Effects of Two Different Neuromuscular Training Protocols on Regional Bone Mass in Postmenopausal Women: A Randomized Controlled Trial

Elena Marín-Cascales, Jacobo Á Rubio-Arias, Pedro E Alcaraz, Elena Marín-Cascales, Jacobo Á Rubio-Arias, Pedro E Alcaraz

Abstract

Background: Osteoporosis is a condition associated with a greater incidence of fractures, and one of the main health-related concerns in postmenopausal women. To counteract possible reductions in bone properties, physical exercise has been proposed as an effective strategy. Particularly, training interventions with a high osteogenic potential are recommended. Purpose: To analyze the effect of 24 weeks of whole-body vibration and multi-component training on lumbar spine and femoral neck bone mass, and to determine what type of training produces greater adaptations in postmenopausal women. Methods: A total of 38 women completed the study (Clinical Gov database ID: NCT01966562). Participants were randomly assigned to one of the study groups: whole-body vibration group (WBVG), multi-component training group (MTG), or control group (CG). The experimental groups performed a progressive 24-week training (3 sessions/week) program. Bone mineral density (BMD) and bone mineral content (BMC) at the lumbar spine and femoral neck were assessed by Dual-energy X-ray absorptiometry. Results: Significantly and clinically relevant increases in lumbar spine bone mass (BMD: F = 3.29; p = 0.03; +5.15%; BMC: F = 2.90; p = 0.05; +10.58%) were observed in WBVG. MTG showed clinically important pre-post-changes on lumbar spine BMC (+7.78%), although there was no statistical significance (F = 1.97; p = 0.14). At the femoral neck, no statistically significant increases on bone mass were obtained in either training group. No changes were obtained in any variable in the CG. Additionally, no statistically significant differences were found between groups. Conclusion: The results indicated that 24 weeks of supervised WBV and MT may counteract the rapid loss of bone mass after the cessation of menstruation, thus improving postmenopausal women bone health. However, in the absence of statistically significant differences between groups, it is not possible to determine which training protocol produces greater adaptations. Clinical Trial Registration: www.ClinicalTrialsgov, identifier: NCT01966562.

Keywords: bone density; combined training; exercise; menopause; osteoporosis; vibration.

Figures

FIGURE 1
FIGURE 1
Trial profile. WBVG, whole-body vibration group; MTG, multi-component training group; CG, control group.
FIGURE 2
FIGURE 2
Percentage change in bone parameters. (A) Lumbar spine; (B) femoral neck. γClinically relevant changes. WBVG, whole-body vibration group; MTG, multi-component training group; CG, control group.

References

    1. American College of Sports Medicine (2013). ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia, PA: Lippincott Williams & Wilkins.
    1. Bassey E. J., Rothwell M. C., Littlewood J. J., Pye D. W. (1998). Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J. Bone Miner. Res. 13 1805–1813. 10.1359/jbmr.1998.13.12.1805
    1. Beck B. R., Norling T. L. (2010). The effect of 8 mos of twice-weekly low- or higher intensity whole body vibration on risk factors for postmenopausal hip fracture. Am. J. Phys. Med. Rehabil. 89 997–1009. 10.1097/PHM.0b013e3181f71063
    1. Bemben D. A., Palmer I. J., Bemben M. G., Knehans A. W. (2010). Effects of combined whole-body vibration and resistance training on muscular strength and bone metabolism in postmenopausal women. Bone 47 650–656. 10.1016/j.bone.2010.06.019
    1. Burr D. B., Martin R. B., Schaffler M. B., Radin E. L. (1985). Bone remodeling in response to in vivo fatigue microdamage. J. Biomech. 18 189–200. 10.1016/0021-9290(85)90204-0
    1. Bush J. A., Blog G. L., Kang J., Faigenbaum A. D., Ratamess N. A. (2015). Effects of quadriceps strength after static and dynamic whole-body vibration exercise. J. Strength Condit. Res. 29 1367–1377. 10.1519/jsc.0000000000000709
    1. Cheung A. M., Giangregorio L. (2012). Mechanical stimuli and bone health: what is the evidence? Curr. Opin. Rheumatol. 24 561–566. 10.1097/BOR.0b013e3283570238
    1. Christenson E. S., Jiang X., Kagan R., Schnatz P. (2012). Osteoporosis management in post-menopausal women. Minerva. Ginecol. 64 181–194.
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences 2nd Edn. Hillsdale: Erlbaum Associates.
    1. Cormie P., Deane R. S., Triplett N. T., McBride J. M. (2006). Acute effects of whole-body vibration on muscle activity, strength, and power. J. Strength Condit. Res. 20 257–261. 10.1519/00124278-200605000-00004
    1. Cummings S. R., Melton L. J. (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet 359 1761–1767. 10.1016/s0140-6736(02)08657-9
    1. Dettori J. (2010). The random allocation process: two things you need to know. Evid. Based Spine Care J. 1 7–9. 10.1055/s-0030-1267062
    1. Faber J., Fonseca L. M. (2014). How sample size influences research outcomes. Dental Press J. Orthod. 19 27–29. 10.1590/2176-9451.19.4.027-029.ebo
    1. Fratini A., Bonci T., Bull A. M. (2016). Whole body vibration treatments in postmenopausal women can improve bone mineral density: results of a stimulus focussed meta-analysis. PLoS One 11:e0166774. 10.1371/journal.pone.0166774
    1. Frost H. M. (1987). The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 2:73.
    1. Gianoudis J., Bailey C. A., Ebeling P. R., Nowson C. A., Sanders K. M., Hill K., et al. (2014). Effects of a targeted multimodal exercise program incorporating high-speed power training on falls and fracture risk factors in older adults: a community-based randomized controlled trial. J. Bone Miner. Res. 29 182–191. 10.1002/jbmr.2014
    1. Gomez-Cabello A., Ara I., Gonzalez-Aguero A., Casajus J. A., Vicente-Rodriguez G. (2012). Effects of training on bone mass in older adults: a systematic review. Sports Med. 42 301–325. 10.2165/11597670-000000000-00000
    1. Gomez-Cabello A., Gonzalez-Aguero A., Morales S., Ara I., Casajus J. A., Vicente-Rodriguez G. (2014). Effects of a short-term whole body vibration intervention on bone mass and structure in elderly people. J. Sci. Med. Sport 17 160–164. 10.1016/j.jsams.2013.04.020
    1. Guadalupe-Grau A., Fuentes T., Guerra B., Calbet J. A. (2009). Exercise and bone mass in adults. Sports Med. 39 439–468. 10.2165/00007256-200939060-00002
    1. Gullberg B., Johnell O., Kanis J. A. (1997). World-wide projections for hip fracture. Osteoporos Int. 7 407–413. 10.1007/pl00004148
    1. Hazell T. J., Jakobi J. M., Kenno K. A. (2007). The effects of whole-body vibration on upper- and lower-body EMG during static and dynamic contractions. Appl. Physiol. Nutr. Metab. 32 1156–1163. 10.1139/h07-116
    1. Johnell O., Kanis J. A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 17 1726–1733. 10.1007/s00198-006-0172-4
    1. Kanis J. A., Johnell O., Oden A., Johansson H., McCloskey E. (2008). FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 19 385–397. 10.1007/s00198-007-0543-5
    1. Kemmler W., von Stengel S., Engelke K., Haberle L., Kalender W. A. (2010). Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch. Intern. Med. 170 179–185. 10.1001/archinternmed.2009.499
    1. Kiiski J., Heinonen A., Jarvinen T. L., Kannus P., Sievanen H. (2008). Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. 23 1318–1325. 10.1359/jbmr.080315
    1. Lai C. L., Tseng S. Y., Chen C. N., Liao W. C., Wang C. H., Lee M. C., et al. (2013). Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial. Clin. Interv. Aging 8 1603–1609. 10.2147/cia.s53591
    1. Marín P. J., Rhea M. R. (2010). Effects of vibration training on muscle strength: a meta-analysis. J. Strength Condit. Res. 24 548–556. 10.1519/JSC.0b013e3181c09d22
    1. Marin-Cascales E., Alcaraz P. E., Ramos-Campo D. J., Rubio-Arias J. A. (2017a). Effects of multicomponent training on lean and bone mass in postmenopausal and older women: a systematic review. Menopause 25 346–356.
    1. Marin-Cascales E., Alcaraz P. E., Rubio-Arias J. A. (2017b). Effects of 24 weeks of whole body vibration versus multicomponent training on muscle strength and body composition in postmenopausal women: a randomized controlled trial. Rejuvena. Res. 20 193–201. 10.1089/rej.2016.1877
    1. Marin-Cascales E., Rubio-Arias J. A., Romero-Arenas S., Alcaraz P. E. (2015). Effect of 12 weeks of whole-body vibration versus multi-component training in post-menopausal women. Rejuv. Res. 18 508–516. 10.1089/rej.2015.1681
    1. Marques E. A., Mota J., Machado L., Sousa F., Coelho M., Moreira P., et al. (2011). Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif. Tissue Int. 88 117–129. 10.1007/s00223-010-9437-1
    1. Martyn-St James M., Carroll S. (2009). A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br. J. Sports Med. 43 898–908. 10.1136/bjsm.2008.052704
    1. McCarthy J. P., Agre J. C., Graf B. K., Pozniak M. A., Vailas A. C. (1995). Compatibility of adaptive responses with combining strength and endurance training. Med. Sci. Sports Exerc. 27 429–436.
    1. McMillan L. B., Zengin A., Ebeling P. R., Scott D. (2017). Prescribing physical activity for the prevention and treatment of osteoporosis in older adults. Healthcare 5:85. 10.3390/healthcare5040085
    1. Mosti M. P., Kaehler N., Stunes A. K., Hoff J., Syversen U. (2013). Maximal strength training in postmenopausal women with osteoporosis or osteopenia. J. Strength Cond. Res. 27 2879–2886. 10.1519/JSC.0b013e318280d4e2
    1. Multanen J., Nieminen M. T., Hakkinen A., Kujala U. M., Jamsa T., Kautiainen H., et al. (2014). Effects of high-impact training on bone and articular cartilage: 12-month randomized controlled quantitative MRI study. J. Bone Miner. Res. 29 192–201. 10.1002/jbmr.2015
    1. Oliveira L. C., Oliveira R. G., Pires-Oliveira D. A. (2016). Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis. Osteoporos Int. 27 2913–2933. 10.1007/s00198-016-3618-3
    1. Rauch F., Sievanen H., Boonen S., Cardinale M., Degens H., Felsenberg D., et al. (2010). Reporting whole-body vibration intervention studies: recommendations of the international society of musculoskeletal and neuronal interactions. J. Musculoskelet. Neuro. Interact. 10 193–198.
    1. Ruan X. Y., Jin F. Y., Liu Y. L., Peng Z. L., Sun Y. G. (2008). Effects of vibration therapy on bone mineral density in postmenopausal women with osteoporosis. Chin. Med. J. 121 1155–1158.
    1. Rubin C., Pope M., Fritton J. C., Magnusson M., Hansson T., McLeod K. (2003). Transmissibility of 15-hertz to 35-hertz vibrations to the human hip and lumbar spine: determining the physiologic feasibility of delivering low-level anabolic mechanical stimuli to skeletal regions at greatest risk of fracture because of osteoporosis. Spine 28 2621–2627. 10.1097/01.brs.0000102682.61791.c9
    1. Rubin C., Recker R., Cullen D., Ryaby J., McCabe J., McLeod K. (2004). Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J. Bone Miner. Res. 19 343–351. 10.1359/jbmr.0301251
    1. Ryan A. S., Ivey F. M., Hurlbut D. E., Martel G. F., Lemmer J. T., Sorkin J. D., et al. (2004). Regional bone mineral density after resistive training in young and older men and women. Scand. J. Med. Sci. Sports 14 16–23. 10.1111/j.1600-0838.2003.00328.x
    1. Schoenau E. (2005). From mechanostat theory to development of the” functional muscle-bone-unit”. J. Musculoskelet. Neuro. Interact. 5:232.
    1. Slatkovska L., Alibhai S. M., Beyene J., Cheung A. M. (2010). Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos Int. 21 1969–1980. 10.1007/s00198-010-1228-z
    1. Tolomio S., Ermolao A., Lalli A., Zaccaria M. (2010). The effect of a multicomponent dual-modality exercise program targeting osteoporosis on bone health status and physical function capacity of postmenopausal women. J. Women Aging 22 241–254. 10.1080/08952841.2010.518866
    1. Tyrovola J. B. (2015). The ”mechanostat theory” of frost and the OPG/RANKL/RANK System. J. Cell Biochem. 116 2724–2729. 10.1002/jcb.25265
    1. United Nations (2013). ”Global Levels and Trends in Mortality ” in World Mortality Report. New York, NY: United Nations; 11–25.
    1. Verschueren S. M., Roelants M., Delecluse C., Swinnen S., Vanderschueren D., Boonen S. (2004). Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J. Bone Miner. Res. 19 352–359. 10.1359/jbmr.0301245
    1. Von Stengel S., Kemmler W., Bebenek M., Engelke K., Kalender W. A. (2011). Effects of whole-body vibration training on different devices on bone mineral density. Med. Sci. Sports Exerc. 43 1071–1079. 10.1249/MSS.0b013e318202f3d3
    1. Yuen K. W., Kwok T. C., Qin L., Leung J. C., Chan D. C., Kwok A. W., et al. (2010). Characteristics of age-related changes in bone compared between male and female reference Chinese populations in Hong Kong: a pQCT study. J. Bone Miner. Metab. 28 672–681. 10.1007/s00774-010-0170-7
    1. Zaki M. E. (2014). Effects of whole body vibration and resistance training on bone mineral density and anthropometry in obese postmenopausal women. J. Osteoporos 2014:702589. 10.1155/2014/702589

Source: PubMed

3
Subscribe