Physical Activity-Dependent Regulation of Parathyroid Hormone and Calcium-Phosphorous Metabolism

Giovanni Lombardi, Ewa Ziemann, Giuseppe Banfi, Sabrina Corbetta, Giovanni Lombardi, Ewa Ziemann, Giuseppe Banfi, Sabrina Corbetta

Abstract

Exercise perturbs homeostasis, alters the levels of circulating mediators and hormones, and increases the demand by skeletal muscles and other vital organs for energy substrates. Exercise also affects bone and mineral metabolism, particularly calcium and phosphate, both of which are essential for muscle contraction, neuromuscular signaling, biosynthesis of adenosine triphosphate (ATP), and other energy substrates. Parathyroid hormone (PTH) is involved in the regulation of calcium and phosphate homeostasis. Understanding the effects of exercise on PTH secretion is fundamental for appreciating how the body adapts to exercise. Altered PTH metabolism underlies hyperparathyroidism and hypoparathyroidism, the complications of which affect the organs involved in calcium and phosphorous metabolism (bone and kidney) and other body systems as well. Exercise affects PTH expression and secretion by altering the circulating levels of calcium and phosphate. In turn, PTH responds directly to exercise and exercise-induced myokines. Here, we review the main concepts of the regulation of PTH expression and secretion under physiological conditions, in acute and chronic exercise, and in relation to PTH-related disorders.

Keywords: PTH; calcium; hyperparathyroidism; hypoparathyroidism; irisin; osteocalcin; phosphate; physical activity; skeletal muscles; vitamin D.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Parathyroid hormone expression and secretion in parathyroid cells. Parathyroid hormone (PTH) is expressed as a prepro-PTH that is then cleaved into mature PTH and stored in granules until secreted. PTH mRNA transcription and PTH secretion are inhibited following the activation of the calcium-sensing receptor (CASR) by extracellular calcium [Ca2+]e, which also stimulates the intracellular inactivation of PTH, into biologically inactive C-terminal fragments, operated throughout the cleavage. Osteocyte-derived fibroblast growth factor (FGF)-23 activates the FGF receptor (FGFR1), heterodimerized with its coreceptor α-Klotho, and inhibits PTH mRNA transcription and PTH protein maturation from prepro-PTH. Finally, 1α,25-dihydroxyvitamin D (1α,25-(OH)2D) binds the intracellular vitamin D receptor (VDR) and inhibits the expression of PTH mRNA. The green arrows indicate PTH expression, the blue arrow indicates a stimulatory pathway, and the red dashed lines indicate inhibitory pathways.
Figure 2
Figure 2
Signaling pathways induced by the activation of the parathyroid hormone receptor. Parathyroid hormone receptor (PTHR)1 is a class II G protein-coupled receptor. Binding of PTH to PTHR1 activates a Gαs protein that activates the adenylate cyclase (AC). AC catalyzes the formation of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). cAMP binds and activates protein kinase A (PKA), which, in turn, phosphorylates the cAMP-responsive element binding protein (CREB) into the nucleus, enabling its binding to the cAMP-responsive element (CRE) on DNA and, thus, activates transcription of specific genes. Through the activation of Gαq, PTHR1 activates membrane-associated phospholipase C (PLC), which cleaves the membrane phospholipid phosphatidylinositol-(4,5)-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol-(1,4,5)-trisphosphate (IP3). IP3 diffuses in the cytoplasm, reaches the endoplasmic reticulum, and induces the release of Ca2+ by activating receptor-gated Ca2+ channels. The Ca2+ released from the endoplasmic reticulum activates Ca2+-dependent responses and, together with the DAG produced by PLC, activates protein kinase C (PKC), which mediates intracellular responses.
Figure 3
Figure 3
Crosstalk between parathyroid glands, bone, and skeletal muscle. The figure schematically summarizes the main interrelationships between PTH, myokines, and osteokines involved in the crosstalk between parathyroid glands bone and skeletal muscle. Parathyroid-released PTH acts on osteoblasts through the PTHR1 receptor; PTH-stimulated RANKL release activated osteoclasts and osteoclasts-mediated bone matrix reabsorption, participating to bone remodeling, while PTH-stimulated osteocalcin release acts on skeletal muscle cells through the GPRC6A receptor. In addition, PTH itself may act on skeletal muscle cells, which express PTHR1. Besides, in response to physical activity muscle cells secreted irisin, which acts on osteoblasts modulating the expression of PTHR1. Lastly, IL-6, which is also released by muscle cells in response to exercise, mediates a modulatory crosstalk between osteoblasts and osteocytes through the receptor gp130. PTH: parathyroid hormone; PTHR1: parathyroid hormone receptor 1; GPRC6A: G protein-coupled receptor 6A; RANK: receptor activator of nuclear factor κ-B; RANKL: ligand of the receptor activator of nuclear factor κ-B; IL-6: interleukin 6; gp130: glycoprotein 130.

References

    1. Hackney A.C., Lane A.R. Exercise and the Regulation of Endocrine Hormones. Prog. Mol. Biol. Transl. Sci. 2015;135:293–311. doi: 10.1016/bs.pmbts.2015.07.001.
    1. Song L. Calcium and Bone Metabolism Indices. Adv. Clin. Chem. 2017;82:1–46. doi: 10.1016/bs.acc.2017.06.005.
    1. Corbetta S. Normocalcemic Hyperparathyroidism. Front. Horm. Res. 2019;51:23–39. doi: 10.1159/000491036.
    1. Caspersen C.J., Powell K.E., Christenson G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985;100:126–131.
    1. Rivera-Brown A.M., Frontera W.R. Principles of exercise physiology: Responses to acute exercise and long-term adaptations to training. PM&R. 2012;4:797–804. doi: 10.1016/j.pmrj.2012.10.007.
    1. Hawley J.A. Molecular responses to strength and endurance training: Are they incompatible? Appl. Physiol. Nutr. Metab. 2009;34:355–361. doi: 10.1139/H09-023.
    1. Naylor S.L., Sakaguchi A.Y., Szoka P., Hendy G.N., Kronenberg H.M., Rich A., Shows T.B. Human parathyroid hormone gene (PTH) is on short arm of chromosome 11. Somat. Cell Genet. 1983;9:609–616. doi: 10.1007/BF01574261.
    1. Brown E.M. Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J. Clin. Endocrinol. Metab. 1983;56:572–581. doi: 10.1210/jcem-56-3-572.
    1. Naveh-Many T., Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J. Clin. Investig. 1990;86:1313–1319. doi: 10.1172/JCI114840.
    1. Kilav R., Silver J., Naveh-Many T. A conserved cis-acting element in the parathyroid hormone 3’-untranslated region is sufficient for regulation of RNA stability by calcium and phosphate. J. Biol. Chem. 2001;276:8727–8733. doi: 10.1074/jbc.M005471200.
    1. Kritmetapak K., Pongchaiyakul C. Parathyroid Hormone Measurement in Chronic Kidney Disease: From Basics to Clinical Implications. Int. J. Nephrol. 2019;2019:5496710. doi: 10.1155/2019/5496710.
    1. Zhang C.X., Weber B.V., Thammavong J., Grover T.A., Wells D.S. Identification of carboxyl-terminal peptide fragments of parathyroid hormone in human plasma at low-picomolar levels by mass spectrometry. Anal. Chem. 2006;78:1636–1643. doi: 10.1021/ac051711o.
    1. Segre G.V., D’Amour P., Hultman A., Potts J.T., Jr. Effects of hepatectomy, nephrectomy, and nephrectomy/uremia on the metabolism of parathyroid hormone in the rat. J. Clin. Investig. 1981;67:439–448. doi: 10.1172/JCI110052.
    1. Tregear G.W., Van Rietschoten J., Greene E., Keutmann H.T., Niall H.D., Reit B., Parsons J.A., Potts J.T., Jr. Bovine parathyroid hormone: Minimum chain length of synthetic peptide required for biological activity. Endocrinology. 1973;93:1349–1353. doi: 10.1210/endo-93-6-1349.
    1. Kremer R., Bolivar I., Goltzman D., Hendy G.N. Influence of calcium and 1,25-dihydroxycholecalciferol on proliferation and proto-oncogene expression in primary cultures of bovine parathyroid cells. Endocrinology. 1989;125:935–941. doi: 10.1210/endo-125-2-935.
    1. Schmitt C.P., Schaefer F., Bruch A., Veldhuis J.D., Schmidt-Gayk H., Stein G., Ritz E., Mehls O. Control of pulsatile and tonic parathyroid hormone secretion by ionized calcium. J. Clin. Endocrinol. Metab. 1996;81:4236–4243. doi: 10.1210/jcem.81.12.8954021.
    1. Salehi-Tabar R., Nguyen-Yamamoto L., Tavera-Mendoza L.E., Quail T., Dimitrov V., An B.S., Glass L., Goltzman D., White J.H. Vitamin D receptor as a master regulator of the c-MYC/MXD1 network. Proc. Natl. Acad. Sci. USA. 2012;109:18827–18832. doi: 10.1073/pnas.1210037109.
    1. Goltzman D. Physiology of Parathyroid Hormone. Endocrinol. Metab. Clin. N. Am. 2018;47:743–758. doi: 10.1016/j.ecl.2018.07.003.
    1. Peacock M. Phosphate Metabolism in Health and Disease. Calcif. Tissue Int. 2020 doi: 10.1007/s00223-020-00686-3.
    1. Juppner H., Abou-Samra A.B., Freeman M., Kong X.F., Schipani E., Richards J., Kolakowski L.F., Jr., Hock J., Potts J.T., Jr., Kronenberg H.M., et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991;254:1024–1026. doi: 10.1126/science.1658941.
    1. Abou-Samra A.B., Juppner H., Force T., Freeman M.W., Kong X.F., Schipani E., Urena P., Richards J., Bonventre J.V., Potts J.T., Jr., et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: A single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. USA. 1992;89:2732–2736. doi: 10.1073/pnas.89.7.2732.
    1. Vilardaga J.P., Romero G., Friedman P.A., Gardella T.J. Molecular basis of parathyroid hormone receptor signaling and trafficking: A family B GPCR paradigm. Cell. Mol. Life Sci. 2011;68:1–13. doi: 10.1007/s00018-010-0465-9.
    1. Ferrari S.L., Behar V., Chorev M., Rosenblatt M., Bisello A. Endocytosis of ligand-human parathyroid hormone receptor 1 complexes is protein kinase C-dependent and involves beta-arrestin2. Real-time monitoring by fluorescence microscopy. J. Biol. Chem. 1999;274:29968–29975. doi: 10.1074/jbc.274.42.29968.
    1. Bohinc B.N., Gesty-Palmer D. beta-arrestin-biased agonism at the parathyroid hormone receptor uncouples bone formation from bone resorption. Endocr. Metab. Immune Disord. Drug Targets. 2011;11:112–119. doi: 10.2174/187153011795564151.
    1. Maeda S., Wu S., Juppner H., Green J., Aragay A.M., Fagin J.A., Clemens T.L. Cell-specific signal transduction of parathyroid hormone (PTH)-related protein through stably expressed recombinant PTH/PTHrP receptors in vascular smooth muscle cells. Endocrinology. 1996;137:3154–3162. doi: 10.1210/endo.137.8.8754733.
    1. Mahon M.J., Donowitz M., Yun C.C., Segre G.V. Na(+)/H(+) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling. Nature. 2002;417:858–861. doi: 10.1038/nature00816.
    1. Murer H., Hernando N., Forster I., Biber J. Regulation of Na/Pi transporter in the proximal tubule. Ann. Rex. Physiol. 2003;65:531–542. doi: 10.1146/annurev.physiol.65.042902.092424.
    1. Sneddon W.B., Syme C.A., Bisello A., Magyar C.E., Rochdi M.D., Parent J.L., Weinman E.J., Abou-Samra A.B., Friedman P.A. Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50) J. Biol. Chem. 2003;278:43787–43796. doi: 10.1074/jbc.M306019200.
    1. Wang B., Ardura J.A., Romero G., Yang Y., Hall R.A., Friedman P.A. Na/H exchanger regulatory factors control parathyroid hormone receptor signaling by facilitating differential activation of G(alpha) protein subunits. J. Biol. Chem. 2010;285:26976–26986. doi: 10.1074/jbc.M110.147785.
    1. Brenza H.L., Kimmel-Jehan C., Jehan F., Shinki T., Wakino S., Anazawa H., Suda T., DeLuca H.F. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter. Proc. Natl. Acad. Sci. USA. 1998;95:1387–1391. doi: 10.1073/pnas.95.4.1387.
    1. Ullrich K.J., Rumrich G., Kloss S. Active Ca2+ reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and buffer transport. Pflugers Archiv. 1976;364:223–228. doi: 10.1007/BF00581759.
    1. Hebert S.C. Extracellular calcium-sensing receptor: Implications for calcium and magnesium handling in the kidney. Kidney Int. 1996;50:2129–2139. doi: 10.1038/ki.1996.539.
    1. Toka H.R., Al-Romaih K., Koshy J.M., DiBartolo S., 3rd, Kos C.H., Quinn S.J., Curhan G.C., Mount D.B., Brown E.M., Pollak M.R. Deficiency of the calcium-sensing receptor in the kidney causes parathyroid hormone-independent hypocalciuria. J. Am. Soc. Nephrol. 2012;23:1879–1890. doi: 10.1681/ASN.2012030323.
    1. Loupy A., Ramakrishnan S.K., Wootla B., Chambrey R., de la Faille R., Bourgeois S., Bruneval P., Mandet C., Christensen E.I., Faure H., et al. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J. Clin. Investig. 2012;122:3355–3367. doi: 10.1172/JCI57407.
    1. van Abel M., Hoenderop J.G., van der Kemp A.W., Friedlaender M.M., van Leeuwen J.P., Bindels R.J. Coordinated control of renal Ca(2+) transport proteins by parathyroid hormone. Kidney Int. 2005;68:1708–1721. doi: 10.1111/j.1523-1755.2005.00587.x.
    1. Cha S.K., Wu T., Huang C.L. Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am. J. Physiol. Renal. Physiol. 2008;294:F1212–F1221. doi: 10.1152/ajprenal.00007.2008.
    1. Topala C.N., Schoeber J.P., Searchfield L.E., Riccardi D., Hoenderop J.G., Bindels R.J. Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium. 2009;45:331–339. doi: 10.1016/j.ceca.2008.12.003.
    1. Custer M., Lotscher M., Biber J., Murer H., Kaissling B. Expression of Na-P(i) cotransport in rat kidney: Localization by RT-PCR and immunohistochemistry. Am. J. Physiol. 1994;266:F767–F774. doi: 10.1152/ajprenal.1994.266.5.F767.
    1. Amizuka N., Lee H.S., Kwan M.Y., Arazani A., Warshawsky H., Hendy G.N., Ozawa H., White J.H., Goltzman D. Cell-specific expression of the parathyroid hormone (PTH)/PTH-related peptide receptor gene in kidney from kidney-specific and ubiquitous promoters. Endocrinology. 1997;138:469–481. doi: 10.1210/endo.138.1.4845.
    1. Ba J., Brown D., Friedman P.A. Calcium-sensing receptor regulation of PTH-inhibitable proximal tubule phosphate transport. Am. J. Physiol. Ren. Physiol. 2003;285:F1233–F1243. doi: 10.1152/ajprenal.00249.2003.
    1. Capuano P., Bacic D., Roos M., Gisler S.M., Stange G., Biber J., Kaissling B., Weinman E.J., Shenolikar S., Wagner C.A., et al. Defective coupling of apical PTH receptors to phospholipase C prevents internalization of the Na+-phosphate cotransporter NaPi-IIa in Nherf1-deficient mice. Am. J. Physiol. Cell Physiol. 2007;292:C927–C934. doi: 10.1152/ajpcell.00126.2006.
    1. Traebert M., Volkl H., Biber J., Murer H., Kaissling B. Luminal and contraluminal action of 1-34 and 3-34 PTH peptides on renal type IIa Na-P(i) cotransporter. Am. J. Physiol. Renal. Physiol. 2000;278:F792–F798. doi: 10.1152/ajprenal.2000.278.5.F792.
    1. Bacic D., Lehir M., Biber J., Kaissling B., Murer H., Wagner C.A. The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int. 2006;69:495–503. doi: 10.1038/sj.ki.5000148.
    1. Segawa H., Yamanaka S., Onitsuka A., Tomoe Y., Kuwahata M., Ito M., Taketani Y., Miyamoto K. Parathyroid hormone-dependent endocytosis of renal type IIc Na-Pi cotransporter. Am. J. Physiol. Renal. Physiol. 2007;292:F395–F403. doi: 10.1152/ajprenal.00100.2006.
    1. Kaminsky N.I., Broadus A.E., Hardman J.G., Jones D.J., Jr., Ball J.H., Sutherland E.W., Liddle G.W. Effects of parathyroid hormone on plasma and urinary adenosine 3’,5’-monophosphate in man. J. Clin. Investig. 1970;49:2387–2395. doi: 10.1172/JCI106458.
    1. Miao D., He B., Karaplis A.C., Goltzman D. Parathyroid hormone is essential for normal fetal bone formation. J. Clin. Investig. 2002;109:1173–1182. doi: 10.1172/JCI0214817.
    1. Ren Y., Liu B., Feng Y., Shu L., Cao X., Karaplis A., Goltzman D., Miao D. Endogenous PTH deficiency impairs fracture healing and impedes the fracture-healing efficacy of exogenous PTH(1-34) PLoS ONE. 2011;6:e23060. doi: 10.1371/journal.pone.0023060.
    1. McCauley L.K., Koh A.J., Beecher C.A., Rosol T.J. Proto-oncogene c-fos is transcriptionally regulated by parathyroid hormone (PTH) and PTH-related protein in a cyclic adenosine monophosphate-dependent manner in osteoblastic cells. Endocrinology. 1997;138:5427–5433. doi: 10.1210/endo.138.12.5587.
    1. Swarthout J.T., Doggett T.A., Lemker J.L., Partridge N.C. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. J. Biol. Chem. 2001;276:7586–7592. doi: 10.1074/jbc.M007400200.
    1. Miao D., Tong X.K., Chan G.K., Panda D., McPherson P.S., Goltzman D. Parathyroid hormone-related peptide stimulates osteogenic cell proliferation through protein kinase C activation of the Ras/mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 2001;276:32204–32213. doi: 10.1074/jbc.M101084200.
    1. Krishnan V., Moore T.L., Ma Y.L., Helvering L.M., Frolik C.A., Valasek K.M., Ducy P., Geiser A.G. Parathyroid hormone bone anabolic action requires Cbfa1/Runx2-dependent signaling. Mol. Endocrinol. 2003;17:423–435. doi: 10.1210/me.2002-0225.
    1. Hisa I., Inoue Y., Hendy G.N., Canaff L., Kitazawa R., Kitazawa S., Komori T., Sugimoto T., Seino S., Kaji H. Parathyroid hormone-responsive Smad3-related factor, Tmem119, promotes osteoblast differentiation and interacts with the bone morphogenetic protein-Runx2 pathway. J. Biol. Chem. 2011;286:9787–9796. doi: 10.1074/jbc.M110.179127.
    1. Qin L., Li X., Ko J.K., Partridge N.C. Parathyroid hormone uses multiple mechanisms to arrest the cell cycle progression of osteoblastic cells from G1 to S phase. J. Biol. Chem. 2005;280:3104–3111. doi: 10.1074/jbc.M409846200.
    1. Datta N.S., Kolailat R., Fite A., Pettway G., Abou-Samra A.B. Distinct roles for mitogen-activated protein kinase phosphatase-1 (MKP-1) and ERK-MAPK in PTH1R signaling during osteoblast proliferation and differentiation. Cell. Signal. 2010;22:457–466. doi: 10.1016/j.cellsig.2009.10.017.
    1. Jilka R.L., Weinstein R.S., Bellido T., Roberson P., Parfitt A.M., Manolagas S.C. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J. Clin. Investig. 1999;104:439–446. doi: 10.1172/JCI6610.
    1. Schnoke M., Midura S.B., Midura R.J. Parathyroid hormone suppresses osteoblast apoptosis by augmenting DNA repair. Bone. 2009;45:590–602. doi: 10.1016/j.bone.2009.05.006.
    1. van Bezooijen R.L., Roelen B.A., Visser A., van der Wee-Pals L., de Wilt E., Karperien M., Hamersma H., Papapoulos S.E., ten Dijke P., Lowik C.W. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J. Exp. Med. 2004;199:805–814. doi: 10.1084/jem.20031454.
    1. Leupin O., Kramer I., Collette N.M., Loots G.G., Natt F., Kneissel M., Keller H. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J. Bone Miner. Res. 2007;22:1957–1967. doi: 10.1359/jbmr.070804.
    1. McCarthy T.L., Centrella M., Canalis E. Parathyroid hormone enhances the transcript and polypeptide levels of insulin-like growth factor I in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1989;124:1247–1253. doi: 10.1210/endo-124-3-1247.
    1. Hurley M.M., Okada Y., Xiao L., Tanaka Y., Ito M., Okimoto N., Nakamura T., Rosen C.J., Doetschman T., Coffin J.D. Impaired bone anabolic response to parathyroid hormone in Fgf2-/- and Fgf2+/- mice. Biochem. Biophys. Res. Commun. 2006;341:989–994. doi: 10.1016/j.bbrc.2006.01.044.
    1. Locklin R.M., Khosla S., Turner R.T., Riggs B.L. Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J. Cell. Biochem. 2003;89:180–190. doi: 10.1002/jcb.10490.
    1. Boyce B.F. Advances in the regulation of osteoclasts and osteoclast functions. J. Dent. Res. 2013;92:860–867. doi: 10.1177/0022034513500306.
    1. Kurland E.S., Cosman F., McMahon D.J., Rosen C.J., Lindsay R., Bilezikian J.P. Parathyroid hormone as a therapy for idiopathic osteoporosis in men: Effects on bone mineral density and bone markers. J. Clin. Endocrinol. Metab. 2000;85:3069–3076. doi: 10.1210/jc.85.9.3069.
    1. Ryu J., Kim H.J., Chang E.J., Huang H., Banno Y., Kim H.H. Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast-osteoblast coupling. EMBO J. 2006;25:5840–5851. doi: 10.1038/sj.emboj.7601430.
    1. Pederson L., Ruan M., Westendorf J.J., Khosla S., Oursler M.J. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. USA. 2008;105:20764–20769. doi: 10.1073/pnas.0805133106.
    1. Zhao C., Irie N., Takada Y., Shimoda K., Miyamoto T., Nishiwaki T., Suda T., Matsuo K. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–121. doi: 10.1016/j.cmet.2006.05.012.
    1. Dobnig H., Sipos A., Jiang Y., Fahrleitner-Pammer A., Ste-Marie L.G., Gallagher J.C., Pavo I., Wang J., Eriksen E.F. Early changes in biochemical markers of bone formation correlate with improvements in bone structure during teriparatide therapy. J. Clin. Endocrinol. Metab. 2005;90:3970–3977. doi: 10.1210/jc.2003-1703.
    1. Rubin M.R., Bilezikian J.P. Parathyroid hormone as an anabolic skeletal therapy. Drugs. 2005;65:2481–2498. doi: 10.2165/00003495-200565170-00005.
    1. Girotra M., Rubin M.R., Bilezikian J.P. The use of parathyroid hormone in the treatment of osteoporosis. Rev. Endocr. Metab. Disord. 2006;7:113–121. doi: 10.1007/s11154-006-9007-z.
    1. Lindsay R., Cosman F., Zhou H., Bostrom M.P., Shen V.W., Cruz J.D., Nieves J.W., Dempster D.W. A novel tetracycline labeling schedule for longitudinal evaluation of the short-term effects of anabolic therapy with a single iliac crest bone biopsy: Early actions of teriparatide. J. Bone Miner. Res. 2006;21:366–373. doi: 10.1359/JBMR.051109.
    1. Compston J.E. Skeletal actions of intermittent parathyroid hormone: Effects on bone remodelling and structure. Bone. 2007;40:1447–1452. doi: 10.1016/j.bone.2006.09.008.
    1. Lindsay R., Zhou H., Cosman F., Nieves J., Dempster D.W., Hodsman A.B. Effects of a one-month treatment with PTH(1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J. Bone Miner. Res. 2007;22:495–502. doi: 10.1359/jbmr.070104.
    1. Zanchetta J.R., Bogado C.E., Cisari C., Aslanidis S., Greisen H., Fox J., Lems W. Treatment of postmenopausal women with osteoporosis with PTH(1-84) for 36 months: Treatment extension study. Curr. Med. Res. Opin. 2010;26:2627–2633. doi: 10.1185/03007995.2010.524121.
    1. Corbetta S., Mantovani G., Spada A. Metabolic Syndrome in Parathyroid Diseases. Front. Horm. Res. 2018;49:67–84. doi: 10.1159/000486003.
    1. Haden S.T., Brown E.M., Hurwitz S., Scott J., El-Hajj Fuleihan G. The effects of age and gender on parathyroid hormone dynamics. Clin. Endocrinol. 2000;52:329–338. doi: 10.1046/j.1365-2265.2000.00912.x.
    1. Gruson D. PTH and cardiovascular risk. Ann. Endocrinol. 2020 doi: 10.1016/j.ando.2020.02.005.
    1. Blau J.E., Bauman V., Conway E.M., Piaggi P., Walter M.F., Wright E.C., Bernstein S., Courville A.B., Collins M.T., Rother K.I., et al. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight. 2018;3:8. doi: 10.1172/jci.insight.99123.
    1. de Jong M.A., Petrykiv S.I., Laverman G.D., van Herwaarden A.E., de Zeeuw D., Bakker S.J.L., Heerspink H.J.L., de Borst M.H. Effects of Dapagliflozin on Circulating Markers of Phosphate Homeostasis. Clin. J. Am. Soc. Nephrol. 2019;14:66–73. doi: 10.2215/CJN.04530418.
    1. Zaheer S., de Boer I., Allison M., Brown J.M., Psaty B.M., Robinson-Cohen C., Ix J.H., Kestenbaum B., Siscovick D., Vaidya A. Parathyroid Hormone and the Use of Diuretics and Calcium-Channel Blockers: The Multi-Ethnic Study of Atherosclerosis. J. Bone Miner. Res. 2016;31:1137–1145. doi: 10.1002/jbmr.2779.
    1. Zaheer S., Brown J.M., Connors M., Williams J.S., Adler G.K., Vaidya A. Angiotensin-Converting Enzyme Inhibition and Parathyroid Hormone Secretion. Int. J. Endocrinol. 2017;2017:4138783. doi: 10.1155/2017/4138783.
    1. Brown J., de Boer I.H., Robinson-Cohen C., Siscovick D.S., Kestenbaum B., Allison M., Vaidya A. Aldosterone, parathyroid hormone, and the use of renin-angiotensin-aldosterone system inhibitors: The multi-ethnic study of atherosclerosis. J. Clin. Endocrinol. Metab. 2015;100:490–499. doi: 10.1210/jc.2014-3949.
    1. Marx S.J. Hyperparathyroid and hypoparathyroid disorders. N. Engl. J. Med. 2000;343:1863–1875. doi: 10.1056/NEJM200012213432508.
    1. Mantovani G., Elli F.M., Corbetta S. Hypothyroidism associated with parathyroid disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2017;31:161–173. doi: 10.1016/j.beem.2017.04.004.
    1. Mitchell D.M., Regan S., Cooley M.R., Lauter K.B., Vrla M.C., Becker C.B., Burnett-Bowie S.A., Mannstadt M. Long-term follow-up of patients with hypoparathyroidism. J. Clin. Endocrinol. Metab. 2012;97:4507–4514. doi: 10.1210/jc.2012-1808.
    1. Giusti F., Brandi M.L. Clinical Presentation of Hypoparathyroidism. Front. Horm. Res. 2019;51:139–146. doi: 10.1159/000491044.
    1. Bilezikian J.P., Khan A., Potts J.T., Jr., Brandi M.L., Clarke B.L., Shoback D., Juppner H., D’Amour P., Fox J., Rejnmark L., et al. Hypoparathyroidism in the adult: Epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research. J. Bone Miner. Res. 2011;26:2317–2337. doi: 10.1002/jbmr.483.
    1. Aggarwal S., Kailash S., Sagar R., Tripathi M., Sreenivas V., Sharma R., Gupta N., Goswami R. Neuropsychological dysfunction in idiopathic hypoparathyroidism and its relationship with intracranial calcification and serum total calcium. Eur. J. Endocrinol. 2013;168:895–903. doi: 10.1530/EJE-12-0946.
    1. Arlt W., Fremerey C., Callies F., Reincke M., Schneider P., Timmermann W., Allolio B. Well-being, mood and calcium homeostasis in patients with hypoparathyroidism receiving standard treatment with calcium and vitamin D. Eur. J. Endocrinol. 2002;146:215–222. doi: 10.1530/eje.0.1460215.
    1. Cusano N.E., Rubin M.R., McMahon D.J., Irani D., Tulley A., Sliney J., Jr., Bilezikian J.P. The effect of PTH(1-84) on quality of life in hypoparathyroidism. J. Clin. Endocrinol. Metab. 2013;98:2356–2361. doi: 10.1210/jc.2013-1239.
    1. Newman D.B., Fidahussein S.S., Kashiwagi D.T., Kennel K.A., Kashani K.B., Wang Z., Altayar O., Murad M.H. Reversible cardiac dysfunction associated with hypocalcemia: A systematic review and meta-analysis of individual patient data. Heart Fail. Rev. 2014;19:199–205. doi: 10.1007/s10741-013-9371-1.
    1. Underbjerg L., Sikjaer T., Mosekilde L., Rejnmark L. The Epidemiology of Nonsurgical Hypoparathyroidism in Denmark: A Nationwide Case Finding Study. J. Bone Miner. Res. 2015;30:1738–1744. doi: 10.1002/jbmr.2501.
    1. Stammers A.N., Susser S.E., Hamm N.C., Hlynsky M.W., Kimber D.E., Kehler D.S., Duhamel T.A. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA) Can. J. Physiol. Pharmacol. 2015;93:843–854. doi: 10.1139/cjpp-2014-0463.
    1. Kuo I.Y., Ehrlich B.E. Signaling in muscle contraction. Cold Spring Harb. Perspect. Biol. 2015;7:a006023. doi: 10.1101/cshperspect.a006023.
    1. Cheng A.J., Place N., Westerblad H. Molecular Basis for Exercise-Induced Fatigue: The Importance of Strictly Controlled Cellular Ca(2+) Handling. Cold Spring Harb. Perspect. Med. 2018;8:a029710. doi: 10.1101/cshperspect.a029710.
    1. Debold E.P. Decreased Myofilament Calcium Sensitivity Plays a Significant Role in Muscle Fatigue. Exerc. Sport Sci. Rev. 2016;44:144–149. doi: 10.1249/JES.0000000000000089.
    1. Sikjaer T., Rejnmark L., Rolighed L., Heickendorff L., Mosekilde L., Hypoparathyroid Study G. The effect of adding PTH(1-84) to conventional treatment of hypoparathyroidism: A randomized, placebo-controlled study. J. Bone Miner. Res. 2011;26:2358–2370. doi: 10.1002/jbmr.470.
    1. Cusano N.E., Nishiyama K.K., Zhang C., Rubin M.R., Boutroy S., McMahon D.J., Guo X.E., Bilezikian J.P. Noninvasive Assessment of Skeletal Microstructure and Estimated Bone Strength in Hypoparathyroidism. J. Bone Miner. Res. 2016;31:308–316. doi: 10.1002/jbmr.2609.
    1. Dempster D. Histomorphometry in hypoparathyroidism. In: Brandi M.L., Brown E.M., editors. Hypoparathyroidism. Springer; New York, NY, USA: 2015. pp. 287–296.
    1. Rubin M.R., Dempster D.W., Kohler T., Stauber M., Zhou H., Shane E., Nickolas T., Stein E., Sliney J., Jr., Silverberg S.J., et al. Three dimensional cancellous bone structure in hypoparathyroidism. Bone. 2010;46:190–195. doi: 10.1016/j.bone.2009.09.020.
    1. Khan A.A., Hanley D.A., Rizzoli R., Bollerslev J., Young J.E., Rejnmark L., Thakker R., D’Amour P., Paul T., Van Uum S., et al. Primary hyperparathyroidism: Review and recommendations on evaluation, diagnosis, and management. A Canadian and international consensus. Osteoporos. Int. 2017;28:1–19. doi: 10.1007/s00198-016-3716-2.
    1. Bilezikian J.P., Brandi M.L., Eastell R., Silverberg S.J., Udelsman R., Marcocci C., Potts J.T., Jr. Guidelines for the management of asymptomatic primary hyperparathyroidism: Summary statement from the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014;99:3561–3569. doi: 10.1210/jc.2014-1413.
    1. Verdelli C., Corbetta S. MECHANISMS IN ENDOCRINOLOGY: Kidney involvement in patients with primary hyperparathyroidism: An update on clinical and molecular aspects. Eur. J. Endocrinol. 2017;176:R39–R52. doi: 10.1530/EJE-16-0430.
    1. Silverberg S.J., Clarke B.L., Peacock M., Bandeira F., Boutroy S., Cusano N.E., Dempster D., Lewiecki E.M., Liu J.M., Minisola S., et al. Current issues in the presentation of asymptomatic primary hyperparathyroidism: Proceedings of the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014;99:3580–3594. doi: 10.1210/jc.2014-1415.
    1. Walker M.D., Silverberg S.J. Primary hyperparathyroidism. Nat. Rev. Endocrinol. 2018;14:115–125. doi: 10.1038/nrendo.2017.104.
    1. Bandeira L., Bilezikian J. Primary Hyperparathyroidism. F1000 Res. 2016;5:1. doi: 10.12688/f1000research.7039.1.
    1. Marcocci C., Brandi M.L., Scillitani A., Corbetta S., Faggiano A., Gianotti L., Migliaccio S., Minisola S. Italian Society of Endocrinology Consensus Statement: Definition, evaluation and management of patients with mild primary hyperparathyroidism. J. Endcorinol. Investig. 2015;38:577–593. doi: 10.1007/s40618-015-0261-3.
    1. Cipriani C., Pepe J., Colangelo L., Fassino V., Occhiuto M., Biondi P., Nieddu L., Minisola S. Investigating subtle kidney injury in primary hyperparathyroidism by means of sensitive and specific biomarkers. Clin. Endocrinol. 2019;91:660–668. doi: 10.1111/cen.14064.
    1. Minisola S., Gianotti L., Bhadada S., Silverberg S.J. Classical complications of primary hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2018;32:791–803. doi: 10.1016/j.beem.2018.09.001.
    1. Minisola S., Pepe J., Scillitani A., Cipriani C. Explaining geographical variation in the presentation of primary hyperparathyroidism. Lancet Diabetes Endocrinol. 2016;4:641–643. doi: 10.1016/S2213-8587(16)00076-0.
    1. Walker M.D., Cong E., Lee J.A., Kepley A., Zhang C., McMahon D.J., Silverberg S.J. Vitamin D in Primary Hyperparathyroidism: Effects on Clinical, Biochemical, and Densitometric Presentation. J. Clin. Endocrinol. Metab. 2015;100:3443–3451. doi: 10.1210/jc.2015-2022.
    1. Carnevale V., Manfredi G., Romagnoli E., De Geronimo S., Paglia F., Pepe J., Scillitani A., D’Erasmo E., Minisola S. Vitamin D status in female patients with primary hyperparathyroidism: Does it play a role in skeletal damage? Clin. Endocrinol. 2004;60:81–86. doi: 10.1111/j.1365-2265.2004.01946.x.
    1. Romagnoli E., Pepe J., Piemonte S., Cipriani C., Minisola S. Management of endocrine disease: Value and limitations of assessing vitamin D nutritional status and advised levels of vitamin D supplementation. Eur. J. Endcorinol. 2013;169:R59–R69. doi: 10.1530/EJE-13-0435.
    1. Bandeira F., Cusano N.E., Silva B.C., Cassibba S., Almeida C.B., Machado V.C., Bilezikian J.P. Bone disease in primary hyperparathyroidism. Arq. Bras. Endocrinol. Metabol. 2014;58:553–561. doi: 10.1590/0004-2730000003381.
    1. Boswell S.B., Patel D.B., White E.A., Gottsegen C.J., Forrester D.M., Masih S., Matcuk G.R., Jr. Musculoskeletal manifestations of endocrine disorders. Clin. Imaging. 2014;38:384–396. doi: 10.1016/j.clinimag.2014.02.014.
    1. Bandeira F., Cassibba S. Hyperparathyroidism and Bone Health. Curr. Rheumatol. Rep. 2015;17:48. doi: 10.1007/s11926-015-0523-2.
    1. Silva B.C., Leslie W.D. Trabecular Bone Score: A New DXA-Derived Measurement for Fracture Risk Assessment. Endocrinol. Metab. Clin. N. Am. 2017;46:153–180. doi: 10.1016/j.ecl.2016.09.005.
    1. Krohn K., Schwartz E.N., Chung Y.S., Lewiecki E.M. Dual-energy X-ray Absorptiometry Monitoring with Trabecular Bone Score: 2019 ISCD Official Position. J. Clin. Densitom. 2019;22:501–505. doi: 10.1016/j.jocd.2019.07.006.
    1. Silva B.C., Walker M.D., Abraham A., Boutroy S., Zhang C., McMahon D.J., Liu G., Hans D., Bilezikian J.P. Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and white women. J. Clin. Densitom. 2013;16:554–561. doi: 10.1016/j.jocd.2013.07.001.
    1. Romagnoli E., Cipriani C., Nofroni I., Castro C., Angelozzi M., Scarpiello A., Pepe J., Diacinti D., Piemonte S., Carnevale V., et al. “Trabecular Bone Score” (TBS): An indirect measure of bone micro-architecture in postmenopausal patients with primary hyperparathyroidism. Bone. 2013;53:154–159. doi: 10.1016/j.bone.2012.11.041.
    1. Eller-Vainicher C., Filopanti M., Palmieri S., Ulivieri F.M., Morelli V., Zhukouskaya V.V., Cairoli E., Pino R., Naccarato A., Verga U., et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 2013;169:155–162. doi: 10.1530/EJE-13-0305.
    1. Walker M.D., Bilezikian J.P. Primary hyperparathyroidism: Recent advances. Curr. Opin. Rheumatol. 2018;30:427–439. doi: 10.1097/BOR.0000000000000511.
    1. Cassibba S., Pellegrino M., Gianotti L., Baffoni C., Baralis E., Attanasio R., Guarnieri A., Borretta G., Tassone F. Silent renal stones in primary hyperparathyroidism: Prevalence and clinical features. Endocr. Pract. 2014;20:1137–1142. doi: 10.4158/EP14074.OR.
    1. Tuna M.M., Caliskan M., Unal M., Demirci T., Dogan B.A., Kucukler K., Ozbek M., Berker D., Delibasi T., Guler S. Normocalcemic hyperparathyroidism is associated with complications similar to those of hypercalcemic hyperparathyroidism. J. Bone Miner. Metab. 2016;34:331–335. doi: 10.1007/s00774-015-0673-3.
    1. Castellano E., Attanasio R., Latina A., Visconti G.L., Cassibba S., Borretta G. Nephrolithiasis in Primary Hyperparathyroidism: A Comparison between Silent and Symptomatic Patients. Endocr. Pract. 2017;23:157–162. doi: 10.4158/EP161476.OR.
    1. Shah V.N., Shah C.S., Bhadada S.K., Rao D.S. Effect of 25 (OH) D replacements in patients with primary hyperparathyroidism (PHPT) and coexistent vitamin D deficiency on serum 25(OH) D, calcium and PTH levels: A meta-analysis and review of literature. Clin. Endocrinol. 2014;80:797–803. doi: 10.1111/cen.12398.
    1. Rolighed L., Rejnmark L., Sikjaer T., Heickendorff L., Vestergaard P., Mosekilde L., Christiansen P. Vitamin D treatment in primary hyperparathyroidism: A randomized placebo controlled trial. Clin. Endocrinol. Metab. 2014;99:1072–1080. doi: 10.1210/jc.2013-3978.
    1. Castellano E., Attanasio R., Boriano A., Pellegrino M., Garino F., Gianotti L., Borretta G. Sex Difference in the Clinical Presentation of Primary Hyperparathyroidism: Influence of Menopausal Status. J. Clin. Endocrinol. Metab. 2017;102:4148–4152. doi: 10.1210/jc.2017-01080.
    1. Minisola S., Pepe J., Piemonte S., Cipriani C. The diagnosis and management of hypercalcaemia. Br. Med. J. 2015;350:h2723. doi: 10.1136/bmj.h2723.
    1. Cong X., Shen L., Gu X. Current opinions on nephrolithiasis associated with primary hyperparathyroidism. Urolithiasis. 2018;46:453–457. doi: 10.1007/s00240-018-1038-x.
    1. Walker M.D., Nickolas T., Kepley A., Lee J.A., Zhang C., McMahon D.J., Silverberg S.J. Predictors of renal function in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2014;99:1885–1892. doi: 10.1210/jc.2013-4192.
    1. Ermetici F., Filopanti M., Verga U., Passeri E., Dito G., Malavazos A.E., Mapelli C., Raggi M.E., Spada A., Corbetta S. Estimated glomerular filtration rate by serum cystatin C correlates with cardiometabolic parameters in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 2015;173:441–446. doi: 10.1530/EJE-15-0341.
    1. Hendrickson C.D., Castro Pereira D.J., Comi R.J. Renal impairment as a surgical indication in primary hyperparathyroidism: Do the data support this recommendation? J. Clin. Endocrinol. Metab. 2014;99:2646–2650. doi: 10.1210/jc.2014-1379.
    1. Tassone F., Guarnieri A., Castellano E., Baffoni C., Attanasio R., Borretta G. Parathyroidectomy Halts the Deterioration of Renal Function in Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2015;100:3069–3073. doi: 10.1210/jc.2015-2132.
    1. Nash E., Ranka P., Tarigopula G., Rashid T. Primary hyperparathyroidism in pregnancy leading to hypercalcaemic crisis and uraemic encephalopathy. BMJ Case Rep. 2015;2015:2014208829. doi: 10.1136/bcr-2014-208829.
    1. Hirsch D., Kopel V., Nadler V., Levy S., Toledano Y., Tsvetov G. Pregnancy outcomes in women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2015;100:2115–2122. doi: 10.1210/jc.2015-1110.
    1. Verdelli C., Vaira V., Corbetta S. Parathyroid Tumor Microenvironment. Adv. Exp. Med. Biol. 2020;1226:37–50. doi: 10.1007/978-3-030-36214-0_3.
    1. Andersson P., Rydberg E., Willenheimer R. Primary hyperparathyroidism and heart disease—A review. Eur. Heart J. 2004;25:1776–1787. doi: 10.1016/j.ehj.2004.07.010.
    1. Yu N., Donnan P.T., Flynn R.W., Murphy M.J., Smith D., Rudman A., Leese G.P. Increased mortality and morbidity in mild primary hyperparathyroid patients. The Parathyroid Epidemiology and Audit Research Study (PEARS) Clin. Endocrinol. 2010;73:30–34. doi: 10.1111/j.1365-2265.2009.03766.x.
    1. Yu N., Leese G.P., Donnan P.T. What predicts adverse outcomes in untreated primary hyperparathyroidism? The Parathyroid Epidemiology and Audit Research Study (PEARS) Clin. Endocrinol. 2013;79:27–34. doi: 10.1111/cen.12206.
    1. Pappu R., Jabbour S.A., Reginato A.M., Reginato A.J. Musculoskeletal manifestations of primary hyperparathyroidism. Clin. Rheumatol. 2016;35:3081–3087. doi: 10.1007/s10067-016-3450-3.
    1. Ferrari R., Russell A.S. Prevalence of primary hyperparathyroidism in a referred sample of fibromyalgia patients. Clin. Rheumatol. 2015;34:1279–1283. doi: 10.1007/s10067-014-2735-7.
    1. Chiodini I., Cairoli E., Palmieri S., Pepe J., Walker M.D. Non classical complications of primary hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2018;32:805–820. doi: 10.1016/j.beem.2018.06.006.
    1. Hui J.Y., Choi J.W., Mount D.B., Zhu Y., Zhang Y., Choi H.K. The independent association between parathyroid hormone levels and hyperuricemia: A national population study. Arthritis Res. Ther. 2012;14:R56. doi: 10.1186/ar3769.
    1. Bhalla A.K. Musculoskeletal manifestations of primary hyperparathyroidism. Clin. Rheum. Dis. 1986;12:691–705.
    1. Murray S.E., Pathak P.R., Pontes D.S., Schneider D.F., Schaefer S.C., Chen H., Sippel R.S. Timing of symptom improvement after parathyroidectomy for primary hyperparathyroidism. Surgery. 2013;154:1463–1469. doi: 10.1016/j.surg.2013.09.005.
    1. Rolighed L., Rejnmark L., Sikjaer T., Heickendorff L., Vestergaard P., Mosekilde L., Christiansen P. No beneficial effects of vitamin D supplementation on muscle function or quality of life in primary hyperparathyroidism: Results from a randomized controlled trial. Eur. J. Endocrinol. 2015;172:609–617. doi: 10.1530/EJE-14-0940.
    1. Blanchard C., Mathonnet M., Sebag F., Caillard C., Kubis C., Drui D., van Nuvel E., Ansquer C., Henry J.F., Masson D., et al. Quality of life is modestly improved in older patients with mild primary hyperparathyroidism postoperatively: Results of a prospective multicenter study. Ann. Surg. Oncol. 2014;21:3534–3540. doi: 10.1245/s10434-014-3731-5.
    1. Rolighed L., Amstrup A.K., Jakobsen N.F., Sikjaer T., Mosekilde L., Christiansen P., Rejnmark L. Muscle function is impaired in patients with "asymptomatic" primary hyperparathyroidism. World J. Surg. 2014;38:549–557. doi: 10.1007/s00268-013-2273-5.
    1. Bannani S., Christou N., Guerin C., Hamy A., Sebag F., Mathonnet M., Guillot P., Caillard C., Blanchard C., Mirallie E. Effect of parathyroidectomy on quality of life and non-specific symptoms in normocalcaemic primary hyperparathyroidism. Br. J. Surg. 2018;105:223–229. doi: 10.1002/bjs.10739.
    1. Reppe S., Stilgren L., Abrahamsen B., Olstad O.K., Cero F., Brixen K., Nissen-Meyer L.S., Gautvik K.M. Abnormal muscle and hematopoietic gene expression may be important for clinical morbidity in primary hyperparathyroidism. Am. J. Physiol. Endocrinol. Metab. 2007;292:E1465–E1473. doi: 10.1152/ajpendo.00487.2006.
    1. Thomas S.S., Mitch W.E. Parathyroid hormone stimulates adipose tissue browning: A pathway to muscle wasting. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20:153–157. doi: 10.1097/MCO.0000000000000357.
    1. Imbrici P., Camerino D.C., Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front. Genet. 2013;4:76. doi: 10.3389/fgene.2013.00076.
    1. Abboud B., Daher R., Boujaoude J. Digestive manifestations of parathyroid disorders. World J. Gastroenterol. 2011;17:4063–4066. doi: 10.3748/wjg.v17.i36.4063.
    1. Aresta C., Passeri E., Corbetta S. Symptomatic Hypercalcemia in Patients with Primary Hyperparathyroidism Is Associated with Severity of Disease, Polypharmacy, and Comorbidity. Int. J. Endocrinol. 2019;2019:7617254. doi: 10.1155/2019/7617254.
    1. Pazianas M., Miller P.D. Current Understanding of Mineral and Bone Disorders of Chronic Kidney Disease and the Scientific Grounds on the Use of Exogenous Parathyroid Hormone in Its Management. J. Bone Metab. 2020;27:1–13. doi: 10.11005/jbm.2020.27.1.1.
    1. Bislev L.S., Langagergaard Rodbro L., Sikjaer T., Rejnmark L. Effects of Elevated Parathyroid Hormone Levels on Muscle Health, Postural Stability and Quality of Life in Vitamin D-Insufficient Healthy Women: A Cross-Sectional Study. Calcif. Tissue Int. 2019;105:642–650. doi: 10.1007/s00223-019-00612-2.
    1. Lee Y.H., Kim J.E., Roh Y.H., Choi H.R., Rhee Y., Kang D.R., Lim S.K. The combination of vitamin D deficiency and mild to moderate chronic kidney disease is associated with low bone mineral density and deteriorated femoral microarchitecture: Results from the KNHANES 2008-2011. J. Clin. Endocrinol. Metab. 2014;99:3879–3888. doi: 10.1210/jc.2013-3764.
    1. McLaughlin M., Jacobs I. Exercise Is Medicine, But Does It Interfere With Medicine? Exerc. Sport Sci. Rev. 2017;45:127–135. doi: 10.1249/JES.0000000000000111.
    1. Xu J., Lombardi G., Jiao W., Banfi G. Effects of Exercise on Bone Status in Female Subjects, from Young Girls to Postmenopausal Women: An Overview of Systematic Reviews and Meta-Analyses. Sports Med. 2016;46:1165–1182. doi: 10.1007/s40279-016-0494-0.
    1. Lombardi G., Ziemann E., Banfi G. Physical Activity and Bone Health: What Is the Role of Immune System? A Narrative Review of the Third Way. Front. Endocrinol. 2019;10:60. doi: 10.3389/fendo.2019.00060.
    1. Bouassida A., Latiri I., Bouassida S., Zalleg D., Zaouali M., Feki Y., Gharbi N., Zbidi A., Tabka Z. Parathyroid hormone and physical exercise: A brief review. J. Sports Sci. Med. 2006;5:367–374.
    1. Maimoun L., Simar D., Malatesta D., Caillaud C., Peruchon E., Couret I., Rossi M., Mariano-Goulart D. Response of bone metabolism related hormones to a single session of strenuous exercise in active elderly subjects. Br. J. Sports Med. 2005;39:497–502. doi: 10.1136/bjsm.2004.013151.
    1. Maimoun L., Manetta J., Couret I., Dupuy A.M., Mariano-Goulart D., Micallef J.P., Peruchon E., Rossi M. The intensity level of physical exercise and the bone metabolism response. Int. J. Sports Med. 2006;27:105–111. doi: 10.1055/s-2005-837621.
    1. Bouassida A., Zalleg D., Zaouali Ajina M., Gharbi N., Duclos M., Richalet J.P., Tabka Z. Parathyroid hormone concentrations during and after two periods of high intensity exercise with and without an intervening recovery period. Eur. J. Appl. Physiol. 2003;88:339–344. doi: 10.1007/s00421-002-0721-2.
    1. Thorsen K., Kristoffersson A., Hultdin J., Lorentzon R. Effects of moderate endurance exercise on calcium, parathyroid hormone, and markers of bone metabolism in young women. Calcif. Tissue Int. 1997;60:16–20. doi: 10.1007/s002239900179.
    1. Ljunghall S., Joborn H., Roxin L.E., Rastad J., Wide L., Akerstrom G. Prolonged low-intensity exercise raises the serum parathyroid hormone levels. Clin. Endocrinol. 1986;25:535–542. doi: 10.1111/j.1365-2265.1986.tb03606.x.
    1. Ashizawa N., Fujimura R., Tokuyama K., Suzuki M. A bout of resistance exercise increases urinary calcium independently of osteoclastic activation in men. J. Appl. Physiol. 1997;83:1159–1163. doi: 10.1152/jappl.1997.83.4.1159.
    1. Ljunghall S., Joborn H., Roxin L.E., Skarfors E.T., Wide L.E., Lithell H.O. Increase in serum parathyroid hormone levels after prolonged physical exercise. Med. Sci. Sports Exerc. 1988;20:122–125. doi: 10.1249/00005768-198820020-00004.
    1. Brahm H., Piehl-Aulin K., Ljunghall S. Bone metabolism during exercise and recovery: The influence of plasma volume and physical fitness. Calcif. Tissue Int. 1997;61:192–198. doi: 10.1007/s002239900322.
    1. Salvesen H., Johansson A.G., Foxdal P., Wide L., Piehl-Aulin K., Ljunghall S. Intact serum parathyroid hormone levels increase during running exercise in well-trained men. Calcif. Tissue Int. 1994;54:256–261. doi: 10.1007/BF00295947.
    1. Ljunghall S., Joborn H., Lundin L., Rastad J., Wide L., Akerstrom G. Regional and systemic effects of short-term intense muscular work on plasma concentration and content of total and ionized calcium. Eur. J. Clin. Investig. 1985;15:248–252. doi: 10.1111/j.1365-2362.1985.tb00178.x.
    1. Soria M., Gonzalez-Haro C., Anson M.A., Inigo C., Calvo M.L., Escanero J.F. Variations in serum magnesium and hormonal levels during incremental exercise. Magnes. Res. 2014;27:155–164. doi: 10.1684/mrh.2014.0372.
    1. Gardinier J.D., Mohamed F., Kohn D.H. PTH Signaling During Exercise Contributes to Bone Adaptation. J. Bone Miner. Res. 2015;30:1053–1063. doi: 10.1002/jbmr.2432.
    1. Gardinier J.D., Daly-Seiler C., Rostami N., Kundal S., Zhang C. Loss of the PTH/PTHrP receptor along the osteoblast lineage limits the anabolic response to exercise. PLoS ONE. 2019;14:e0211076. doi: 10.1371/journal.pone.0211076.
    1. Soria M., Anson M., Escanero J.F. Correlation Analysis of Exercise-Induced Changes in Plasma Trace Element and Hormone Levels During Incremental Exercise in Well-Trained Athletes. Biol. Trace Elem. Res. 2016;170:55–64. doi: 10.1007/s12011-015-0466-5.
    1. Townsend R., Elliott-Sale K.J., Pinto A.J., Thomas C., Scott J.P., Currell K., Fraser W.D., Sale C. Parathyroid Hormone Secretion Is Controlled by Both Ionized Calcium and Phosphate During Exercise and Recovery in Men. J. Clin. Endocrinol. Metab. 2016;101:3231–3239. doi: 10.1210/jc.2016-1848.
    1. Kristoffersson A., Hultdin J., Holmlund I., Thorsen K., Lorentzon R. Effects of short-term maximal work on plasma calcium, parathyroid hormone, osteocalcin and biochemical markers of collagen metabolism. Int. J. Sports Med. 1995;16:145–149. doi: 10.1055/s-2007-972982.
    1. Falk B., Haddad F., Klentrou P., Ward W., Kish K., Mezil Y., Radom-Aizik S. Differential sclerostin and parathyroid hormone response to exercise in boys and men. Osteoporos. Int. 2016;27:1245–1249. doi: 10.1007/s00198-015-3310-z.
    1. Guerriere K.I., Hughes J.M., Gaffney-Stomberg E., Staab J.S., Matheny R.W., Jr. Circulating sclerostin is not suppressed following a single bout of exercise in young men. Physiol. Rep. 2018;6:e13695. doi: 10.14814/phy2.13695.
    1. Blum J.W., Fischer J.A., Hunziker W.H., Binswanger U., Picotti G.B., Da Prada M., Guillebeau A. Parathyroid hormone responses to catecholamines and to changes of extracellular calcium in cows. J. Clin. Investig. 1978;61:1113–1122. doi: 10.1172/JCI109026.
    1. Joborn H., Hjemdahl P., Larsson P.T., Lithell H., Olsson G., Wide L., Bergstrom R., Ljunghall S. Effects of prolonged adrenaline infusion and of mental stress on plasma minerals and parathyroid hormone. Clin. Physiol. 1990;10:37–53. doi: 10.1111/j.1475-097X.1990.tb00082.x.
    1. Hanyu R., Wehbi V.L., Hayata T., Moriya S., Feinstein T.N., Ezura Y., Nagao M., Saita Y., Hemmi H., Notomi T., et al. Anabolic action of parathyroid hormone regulated by the beta2-adrenergic receptor. Proc. Natl. Acad. Sci. USA. 2012;109:7433–7438. doi: 10.1073/pnas.1109036109.
    1. Lu K.C., Shieh S.D., Li B.L., Chu P., Jan S.Y., Lin Y.F. Rapid correction of metabolic acidosis in chronic renal failure: Effect on parathyroid hormone activity. Nephron. 1994;67:419–424. doi: 10.1159/000188015.
    1. Movilli E., Zani R., Carli O., Sangalli L., Pola A., Camerini C., Scolari F., Cancarini G.C., Maiorca R. Direct effect of the correction of acidosis on plasma parathyroid hormone concentrations, calcium and phosphate in hemodialysis patients: A prospective study. Nephron. 2001;87:257–262. doi: 10.1159/000045923.
    1. Lopez I., Aguilera-Tejero E., Felsenfeld A.J., Estepa J.C., Rodriguez M. Direct effect of acute metabolic and respiratory acidosis on parathyroid hormone secretion in the dog. J. Bone Miner. Res. 2002;17:1691–1700. doi: 10.1359/jbmr.2002.17.9.1691.
    1. Bichara M., Mercier O., Borensztein P., Paillard M. Acute metabolic acidosis enhances circulating parathyroid hormone, which contributes to the renal response against acidosis in the rat. J. Clin. Investig. 1990;86:430–443. doi: 10.1172/JCI114729.
    1. Scott J.P., Sale C., Greeves J.P., Casey A., Dutton J., Fraser W.D. Treadmill running reduces parathyroid hormone concentrations during recovery compared with a nonexercising control group. J. Clin. Endocrinol. Metab. 2014;99:1774–1782. doi: 10.1210/jc.2013-3027.
    1. Shea K.L., Barry D.W., Sherk V.D., Hansen K.C., Wolfe P., Kohrt W.M. Calcium supplementation and parathyroid hormone response to vigorous walking in postmenopausal women. Med. Sci. Sports Exerc. 2014;46:2007–2013. doi: 10.1249/MSS.0000000000000320.
    1. Olmedillas H., Gonzalez-Aguero A., Moreno L.A., Casajus J.A., Vicente-Rodriguez G. Cycling and bone health: A systematic review. BMC Med. 2012;10:168. doi: 10.1186/1741-7015-10-168.
    1. Haakonssen E.C., Ross M.L., Knight E.J., Cato L.E., Nana A., Wluka A.E., Cicuttini F.M., Wang B.H., Jenkins D.G., Burke L.M. The effects of a calcium-rich pre-exercise meal on biomarkers of calcium homeostasis in competitive female cyclists: A randomised crossover trial. PLoS ONE. 2015;10:e0123302. doi: 10.1371/journal.pone.0123302.
    1. Sherk V.D., Wherry S.J., Barry D.W., Shea K.L., Wolfe P., Kohrt W.M. Calcium Supplementation Attenuates Disruptions in Calcium Homeostasis during Exercise. Med. Sci. Sports Exerc. 2017;49:1437–1442. doi: 10.1249/MSS.0000000000001239.
    1. Kohrt W.M., Wherry S.J., Wolfe P., Sherk V.D., Wellington T., Swanson C.M., Weaver C.M., Boxer R.S. Maintenance of Serum Ionized Calcium During Exercise Attenuates Parathyroid Hormone and Bone Resorption Responses. J. Bone Miner. Res. 2018;33:1326–1334. doi: 10.1002/jbmr.3428.
    1. Ramezani Ahmadi A., Mohammadshahi M., Alizadeh A., Ahmadi Angali K., Jahanshahi A. Effects of vitamin D3 supplementation for 12 weeks on serum levels of anabolic hormones, anaerobic power, and aerobic performance in active male subjects: A randomized, double-blind, placebo-controlled trial. Eur. J. Sport Sci. 2020 doi: 10.1080/17461391.2020.1713218.
    1. Zerath E., Holy X., Douce P., Guezennec C.Y., Chatard J.C. Effect of endurance training on postexercise parathyroid hormone levels in elderly men. Med. Sci. Sports Exerc. 1997;29:1139–1145. doi: 10.1097/00005768-199709000-00004.
    1. Wilson-Barnes S.L., Hunt J.E.A., Williams E.L., Allison S.J., Wild J.J., Wainwright J., Lanham-New S.A., Manders R.J.F. Seasonal variation in vitamin D status, bone health and athletic performance in competitive university student athletes: A longitudinal study. J. Nutr. Sci. 2020;9:e8. doi: 10.1017/jns.2020.1.
    1. Ferrari D., Lombardi G., Banfi G. Concerning the vitamin D reference range: Pre-analytical and analytical variability of vitamin D measurement. Biochem. Med. 2017;27:030501. doi: 10.11613/BM.2017.030501.
    1. Ferrari D., Lombardi G., Strollo M., Pontillo M., Motta A., Locatelli M. Association between solar ultraviolet doses and vitamin D clinical routine data in European mid-latitude population between 2006 and 2018. Photochem. Photobiol. Sci. 2019;18:2696–2706. doi: 10.1039/C9PP00372J.
    1. Davey T., Lanham-New S.A., Shaw A.M., Hale B., Cobley R., Berry J.L., Roch M., Allsopp A.J., Fallowfield J.L. Low serum 25-hydroxyvitamin D is associated with increased risk of stress fracture during Royal Marine recruit training. Osteoporos. Int. 2016;27:171–179. doi: 10.1007/s00198-015-3228-5.
    1. Nowak A., Dalz M., Sliwicka E., Eleganczyk-Kot H., Krysciak J., Domaszewska K., Laurentowska M., Kocur P., Pospieszna B. Vitamin D and Indices of Bone and Carbohydrate Metabolism in Postmenopausal Women Subjected to a 12-Week Aerobic Training Program-The Pilot Study. Int. J. Environ. Res. Public Health. 2020;17:1074. doi: 10.3390/ijerph17031074.
    1. Gardinier J.D., Al-Omaishi S., Morris M.D., Kohn D.H. PTH signaling mediates perilacunar remodeling during exercise. Matrix Biol. 2016;52:162–175. doi: 10.1016/j.matbio.2016.02.010.
    1. Hinton P.S., Nigh P., Thyfault J. Serum sclerostin decreases following 12months of resistance- or jump-training in men with low bone mass. Bone. 2017;96:85–90. doi: 10.1016/j.bone.2016.10.011.
    1. Kambas A., Leontsini D., Avloniti A., Chatzinikolaou A., Stampoulis T., Makris K., Draganidis D., Jamurtas A.Z., Tournis S., Fatouros I.G. Physical activity may be a potent regulator of bone turnover biomarkers in healthy girls during preadolescence. J. Bone Miner. Metab. 2017;35:598–607. doi: 10.1007/s00774-016-0794-3.
    1. Vaidya A., Curhan G.C., Paik J.M., Wang M., Taylor E.N. Physical Activity and the Risk of Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2016;101:1590–1597. doi: 10.1210/jc.2015-3836.
    1. Lombardi G., Corsetti R., Lanteri P., Grasso D., Vianello E., Marazzi M.G., Graziani R., Colombini A., Galliera E., Corsi Romanelli M.M., et al. Reciprocal regulation of calcium-/phosphate-regulating hormones in cyclists during the Giro d’Italia 3-week stage race. Scand. J. Med. Sci. Sports. 2014;24:779–787. doi: 10.1111/sms.12080.
    1. Lombardi G., Lanteri P., Graziani G., Colombini A., Banfi G., Corsetti R. Bone and energy metabolism parameters in professional cyclists during the Giro d’Italia 3-weeks stage race. PLoS ONE. 2012;7:e42077. doi: 10.1371/journal.pone.0042077.
    1. Corsetti R., Perego S., Sansoni V., Xu J., Barassi A., Banfi G., Lombardi G. Osteocartilaginous metabolic markers change over a 3-week stage race in pro-cyclists. Scand. J. Clin. Lab. Investig. 2015;75:523–530. doi: 10.3109/00365513.2015.1057762.
    1. Sansoni V., Perego S., Vernillo G., Barbuti A., Merati G., La Torre A., Banfi G., Lombardi G. Effects of repeated sprints training on fracture risk-associated miRNA. Oncotarget. 2018;9:18029–18040. doi: 10.18632/oncotarget.24707.
    1. O’Leary T.J., Izard R.M., Walsh N.P., Tang J.C.Y., Fraser W.D., Greeves J.P. Skeletal macro- and microstructure adaptations in men undergoing arduous military training. Bone. 2019;125:54–60. doi: 10.1016/j.bone.2019.05.009.
    1. Papageorgiou M., Elliott-Sale K.J., Parsons A., Tang J.C.Y., Greeves J.P., Fraser W.D., Sale C. Effects of reduced energy availability on bone metabolism in women and men. Bone. 2017;105:191–199. doi: 10.1016/j.bone.2017.08.019.
    1. Kir S., White J.P., Kleiner S., Kazak L., Cohen P., Baracos V.E., Spiegelman B.M. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature. 2014;513:100–104. doi: 10.1038/nature13528.
    1. Kir S., Komaba H., Garcia A.P., Economopoulos K.P., Liu W., Lanske B., Hodin R.A., Spiegelman B.M. PTH/PTHrP Receptor Mediates Cachexia in Models of Kidney Failure and Cancer. Cell Metab. 2016;23:315–323. doi: 10.1016/j.cmet.2015.11.003.
    1. Silva K.A., Dong J., Dong Y., Dong Y., Schor N., Tweardy D.J., Zhang L., Mitch W.E. Inhibition of Stat3 activation suppresses caspase-3 and the ubiquitin-proteasome system, leading to preservation of muscle mass in cancer cachexia. J. Biol. Chem. 2015;290:11177–11187. doi: 10.1074/jbc.M115.641514.
    1. Wang X.H., Mitch W.E. Mechanisms of muscle wasting in chronic kidney disease. Nat. Rev. Nephrol. 2014;10:504–516. doi: 10.1038/nrneph.2014.112.
    1. Papademetriou V., Lovato L., Doumas M., Nylen E., Mottl A., Cohen R.M., Applegate W.B., Puntakee Z., Yale J.F., Cushman W.C., et al. Chronic kidney disease and intensive glycemic control increase cardiovascular risk in patients with type 2 diabetes. Kidney Int. 2015;87:649–659. doi: 10.1038/ki.2014.296.
    1. Thomas S.S., Zhang L., Mitch W.E. Molecular mechanisms of insulin resistance in chronic kidney disease. Kidney Int. 2015;88:1233–1239. doi: 10.1038/ki.2015.305.
    1. Cvijovic G., Micic D., Kendereski A., Milic N., Zoric S., Sumarac-Dumanovic M., Stamenkovic-Pejkovic D., Polovina S., Jeremic D., Gligic A. The effect of parathyroidectomy on insulin sensitivity in patients with primary hyperparathyroidism—An never ending story? Exp. Clin. Endocrinol. Diabetes. 2015;123:336–341. doi: 10.1055/s-0035-1549906.
    1. Dong J., Dong Y., Dong Y., Chen F., Mitch W.E., Zhang L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int. J. Obes. 2016;40:434–442. doi: 10.1038/ijo.2015.200.
    1. Tran H., Grange J.S., Adams-Huet B., Nwariaku F.E., Rabaglia J.L., Woodruff S.L., Holt S.A., Maalouf N.M. The impact of obesity on the presentation of primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2014;99:2359–2364. doi: 10.1210/jc.2013-3903.
    1. Roy B., Curtis M.E., Fears L.S., Nahashon S.N., Fentress H.M. Molecular Mechanisms of Obesity-Induced Osteoporosis and Muscle Atrophy. Front. Physiol. 2016;7:439. doi: 10.3389/fphys.2016.00439.
    1. Datta N.S. Muscle-bone and fat-bone interactions in regulating bone mass: Do PTH and PTHrP play any role? Endocrine. 2014;47:389–400. doi: 10.1007/s12020-014-0273-3.
    1. Singh R., Braga M., Pervin S. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling. Front. Cell Dev. Biol. 2014;2:60. doi: 10.3389/fcell.2014.00060.
    1. Chen J.Q., Huang Y.Y., Gusdon A.M., Qu S. Irisin: A new molecular marker and target in metabolic disorder. Lipids Health Dis. 2015;14:2. doi: 10.1186/1476-511X-14-2.
    1. Protein Atlas. [(accessed on 12 January 2020)]; Available online: .
    1. Lombardi G., Sanchis-Gomar F., Perego S., Sansoni V., Banfi G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine. 2016;54:284–305. doi: 10.1007/s12020-015-0834-0.
    1. Gomarasca M., Banfi G., Lombardi G. Myokines: The endocrine coupling of skeletal muscle and bone. Adv. Clin. Chem. 2020;94:155–218. doi: 10.1016/bs.acc.2019.07.010.
    1. Johnson R.W., White J.D., Walker E.C., Martin T.J., Sims N.A. Myokines (muscle-derived cytokines and chemokines) including ciliary neurotrophic factor (CNTF) inhibit osteoblast differentiation. Bone. 2014;64:47–56. doi: 10.1016/j.bone.2014.03.053.
    1. Sims N.A. Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. Int. J. Biochem. Cell Biol. 2016;79:14–23. doi: 10.1016/j.biocel.2016.08.003.
    1. Piccirillo R. Exercise-Induced Myokines With Therapeutic Potential for Muscle Wasting. Front. Physiol. 2019;10:287. doi: 10.3389/fphys.2019.00287.
    1. Standal T., Johnson R.W., McGregor N.E., Poulton I.J., Ho P.W., Martin T.J., Sims N.A. gp130 in late osteoblasts and osteocytes is required for PTH-induced osteoblast differentiation. J. Endocrinol. 2014;223:181–190. doi: 10.1530/JOE-14-0424.
    1. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387:83–90. doi: 10.1038/387083a0.
    1. Rodgers B.D., Garikipati D.K. Clinical, agricultural, and evolutionary biology of myostatin: A comparative review. Endocr. Rev. 2008;29:513–534. doi: 10.1210/er.2008-0003.
    1. Nam J., Perera P., Gordon R., Jeong Y.H., Blazek A.D., Kim D.G., Tee B.C., Sun Z., Eubank T.D., Zhao Y., et al. Follistatin-like 3 is a mediator of exercise-driven bone formation and strengthening. Bone. 2015;78:62–70. doi: 10.1016/j.bone.2015.04.038.
    1. Jaworska J., Micielska K., Kozłowska M., Wnorowski K., Skrobecki J., Radzimin L., Babin A., Rodziewicz E., Lombardi G., Ziemann E. A 2-Week Specific Volleyball Training Supported by the Whole Body Cryostimulation Protocol Induced an Increase of Growth Factors and Counteracted Deterioration of Physical Performance. Front. Physiol. 2018;9:1711. doi: 10.3389/fphys.2018.01711.
    1. Lombardi G. Exercise-dependent modulation of bone metabolism and bone endocrine function: New findings and therapeutic perspectives. J. Sci. Sport Exerc. 2019;1:20–28. doi: 10.1007/s42978-019-0010-y.
    1. Szulc P., Schoppet M., Goettsch C., Rauner M., Dschietzig T., Chapurlat R., Hofbauer L.C. Endocrine and clinical correlates of myostatin serum concentration in men--the STRAMBO study. J. Clin. Endocrinol. Metab. 2012;97:3700–3708. doi: 10.1210/jc.2012-1273.
    1. Colaianni G., Sanesi L., Storlino G., Brunetti G., Colucci S., Grano M. Irisin and Bone: From Preclinical Studies to the Evaluation of Its Circulating Levels in Different Populations of Human Subjects. Cells. 2019;8:451. doi: 10.3390/cells8050451.
    1. Palermo A., Sanesi L., Colaianni G., Tabacco G., Naciu A.M., Cesareo R., Pedone C., Lelli D., Brunetti G., Mori G., et al. A Novel Interplay Between Irisin and PTH: From Basic Studies to Clinical Evidence in Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2019;104:3088–3096. doi: 10.1210/jc.2018-02216.
    1. Anastasilakis A.D., Polyzos S.A., Makras P., Gkiomisi A., Bisbinas I., Katsarou A., Filippaios A., Mantzoros C.S. Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos. Int. 2014;25:1633–1642. doi: 10.1007/s00198-014-2673-x.
    1. Lombardi G., Perego S., Luzi L., Banfi G. A four-season molecule: Osteocalcin. Updates in its physiological roles. Endocrine. 2015;48:394–404. doi: 10.1007/s12020-014-0401-0.
    1. Battafarano G., Rossi M., Marampon F., Minisola S., Del Fattore A. Bone Control of Muscle Function. Int. J. Mol. Sci. 2020;21:1178. doi: 10.3390/ijms21041178.

Source: PubMed

3
Subscribe