Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial

Martin Andreas, Albrecht I Schmid, Mohammad Keilani, Daniel Doberer, Johann Bartko, Richard Crevenna, Ewald Moser, Michael Wolzt, Martin Andreas, Albrecht I Schmid, Mohammad Keilani, Daniel Doberer, Johann Bartko, Richard Crevenna, Ewald Moser, Michael Wolzt

Abstract

Background: Nuclear magnetic resonance (NMR) imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate whether NMR could detect the effects of ischemic preconditioning (IPC) in healthy subjects.

Methods: Twenty-three participants were included in two randomized crossover protocols in which the effects of IPC were measured by NMR and muscle force assessments. Leg ischemia was administered for 20 minutes with or without a subsequent impaired reperfusion for 5 minutes (stenosis model). IPC was administered 4 or 48 hours prior to ischemia. Changes in 31phosphate NMR spectroscopy and blood oxygen level-dependent (BOLD) signals were recorded. 3-Tesla NMR data were compared to those obtained for isometric muscular strength.

Results: The phosphocreatine (PCr) signal decreased robustly during ischemia and recovered rapidly during reperfusion. In contrast to PCr, the recovery of muscular strength was slow. During post-ischemic stenosis, PCr increased only slightly. The BOLD signal intensity decreased during ischemia, ischemic exercise and post-ischemic stenosis but increased during hyperemic reperfusion. IPC 4 hours prior to ischemia significantly increased the maximal PCr reperfusion signal and mitigated the peak BOLD signal during reperfusion.

Conclusions: Ischemic preconditioning positively influenced muscle metabolism during reperfusion; this resulted in an increase in PCr production and higher oxygen consumption, thereby mitigating the peak BOLD signal. In addition, an impairment of energy replenishment during the low-flow reperfusion was detected in this model. Thus, functional NMR is capable of characterizing changes in reperfusion and in therapeutic interventions in vivo.

Trial registration: ClinicalTrials.gov: NCT00883467.

Figures

Figure 1
Figure 1
Schema of NMR data acquisition. Time course was equal for 31P spectroscopy and BOLD imaging. The first line shows the baseline day without low flow, the second line the day with low flow but without ischemic preconditioning (IPC) and the third line represents the two days with IPC.
Figure 2
Figure 2
31P time course. Time course of phosphocreatine (PCr) at baseline, during ischemia and reperfusion, and in the presence of post-ischemic stenosis with or without mechanical preconditioning four hours before ischemia. The data represent the means ± SEM (n=8).
Figure 3
Figure 3
BOLD time course. Time course of the BOLD signal in the gastrocnemius, soleus, and tibialis anterior muscles at baseline, during ischemia and reperfusion, and in the presence of post-ischemic stenosis with or without mechanical preconditioning four hours prior to ischemia. The data represent the means ± SEM (n=8).
Figure 4
Figure 4
Echoplanar images for the BOLD signal analysis. The images are representative of the BOLD source data. An image for every 4th minute of data collection is shown.
Figure 5
Figure 5
Muscle strength time course. Ankle plantar flexion and dorsiflexion strength before and during ischemia and after reperfusion with or without post-ischemic stenosis. The data represent the means ± SEM (n=7).

References

    1. Matsumura K, Jeremy RW, Schaper J, Becker LC. Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation. 1998;97(8):795–804.
    1. Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Cramer MJ, Lips DJ, Doevendans PA. Role of apoptosis in reperfusion injury. Cardiovasc Res. 2004;61(3):414–426. doi: 10.1016/j.cardiores.2003.12.023.
    1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–1136. doi: 10.1161/01.CIR.74.5.1124.
    1. Kharbanda RK, Peters M, Walton B, Kattenhorn M, Mullen M, Klein N, Vallance P, Deanfield J, MacAllister R. Ischemic preconditioning prevents endothelial injury and systemic neutrophil activation during ischemia-reperfusion in humans in vivo. Circulation. 2001;103(12):1624–1630.
    1. Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M, Grundy E, Ashley E, Vichare S, Di Salvo C, Kolvekar S. et al.Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomised controlled trial. Lancet. 2007;370(9587):575–579. doi: 10.1016/S0140-6736(07)61296-3.
    1. Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, Holtby HM, Cox PN, Smallhorn JF, Van Arsdell GS. et al.Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47(11):2277–2282. doi: 10.1016/j.jacc.2006.01.066.
    1. Loukogeorgakis SP, Panagiotidou AT, Broadhead MW, Donald A, Deanfield JE, MacAllister RJ. Remote ischemic preconditioning provides early and late protection against endothelial ischemia-reperfusion injury in humans: role of the autonomic nervous system. J Am Coll Cardiol. 2005;46(3):450–456. doi: 10.1016/j.jacc.2005.04.044.
    1. Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation. 1993;88(3):1264–1272.
    1. Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation. 2002;106(23):2881–2883. doi: 10.1161/01.CIR.0000043806.51912.9B.
    1. Meyerspeer M, Kemp GJ, Mlynarik V, Krssak M, Szendroedi J, Nowotny P, Roden M, Moser E. Direct noninvasive quantification of lactate and high energy phosphates simultaneously in exercising human skeletal muscle by localized magnetic resonance spectroscopy. Magn Reson Med. 2007;57(4):654–660. doi: 10.1002/mrm.21188.
    1. Jones AM, Wilkerson DP, Fulford J. Muscle [phosphocreatine] dynamics following the onset of exercise in humans: the influence of baseline work-rate. J Physiol. 2008;586(3):889–898.
    1. Kemp GJ, Meyerspeer M, Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed. 2007;20(6):555–565. doi: 10.1002/nbm.1192.
    1. Larson-Meyer DE, Newcomer BR, Hunter GR, Hetherington HP, Weinsier RL. 31P MRS measurement of mitochondrial function in skeletal muscle: reliability, force-level sensitivity and relation to whole body maximal oxygen uptake. NMR Biomed. 2000;13(1):14–27. doi: 10.1002/(SICI)1099-1492(200002)13:1<14::AID-NBM605>;2-0.
    1. Paganini AT, Foley JM, Meyer RA. Linear dependence of muscle phosphocreatine kinetics on oxidative capacity. Am J Physiol. 1997;272(2 Pt 1):C501–510.
    1. Dharmakumar R, Arumana JM, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 3.0 T: theory and experimental evaluation in canines. J Magn Reson Imaging. 2008;27(5):1037–1045. doi: 10.1002/jmri.21345.
    1. Ledermann HP, Schulte AC, Heidecker HG, Aschwanden M, Jager KA, Scheffler K, Steinbrich W, Bilecen D. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation. 2006;113(25):2929–2935. doi: 10.1161/CIRCULATIONAHA.105.605717.
    1. Huegli RW, Schulte AC, Aschwanden M, Thalhammer C, Kos S, Jacob AL, Bilecen D. Effects of percutaneous transluminal angioplasty on muscle BOLD-MRI in patients with peripheral arterial occlusive disease: preliminary results. Eur Radiol. 2009;19(2):509–515. doi: 10.1007/s00330-008-1168-6.
    1. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 1982;714(2):265–270.
    1. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA. 1990;87(24):9868–9872. doi: 10.1073/pnas.87.24.9868.
    1. Meyerspeer M, Krssak M, Kemp GJ, Roden M, Moser E. Dynamic interleaved 1H/31P STEAM MRS at 3 Tesla using a pneumatic force-controlled plantar flexion exercise rig. Magma. 2005;18(5):257–262. doi: 10.1007/s10334-005-0014-y.
    1. Vanhamme L, van den Boogaart A, Van Huffel S. Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson. 1997;129(1):35–43. doi: 10.1006/jmre.1997.1244.
    1. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D. Java-based graphical user interface for the MRUI quantitation package. Magma. 2001;12(2-3):141–152. doi: 10.1007/BF02668096.
    1. Glazebrook K, E F. PDL: The Perl Data Language. The Perl Journal. 1997;5(5)
    1. Drouin JM, Valovich-mcLeod TC, Shultz SJ, Gansneder BM, Perrin DH. Reliability and validity of the Biodex system 3 pro isokinetic dynamometer velocity, torque and position measurements. Eur J Appl Physiol. 2004;91(1):22–29. doi: 10.1007/s00421-003-0933-0.
    1. Hartmann A, Knols R, Murer K, de Bruin ED. Reproducibility of an Isokinetic Strength-Testing Protocol of the Knee and Ankle in Older Adults. Gerontology. 2008.
    1. Aydog ST, Ozcakar L, Tetik O, Demirel HA, Hascelik Z, Doral MN. Relation between foot arch index and ankle strength in elite gymnasts: a preliminary study. Br J Sports Med. 2005;39(3):e13. doi: 10.1136/bjsm.2004.011627.
    1. Miyamae M, Fujiwara H, Kida M, Yokota R, Tanaka M, Katsuragawa M, Hasegawa K, Ohura M, Koga K, Yabuuchi Y. et al.Preconditioning improves energy metabolism during reperfusion but does not attenuate myocardial stunning in porcine hearts. Circulation. 1993;88(1):223–234.
    1. Murphy E, Steenbergen C. Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev. 2008;88(2):581–609. doi: 10.1152/physrev.00024.2007.
    1. Buttgereit F, Brand MD. A hierarchy of ATP-consuming processes in mammalian cells. Biochem J. 1995;312(Pt 1):163–167.
    1. Zoladz JA, Korzeniewski B, Kulinowski P, Zapart-Bukowska J, Majerczak J, Jasinski A. Phosphocreatine recovery overshoot after high intensity exercise in human skeletal muscle is associated with extensive muscle acidification and a significant decrease in phosphorylation potential. J Physiol Sci. pp. 331–341.
    1. Korzeniewski B, Zoladz JA. Some factors determining the PCr recovery overshoot in skeletal muscle. Biophys Chem. 2005;116(2):129–136. doi: 10.1016/j.bpc.2005.03.004.
    1. Lebon V, Carlier PG, Brillault-Salvat C, Leroy-Willig A. Simultaneous measurement of perfusion and oxygenation changes using a multiple gradient-echo sequence: application to human muscle study. Magn Reson Imaging. 1998;16(7):721–729. doi: 10.1016/S0730-725X(98)00088-5.
    1. Toussaint JF, Kwong KK, Mkparu FO, Weisskoff RM, LaRaia PJ, Kantor HL. Perfusion changes in human skeletal muscle during reactive hyperemia measured by echo-planar imaging. Magn Reson Med. 1996;35(1):62–69. doi: 10.1002/mrm.1910350109.
    1. Duteil S, Wary C, Raynaud JS, Lebon V, Lesage D, Leroy-Willig A, Carlier PG. Influence of vascular filling and perfusion on BOLD contrast during reactive hyperemia in human skeletal muscle. Magn Reson Med. 2006;55(2):450–454. doi: 10.1002/mrm.20760.
    1. Noseworthy MD, Bulte DP, Alfonsi J. BOLD magnetic resonance imaging of skeletal muscle. Semin Musculoskelet Radiol. 2003;7(4):307–315.
    1. Lebon V, Brillault-Salvat C, Bloch G, Leroy-Willig A, Carlier PG. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia. Magn Reson Med. 1998;40(4):551–558. doi: 10.1002/mrm.1910400408.
    1. Donahue KM, Van Kylen J, Guven S, El-Bershawi A, Luh WM, Bandettini PA, Cox RW, Hyde JS, Kissebah AH. Simultaneous gradient-echo/spin-echo EPI of graded ischemia in human skeletal muscle. J Magn Reson Imaging. 1998;8(5):1106–1113. doi: 10.1002/jmri.1880080516.
    1. Schulte AC, Aschwanden M, Bilecen D. Calf muscles at blood oxygen level-dependent MR imaging: aging effects at postocclusive reactive hyperemia. Radiology. 2008;247(2):482–489. doi: 10.1148/radiol.2472070828.
    1. Gollnick PD, Sjodin B, Karlsson J, Jansson E, Saltin B. Human soleus muscle: a comparison of fiber composition and enzyme activities with other leg muscles. Pflugers Arch. 1974;348(3):247–255. doi: 10.1007/BF00587415.
    1. Loukogeorgakis SP, Williams R, Panagiotidou AT, Kolvekar SK, Donald A, Cole TJ, Yellon DM, Deanfield JE, MacAllister RJ. Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)-channel dependent mechanism. Circulation. 2007;116(12):1386–1395. doi: 10.1161/CIRCULATIONAHA.106.653782.
    1. Echegaray M, Rivera MA. Role of creatine kinase isoenzymes on muscular and cardiorespiratory endurance: genetic and molecular evidence. Sports Med. 2001;31(13):919–934. doi: 10.2165/00007256-200131130-00003.
    1. Zhou X, Zhai X, Ashraf M. Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation. 1996;93(6):1177–1184.
    1. Crowther GJ, Kemper WF, Carey MF, Conley KE. Control of glycolysis in contracting skeletal muscle. II. Turning it off. Am J Physiol Endocrinol Metab. 2002;282(1):E74–79.
    1. Lanza IR, Wigmore DM, Befroy DE, Kent-Braun JA. In vivo ATP production during free-flow and ischaemic muscle contractions in humans. J Physiol. 2006;577(Pt 1):353–367.

Source: PubMed

3
Subscribe