International Network of Chronic Kidney Disease cohort studies (iNET-CKD): a global network of chronic kidney disease cohorts

Thomas Dienemann, Naohiko Fujii, Paula Orlandi, Lisa Nessel, Susan L Furth, Wendy E Hoy, Seiichi Matsuo, Gert Mayer, Shona Methven, Franz Schaefer, Elke S Schaeffner, Laura Solá, Bénédicte Stengel, Christoph Wanner, Luxia Zhang, Adeera Levin, Kai-Uwe Eckardt, Harold I Feldman, Thomas Dienemann, Naohiko Fujii, Paula Orlandi, Lisa Nessel, Susan L Furth, Wendy E Hoy, Seiichi Matsuo, Gert Mayer, Shona Methven, Franz Schaefer, Elke S Schaeffner, Laura Solá, Bénédicte Stengel, Christoph Wanner, Luxia Zhang, Adeera Levin, Kai-Uwe Eckardt, Harold I Feldman

Abstract

Background: Chronic kidney disease (CKD) is a global health burden, yet it is still underrepresented within public health agendas in many countries. Studies focusing on the natural history of CKD are challenging to design and conduct, because of the long time-course of disease progression, a wide variation in etiologies, and a large amount of clinical variability among individuals with CKD. With the difference in health-related behaviors, healthcare delivery, genetics, and environmental exposures, this variability is greater across countries than within one locale and may not be captured effectively in a single study.

Methods: Studies were invited to join the network. Prerequisites for membership included: 1) observational designs with a priori hypotheses and defined study objectives, patient-level information, prospective data acquisition and collection of bio-samples, all focused on predialysis CKD patients; 2) target sample sizes of 1,000 patients for adult cohorts and 300 for pediatric cohorts; and 3) minimum follow-up of three years. Participating studies were surveyed regarding design, data, and biosample resources.

Results: Twelve prospective cohort studies and two registries covering 21 countries were included. Participants age ranges from >2 to >70 years at inclusion, CKD severity ranges from stage 2 to stage 5. Patient data and biosamples (not available in the registry studies) are measured yearly or biennially. Many studies included multiple ethnicities; cohort size ranges from 400 to more than 13,000 participants. Studies' areas of emphasis all include but are not limited to renal outcomes, such as progression to ESRD and death.

Conclusions: iNET-CKD (International Network of CKD cohort studies) was established, to promote collaborative research, foster exchange of expertise, and create opportunities for research training. Participating studies have many commonalities that will facilitate comparative research; however, we also observed substantial differences. The diversity we observed across studies within this network will be able to be leveraged to identify genetic, behavioral, and health services factors associated with the course of CKD. With an emerging infrastructure to facilitate interactions among the investigators of iNET-CKD and a broadly defined research agenda, we are confident that there will be great opportunity for productive collaborative investigations involving cohorts of individuals with CKD.

Keywords: CKD; Cohort study; Diversity; Epidemiology; Network.

Figures

Fig. 1
Fig. 1
Three key goals of iNET-CKD
Fig. 2
Fig. 2
Participating studies in iNET-CKD. Countries in red represent origin of study. Blue circles represent corresponding sample size. Abbreviations: AT, Austria; CA, Canada; CH, Switzerland; CZ, Czech Republic; DE, Germany; FR, France; GB, United Kingdom; HU, Hungary; IT, Italy; LT, Lithuania; NL, Netherlands; PL, Poland; PT, Portugal; RS, Serbia; SW, Sweden; TR, Turkey; US, United States. This figure was obtained courtesy of Microsoft Office website (https://templates.office.com/en-us/Maps). No additional permission is required for its use
Fig. 3
Fig. 3
Graphical summary of blood sample collections in the participating studies. The plus or minus signs following the study names denote the availability of residual samples for further analyses

References

    1. Mills KT, Xu Y, Zhang W, Bundy JD, Chen CS, Kelly TN, Chen J, He J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015;88(5):950–957. doi: 10.1038/ki.2015.230.
    1. Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S, Hallan HA, Lydersen S, Holmen J. International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol. 2006;17(8):2275–2284. doi: 10.1681/ASN.2005121273.
    1. Chadban SJ, Briganti EM, Kerr PG, Dunstan DW, Welborn TA, Zimmet PZ, Atkins RC. Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J Am Soc Nephrol. 2003;14(7 Suppl 2):S131–138. doi: 10.1097/01.ASN.0000070152.11927.4A.
    1. Wen CP, Cheng TY, Tsai MK, Chang YC, Chan HT, Tsai SP, Chiang PH, Hsu CC, Sung PK, Hsu YH, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet. 2008;371(9631):2173–2182. doi: 10.1016/S0140-6736(08)60952-6.
    1. Iseki K. Chronic kidney disease in Japan. Intern Med. 2008;47(8):681–689. doi: 10.2169/internalmedicine.47.0906.
    1. Bruck K, Stel VS, Gambaro G, Hallan S, Volzke H, Arnlov J, Kastarinen M, Guessous I, Vinhas J, Stengel B, et al. CKD prevalence varies across the European general population. J Am Soc Nephrol. 2015.
    1. Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J, Gansevoort RT. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073–2081. doi: 10.1016/S0140-6736(10)60674-5.
    1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–1305. doi: 10.1056/NEJMoa041031.
    1. Gadegbeku CA, Gipson DS, Holzman LB, Ojo AO, Song PX, Barisoni L, Sampson MG, Kopp JB, Lemley KV, Nelson PJ, et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 2013;83(4):749–756. doi: 10.1038/ki.2012.428.
    1. Hussain N, Zello JA, Vasilevska-Ristovska J, Banh TM, Patel VP, Patel P, Battiston CD, Hebert D, Licht CP, Piscione TD, et al. The rationale and design of Insight into Nephrotic Syndrome: Investigating Genes, Health and Therapeutics (INSIGHT): a prospective cohort study of childhood nephrotic syndrome. BMC Nephrol. 2013;14:25. doi: 10.1186/1471-2369-14-25.
    1. Kiryluk K, Li Y, Sanna-Cherchi S, Rohanizadegan M, Suzuki H, Eitner F, Snyder HJ, Choi M, Hou P, Scolari F, et al. Geographic differences in genetic susceptibility to IgA nephropathy: GWAS replication study and geospatial risk analysis. PLoS Genet. 2012;8(6) doi: 10.1371/journal.pgen.1002765.
    1. Pattaro C, Teumer A, Gorski M, Chu AY, Li M, Mijatovic V, Garnaas M, Tin A, Sorice R, Li Y, et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun. 2016;7:10023. doi: 10.1038/ncomms10023.
    1. Wuttke M, Wong CS, Wuhl E, Epting D, Luo L, Hoppmann A, Doyon A, Li Y, Sozeri B, Thurn D, et al. Genetic loci associated with renal function measures and chronic kidney disease in children: the Pediatric Investigation for Genetic Factors Linked with Renal Progression Consortium. Nephrol Dial Transplant. 2016;31(2):262–9.
    1. Matsushita K, Ballew SH, Astor BC, Jong PE, Gansevoort RT, Hemmelgarn BR, Levey AS, Levin A, Wen CP, Woodward M, et al. Cohort profile: the chronic kidney disease prognosis consortium. Int J Epidemiol. 2013;42(6):1660–1668. doi: 10.1093/ije/dys173.
    1. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU. The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int. 2011;80(1):17–28. doi: 10.1038/ki.2010.483.
    1. Schaeffner ES, van der Giet M, Gaedeke J, Tolle M, Ebert N, Kuhlmann MK, Martus P. The Berlin initiative study: the methodology of exploring kidney function in the elderly by combining a longitudinal and cross-sectional approach. Eur J Epidemiol. 2010;25(3):203–210. doi: 10.1007/s10654-010-9424-x.
    1. Levin A, Rigatto C, Brendan B, Madore F, Muirhead N, Holmes D, Clase CM, Tang M, Djurdjev O. Cohort profile: Canadian study of prediction of death, dialysis and interim cardiovascular events (CanPREDDICT) BMC Nephrol. 2013;14:121. doi: 10.1186/1471-2369-14-121.
    1. Venuthurupalli SK, Hoy WE, Healy HG, Salisbury A, Fassett RG: CKD.QLD: chronic kidney disease surveillance and research in Queensland, Australia. Nephrol Dial Transplant 2012, 27 Suppl 3:iii139-145.
    1. Imai E, Matsuo S, Makino H, Watanabe T, Akizawa T, Nitta K, Iimuro S, Ohashi Y, Hishida A. Chronic Kidney Disease Japan Cohort (CKD-JAC) study: design and methods. Hypertens Res. 2008;31(6):1101–1107. doi: 10.1291/hypres.31.1101.
    1. Imai E, Matsuo S, Makino H, Watanabe T, Akizawa T, Nitta K, Iimuro S, Ohashi Y, Hishida A. Chronic Kidney Disease Japan Cohort study: baseline characteristics and factors associated with causative diseases and renal function. Clin Exp Nephrol. 2010;14(6):558–570. doi: 10.1007/s10157-010-0328-6.
    1. Stengel B, Combe C, Jacquelinet C, Briancon S, Fouque D, Laville M, Frimat L, Pascal C, Herpe YE, Deleuze JF, et al. The French Chronic Kidney Disease-Renal Epidemiology and Information Network (CKD-REIN) cohort study. Nephrol Dial Transplant. 2014;29(8):1500–1507. doi: 10.1093/ndt/gft388.
    1. Furth SL, Abraham AG, Jerry-Fluker J, Schwartz GJ, Benfield M, Kaskel F, Wong C, Mak RH, Moxey-Mims M, Warady BA. Metabolic abnormalities, cardiovascular disease risk factors, and GFR decline in children with chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(9):2132–2140. doi: 10.2215/CJN.07100810.
    1. Feldman HI, Appel LJ, Chertow GM, Cifelli D, Cizman B, Daugirdas J, Fink JC, Franklin-Becker ED, Go AS, Hamm LL, et al. The Chronic Renal Insufficiency Cohort (CRIC) study: design and methods. J Am Soc Nephrol. 2003;14(7 Suppl 2):S148–153. doi: 10.1097/01.ASN.0000070149.78399.CE.
    1. Lash JP, Go AS, Appel LJ, He J, Ojo A, Rahman M, Townsend RR, Xie D, Cifelli D, Cohan J, et al. Chronic Renal Insufficiency Cohort (CRIC) study: baseline characteristics and associations with kidney function. Clin J Am Soc Nephrol. 2009;4(8):1302–1311. doi: 10.2215/CJN.00070109.
    1. Gao B, Zhang L, Wang H, Zhao M. Chinese cohort study of chronic kidney disease: design and methods. Chin Med J (Engl) 2014;127(11):2180–2185.
    1. Jager KJ, Ocak G, Drechsler C, Caskey FJ, Evans M, Postorino M, Dekker FW, Wanner C: The EQUAL study: a European study in chronic kidney disease stage 4 patients. Nephrol Dial Transplant 2012, 27 Suppl 3:iii27-31.
    1. Eckardt KU, Barthlein B, Baid-Agrawal S, Beck A, Busch M, Eitner F, Ekici AB, Floege J, Gefeller O, Haller H, et al. The German Chronic Kidney Disease (GCKD) study: design and methods. Nephrol Dial Transplant. 2012;27(4):1454–1460. doi: 10.1093/ndt/gfr456.
    1. Titze S, Schmid M, Kottgen A, Busch M, Floege J, Wanner C, Kronenberg F, Eckardt KU. Disease burden and risk profile in referred patients with moderate chronic kidney disease: composition of the German Chronic Kidney Disease (GCKD) cohort. Nephrol Dial Transplant. 2015;30(3):441–451. doi: 10.1093/ndt/gfu294.
    1. Mazzuchi N, Schwedt E, Sola L, Gonzalez C, Ferreiro A. Risk factors and prevention of end stage renal disease in Uruguay. Ren Fail. 2006;28(8):617–625. doi: 10.1080/08860220600925677.
    1. Schwedt E, Sola L, Rios PG, Mazzuchi N. Improving the management of chronic kidney disease in Uruguay: a National renal healthcare program. Nephron Clin Pract. 2010;114(1):c47–59. doi: 10.1159/000245069.
    1. Querfeld U, Anarat A, Bayazit AK, Bakkaloglu AS, Bilginer Y, Caliskan S, Civilibal M, Doyon A, Duzova A, Kracht D, et al. The Cardiovascular Comorbidity in Children with Chronic Kidney Disease (4C) study: objectives, design, and methodology. Clin J Am Soc Nephrol. 2010;5(9):1642–1648. doi: 10.2215/CJN.08791209.

Source: PubMed

3
Subscribe