sime P. J., Xing Z., Schmidt M., et al. (2001). Transient transgene expression of decorin in the lung reduces the fibrotic response to bleomycin. Am. J. Respir. Crit. Care Med. 163, 770–777 10.1164/ajrccm.163.3.2006084
    1. Kolodsick J. E., Peters-Golden M., Larios J., Toews G. B., Thannickal V. J., Moore B. B. (2003). Prostaglandin E2 inhibits fibroblast to myofibroblast transition via E. prostanoid receptor 2 signaling and cyclic adenosine monophosphate elevation. Am. J. Respir. Cell Mol. Biol. 29, 537–544 10.1165/rcmb.2002-0243OC
    1. Lee P., Langevitz P., Alderdice C. A., Aubrey M., Baer P. A., Baron M., et al. (1992). Mortality in systemic sclerosis (scleroderma). Q. J. Med. 82, 139–148
    1. Leof E. B., Proper J. A., Goustin A. S., Shipley G. D., DiCorleto P. E., Moses H. L. (1986). Induction of c-sis mRNA and activity similar to platelet-derived growth factor by transforming growth factor beta: a proposed model for indirect mitogenesis involving autocrine activity. Proc. Natl. Acad. Sci. U.S.A. 83, 2453–2457 10.1073/pnas.83.8.2453
    1. Li M., Riddle S. R., Frid M. G., El Kasmi K. C., McKinsey T. A., Sokol R. J., et al. (2011). Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J. Immunol. 187, 2711–2722 10.4049/jimmunol.1100479
    1. Lin S. L., Kisseleva T., Brenner D. A., Duffield J. S. (2008). Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 173, 1617–1627 10.2353/ajpath.2008.080433
    1. Liu J., Wang Y., Pan Q., Su Y., Zhang Z., Han J., et al. (2012). Wnt/beta-catenin pathway forms a negative feedback loop during TGF-beta1 induced human normal skin fibroblast-to-myofibroblast transition. J. Dermatol. Sci. 65, 38–49 10.1016/j.jdermsci.2011.09.012
    1. Liu M., Xu J., Deng H. (2011b). Tangled fibroblasts in tumor-stroma interactions. Int. J. Cancer 129, 1795–1805 10.1002/ijc.26116
    1. Liu S., Shi-wen X., Abraham D. J., Leask A. (2011a). CCN2 is required for bleomycin-induced skin fibrosis in mice. Arthritis Rheum. 63, 239–246 10.1002/art.30074
    1. Liu Y. (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 10.1097/01.ASN.0000106015.29070.E7
    1. Madar S., Goldstein I., Rotter V. (2013). “Cancer associated fibroblasts”–more than meets the eye. Trends Mol. Med. 19, 447–453 10.1016/j.molmed.2013.05.004
    1. Maher T. M., Evans I. C., Bottoms S. E., Mercer P. F., Thorley A. J., Nicholson A. G., et al. (2010). Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 182, 73–82 10.1164/rccm.200905-0674OC
    1. Mathai S. K., Gulati M., Peng X., Russell T. R., Shaw A. C., Rubinowitz A. N., et al. (2010). Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. Lab. Invest. 90, 812–823 10.1038/labinvest.2010.73
    1. McAnulty R. J., Hernandez-Rodriguez N. A., Mutsaers S. E., Coker R. K., Laurent G. J. (1997). Indomethacin suppresses the anti-proliferative effects of transforming growth factor-beta isoforms on fibroblast cell cultures. Biochem. J. 321(Pt 3), 639–643
    1. McKleroy W., Lee T. H., Atabai K. (2013). Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L709–L721 10.1152/ajplung.00418.2012
    1. Mensing H., Czarnetzki B. M. (1984). Leukotriene B4 induces in vitro fibroblast chemotaxis. J. Invest. Dermatol. 82, 9–12 10.1111/1523-1747.ep12258678
    1. Midwood K., Sacre S., Piccinini A. M., Inglis J., Trebaul A., Chan E., et al. (2009). Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 10.1038/nm.1987
    1. Midwood K. S., Williams L. V., Schwarzbauer J. E. (2004). Tissue repair and the dynamics of the extracellular matrix. Int. J. Biochem. Cell Biol. 36, 1031–1037 10.1016/j.biocel.2003.12.003
    1. Milam J. E., Keshamouni V. G., Phan S. H., Hu B., Gangireddy S. R., Hogaboam C. M., et al. (2008). PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L891–L901 10.1152/ajplung.00333.2007
    1. Mori T., Kawara S., Shinozaki M., Hayashi N., Kakinuma T., Igarashi A., et al. (1999). Role and interaction of connective tissue growth factor with transforming growth factor-beta in persistent fibrosis: a mouse fibrosis model. J. Cell. Physiol. 181, 153–159 10.1002/(SICI)1097-4652(199910)181:1<153::AID-JCP16>;2-K
    1. Mueller M. M., Fusenig N. E. (2004). Friends or foes—bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839–849 10.1038/nrc1477
    1. Murray L. A., Rubinowitz A., Herzog E. L. (2012). Interstitial lung disease: is interstitial lung disease the same as scleroderma lung disease? Curr. Opin. Rheumatol. 24, 656–662 10.1097/BOR.0b013e3283588de4
    1. Newman A. C., Nakatsu M. N., Chou W., Gershon P. D., Hughes C. C. (2011). The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell 22, 3791–3800 10.1091/mbc.E11-05-0393
    1. Ng Y. Y., Huang T. P., Yang W. C., Chen Z. P., Yang A. H., Mu W., et al. (1998). Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int. 54, 864–876 10.1046/j.1523-1755.1998.00076.x
    1. O'Dwyer D. N., Armstrong M. E., Trujillo G., Cooke G., Keane M. P., Fallon P. G., et al. (2013). The Toll-like receptor 3 L412F polymorphism and disease progression in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 188, 1442–1450 10.1164/rccm.201304-0760OC
    1. O'Reilly M. S., Boehm T., Shing Y., Fukai N., Vasios G., Lane W. S., et al. (1997). Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 10.1016/S0092-8674(00)81848-6
    1. Ornitz D. M., Itoh N. (2001). Fibroblast growth factors. Genome Biol. 2:3005 10.1186/gb-2001-2-3-reviews3005
    1. Paulsson Y., Hammacher A., Heldin C. H., Westermark B. (1987). Possible positive autocrine feedback in the prereplicative phase of human fibroblasts. Nature 328, 715–717 10.1038/328715a0
    1. Pearson C. A., Pearson D., Shibahara S., Hofsteenge J., Chiquet-Ehrismann R. (1988). Tenascin: cDNA cloning and induction by TGF-beta. EMBO J. 7, 2977–2982
    1. Pechkovsky D. V., Hackett T. L., An S. S., Shaheen F., Murray L. A., Knight D. A. (2010). Human lung parenchyma but not proximal bronchi produces fibroblasts with enhanced TGF-beta signaling and alpha-SMA expression. Am. J. Respir. Cell Mol. Biol. 43, 641–651 10.1165/rcmb.2009-0318OC
    1. Piera-Velazquez S., Li Z., Jimenez S. A. (2011). Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am. J. Pathol. 179, 1074–1080 10.1016/j.ajpath.2011.06.001
    1. Pilling D., Gomer R. H. (2012). Differentiation of circulating monocytes into fibroblast-like cells. Methods Mol. Biol. 904, 191–206 10.1007/978-1-61779-943-3_16
    1. Potter J. J., Liu X., Koteish A., Mezey E. (2013). 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human alpha1 (I) collagen expression and type I collagen formation. Liver Int. 33, 677–686 10.1111/liv.12122
    1. Qian J., Niu M., Zhai X., Zhou Q., Zhou Y. (2012). beta-Catenin pathway is required for TGF-beta1 inhibition of PPARgamma expression in cultured hepatic stellate cells. Pharmacol. Res. 66, 219–225 10.1016/j.phrs.2012.06.003
    1. Quan T. E., Cowper S., Wu S. P., Bockenstedt L. K., Bucala R. (2004). Circulating fibrocytes: collagen-secreting cells of the peripheral blood. Int. J. Biochem. Cell Biol. 36, 598–606 10.1016/j.biocel.2003.10.005
    1. Ramirez A. M., Wongtrakool C., Welch T., Steinmeyer A., Zugel U., Roman J. (2010). Vitamin D inhibition of pro-fibrotic effects of transforming growth factor beta1 in lung fibroblasts and epithelial cells. J. Steroid Biochem. Mol. Biol. 118, 142–150 10.1016/j.jsbmb.2009.11.004
    1. Richter A. G., McKeown S., Rathinam S., Harper L., Rajesh P., McAuley D. F., et al. (2009). Soluble endostatin is a novel inhibitor of epithelial repair in idiopathic pulmonary fibrosis. Thorax 64, 156–161 10.1136/thx.2008.102814
    1. Rios Fernandez R., Fernandez Roldan C., Callejas Rubio J. L., Ortego Centeno N. (2010). Vitamin D deficiency in a cohort of patients with systemic scleroderma from the south of Spain. J. Rheumatol. 37, 1355; author reply 1356. 10.3899/jrheum.091143
    1. Rock J. R., Barkauskas C. E., Cronce M. J., Xue Y., Harris J. R., Liang J., et al. (2011). Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl. Acad. Sci. U.S.A. 108, E1475–E1483 10.1073/pnas.1117988108
    1. Rosenkranz S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc. Res. 63, 423–432 10.1016/j.cardiores.2004.04.030
    1. Ruiz X. D., Mlakar L. R., Yamaguchi Y., Su Y., Larregina A. T., Pilewski J. M., et al. (2012). Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis. PLoS ONE 7:e43049 10.1371/journal.pone.0043049
    1. Saltzman L. E., Moss J., Berg R. A., Hom B., Crystal R. G. (1982). Modulation of collagen production by fibroblasts. Effects of chronic exposure to agonists that increase intracellular cyclic AMP. Biochem. J. 204, 25–30
    1. Sanada S., Hakuno D., Higgins L. J., Schreiter E. R., McKenzie A. N., Lee R. T. (2007). IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 117, 1538–1549 10.1172/JCI30634
    1. Santos V. N., Leite-Mor M. M., Kondo M., Martins J. R., Nader H., Lanzoni V. P., et al. (2005). Serum laminin, type IV collagen and hyaluronan as fibrosis markers in non-alcoholic fatty liver disease. Braz. J. Med. Biol. Res. 38, 747–753 10.1590/S0100-879X2005000500012
    1. Savinko T., Matikainen S., Saarialho-Kere U., Lehto M., Wang G., Lehtimaki S., et al. (2012). IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J. Invest. Dermatol. 132, 1392–1400 10.1038/jid.2011.446
    1. Schnapp L. M., Hatch N., Ramos D. M., Klimanskaya I. V., Sheppard D., Pytela R. (1995). The human integrin alpha 8 beta 1 functions as a receptor for tenascin, fibronectin, and vitronectin. J. Biol. Chem. 270, 23196–23202 10.1074/jbc.270.39.23196
    1. Schrimpf C., Xin C., Campanholle G., Gill S. E., Stallcup W., Lin S. L., et al. (2012). Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J. Am. Soc. Nephrol. 23, 868–883 10.1681/ASN.2011080851
    1. Scotton C. J., Chambers R. C. (2007). Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132, 1311–1321 10.1378/chest.06-2568
    1. Seki E., De Minicis S., Osterreicher C. H., Kluwe J., Osawa Y., Brenner D. A., et al. (2007). TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 10.1038/nm1663
    1. Slominski A., Janjetovic Z., Tuckey R. C., Nguyen M. N., Bhattacharya K. G., Wang J., et al. (2013). 20S-hydroxyvitamin D3, noncalcemic product of CYP11A1 action on vitamin D3, exhibits potent antifibrogenic activity in vivo. J. Clin. Endocrinol. Metabol. 98, E298–E303 10.1210/jc.2012-3074
    1. Soma Y., Grotendorst G. R. (1989). TGF-beta stimulates primary human skin fibroblast DNA synthesis via an autocrine production of PDGF-related peptides. J. Cell. Physiol. 140, 246–253 10.1002/jcp.1041400209
    1. Sonnylal S., Shi-Wen X., Leoni P., Naff K., Van Pelt C. S., Nakamura H., et al. (2010). Selective expression of connective tissue growth factor in fibroblasts in vivo promotes systemic tissue fibrosis. Arthritis Rheum. 62, 1523–1532 10.1002/art.27382
    1. Stenmark K. R., Fagan K. A., Frid M. G. (2006). Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ. Res. 99, 675–691 10.1161/01.RES.0000243584.45145.3f
    1. Stewart G. A., Hoyne G. F., Ahmad S. A., Jarman E., Wallace W. A., Harrison D. J., et al. (2003). Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J. Pathol. 199, 488–495 10.1002/path.1295
    1. Stratton R., Rajkumar V., Ponticos M., Nichols B., Shiwen X., Black C. M., et al. (2002). Prostacyclin derivatives prevent the fibrotic response to TGF-beta by inhibiting the Ras/MEK/ERK pathway. FASEB J. 16, 1949–1951 10.1096/fj.02-0204fje
    1. Strehlow D., Korn J. H. (1998). Biology of the scleroderma fibroblast. Curr. Opin. Rheumatol. 10, 572–578 10.1097/00002281-199811000-00011
    1. Sumi M., Satoh H., Kagohashi K., Ishikawa H., Sekizawa K. (2005). Increased serum levels of endostatin in patients with idiopathic pulmonary fibrosis. J. Clin. Lab. Anal. 19, 146–149 10.1002/jcla.20069
    1. Tjin Tham Sjin R. M., Satchi-Fainaro R., Birsner A. E., Ramanujam V. M., Folkman J., Javaherian K. (2005). A 27-amino-acid synthetic peptide corresponding to the NH2-terminal zinc-binding domain of endostatin is responsible for its antitumor activity. Cancer Res. 65, 3656–3663 10.1158/0008-5472.CAN-04-1833
    1. Torres M. A., Eldar-Finkelman H., Krebs E. G., Moon R. T. (1999). Regulation of ribosomal S6 protein kinase-p90(rsk), glycogen synthase kinase 3, and beta-catenin in early Xenopus development. Mol. Cell. Biol. 19, 1427–1437
    1. Tourkina E., Bonner M., Oates J., Hofbauer A., Richard M., Znoyko S., et al. (2011). Altered monocyte and fibrocyte phenotype and function in scleroderma interstitial lung disease: reversal by caveolin-1 scaffolding domain peptide. Fibrogenesis Tissue Repair 4:15 10.1186/1755-1536-4-15
    1. Vacca A., Cormier C., Piras M., Mathieu A., Kahan A., Allanore Y. (2009). Vitamin D deficiency and insufficiency in 2 independent cohorts of patients with systemic sclerosis. J. Rheumatol. 36, 1924–1929 10.3899/jrheum.081287
    1. Veraldi K. L., Feghali-Bostwick C. A. (2012). Insulin-like growth factor binding proteins-3 and -5: central mediators of fibrosis and promising new therapeutic targets. Open Rheumatol. J. 6, 140–145 10.2174/1874312901206010140
    1. Veraldi K. L., Gibson B. T., Yasuoka H., Myerburg M. M., Kelly E. A., Balzar S., et al. (2009). Role of insulin-like growth factor binding protein-3 in allergic airway remodeling. Am. J. Respir. Crit. Care Med. 180, 611–617 10.1164/rccm.200810-1555OC
    1. Wan Y. Y., Tian G. Y., Guo H. S., Kang Y. M., Yao Z. H., Li X. L., et al. (2013). Endostatin, an angiogenesis inhibitor, ameliorates bleomycin-induced pulmonary fibrosis in rats. Respir. Res. 14:56 10.1186/1465-9921-14-56
    1. Wang L., Li Y. L., Zhang C. C., Cui W., Wang X., Xia Y., et al. (2014). Inhibition of Toll-like receptor 2 reduces cardiac fibrosis by attenuating macrophage-mediated inflammation. Cardiovasc. Res. 101, 383–392 10.1093/cvr/cvt258
    1. Wang X. M., Zhang Y., Kim H. P., Zhou Z., Feghali-Bostwick C. A., Liu F., et al. (2006b). Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J. Exp. Med. 203, 2895–2906 10.1084/jem.20061536
    1. Wang Y., Fan P. S., Kahaleh B. (2006a). Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 54, 2271–2279 10.1002/art.21948
    1. Wei J., Bhattacharyya S., Jain M., Varga J. (2012). Regulation of matrix remodeling by peroxisome proliferator-activated receptor-gamma: a novel link between metabolism and fibrogenesis. Open Rheumatol. J. 6, 103–115 10.2174/1874312901206010103
    1. Wei J., Bhattacharyya S., Varga J. (2010). Peroxisome proliferator-activated receptor gamma: innate protection from excessive fibrogenesis and potential therapeutic target in systemic sclerosis. Curr. Opin. Rheumatol. 22, 671–676 10.1097/BOR.0b013e32833de1a7
    1. Wynn T. A. (2003). IL-13 effector functions. Annu. Rev. Immunol. 21, 425–456 10.1146/annurev.immunol.21.120601.141142
    1. Yamaguchi Y., Mann D. M., Ruoslahti E. (1990). Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 346, 281–284 10.1038/346281a0
    1. Yamaguchi Y., Takihara T., Chambers R. A., Veraldi K. L., Larregina A. T., Feghali-Bostwick C. A. (2012). A peptide derived from endostatin ameliorates organ fibrosis. Sci. Trans. Med. 4, 136ra171 10.1126/scitranslmed.3003421
    1. Yasuoka H., Larregina A. T., Yamaguchi Y., Feghali-Bostwick C. A. (2008). Human skin culture as an ex vivo model for assessing the fibrotic effects of insulin-like growth factor binding proteins. Open Rheumatol. J. 2, 17–22 10.2174/1874312900802010017
    1. Yokota T., Kawakami Y., Nagai Y., Ma J. X., Tsai J. Y., Kincade P. W., et al. (2006). Bone marrow lacks a transplantable progenitor for smooth muscle type alpha-actin-expressing cells. Stem Cells 24, 13–22 10.1634/stemcells.2004-0346
    1. Yoshida T., Owens G. K. (2005). Molecular determinants of vascular smooth muscle cell diversity. Circ. Res. 96, 280–291 10.1161/01.RES.0000155951.62152.2e
    1. Yu W. H., Woessner J. F., Jr. (2000). Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J. Biol. Chem. 275, 4183–4191 10.1074/jbc.275.6.4183
    1. Yu W. H., Yu S., Meng Q., Brew K., Woessner J. F., Jr. (2000). TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J. Biol. Chem. 275, 31226–31232 10.1074/jbc.M000907200
    1. Zeisberg M., Bonner G., Maeshima Y., Colorado P., Muller G. A., Strutz F., et al. (2001). Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am. J. Pathol. 159, 1313–1321 10.1016/S0002-9440(10)62518-7

Source: PubMed

3
Subscribe