Phenotypic and Genomic Analyses of Burkholderia stabilis Clinical Contamination, Switzerland

Helena M B Seth-Smith, Carlo Casanova, Rami Sommerstein, Dominik M Meinel, Mohamed M H Abdelbary, Dominique S Blanc, Sara Droz, Urs Führer, Reto Lienhard, Claudia Lang, Olivier Dubuis, Matthias Schlegel, Andreas Widmer, Peter M Keller, Jonas Marschall, Adrian Egli, Helena M B Seth-Smith, Carlo Casanova, Rami Sommerstein, Dominik M Meinel, Mohamed M H Abdelbary, Dominique S Blanc, Sara Droz, Urs Führer, Reto Lienhard, Claudia Lang, Olivier Dubuis, Matthias Schlegel, Andreas Widmer, Peter M Keller, Jonas Marschall, Adrian Egli

Abstract

A recent hospital outbreak related to premoistened gloves used to wash patients exposed the difficulties of defining Burkholderia species in clinical settings. The outbreak strain displayed key B. stabilis phenotypes, including the inability to grow at 42°C; we used whole-genome sequencing to confirm the pathogen was B. stabilis. The outbreak strain genome comprises 3 chromosomes and a plasmid, sharing an average nucleotide identity of 98.4% with B. stabilis ATCC27515 BAA-67, but with 13% novel coding sequences. The genome lacks identifiable virulence factors and has no apparent increase in encoded antimicrobial drug resistance, few insertion sequences, and few pseudogenes, suggesting this outbreak was an opportunistic infection by an environmental strain not adapted to human pathogenicity. The diversity among outbreak isolates (22 from patients and 16 from washing gloves) is only 6 single-nucleotide polymorphisms, although the genome remains plastic, with large elements stochastically lost from outbreak isolates.

Keywords: Bcc; Burkholderia stabilis; DNA; Switzerland; bacteria; hospital-associated infections; resistance; virulence; whole-genome sequencing.

Figures

Figure 1
Figure 1
Comparison of the genome of Burkholderia stabilis strain CH16 from Switzerland (top bar) with that of B. stabilis reference strain BAA-67 (bottom bar). Alternating orange and brown bar sections represent chromosomes 1, 2, 3, and a plasmid. Scale bar indicates identity between the genomes (determined by blastn, http://blast.ncbi.nlm.nih.gov). Colors above the CH16 genome indicate the following: purple, regions of difference between the 2 strains; green, putative integrative and conjugative element; blue, phage; and red, the plasmid.
Figure 2
Figure 2
Phylogeny of outbreak isolates of Burkholderia stabilis strain CH16 from Switzerland based on high-quality single nucleotide polymorphisms (SNPs). This phylogeny of all sequenced outbreak isolates might represent a conservative estimate of SNP numbers. Given the large genome size and possible mismapping to repeats, it is difficult to determine the ultimate number of SNPs between samples. This phylogeny was confirmed using several parameters and manual checking of called SNPs. The root was arbitrarily chosen to give the fewest root to tip SNPs (n = 6). Numbers represent isolates from patients; letters represent isolates from washing gloves, located in the root position. Scale bar indicates 1 SNP.

References

    1. Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P, Mahenthiralingam E. Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol. 2016;100:5215–29. 10.1007/s00253-016-7520-x
    1. Nzula S, Vandamme P, Govan JRW. Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother. 2002;50:265–9. 10.1093/jac/dkf137
    1. Burns J. Antibiotic resistance of Burkholderia species. In: Coenye T, Vandamme P, editors. Burkholderia: molecular microbiology and genomics. Wymondham, England, UK: Horizon Bioscience; 2006. p. 81–91.
    1. Sommerstein R, Führer U, Lo Priore E, Casanova C, Meinel DM, Seth-Smith HM, et al. Burkholderia stabilis outbreak associated with contaminated commercially-available washing gloves, Switzerland, May 2015 to August 2016. Euro Surveill. 2017;22:pii:17-00213.
    1. Ko S, An HS, Bang JH, Park SW. An outbreak of Burkholderia cepacia complex pseudobacteremia associated with intrinsically contaminated commercial 0.5% chlorhexidine solution. Am J Infect Control. 2015;43:266–8. 10.1016/j.ajic.2014.11.010
    1. Otağ F, Ersöz G, Salcioğlu M, Bal C, Schneider I, Bauernfeind A. Nosocomial bloodstream infections with Burkholderia stabilis. J Hosp Infect. 2005;59:46–52. 10.1016/j.jhin.2004.06.034
    1. Heo ST, Kim SJ, Jeong YG, Bae IG, Jin JS, Lee JC. Hospital outbreak of Burkholderia stabilis bacteraemia related to contaminated chlorhexidine in haematological malignancy patients with indwelling catheters. J Hosp Infect. 2008;70:241–5. 10.1016/j.jhin.2008.07.019
    1. Wang L, Wang M, Zhang J, Wu W, Lu Y, Fan Y. An outbreak of Burkholderia stabilis colonization in a nasal ward. Int J Infect Dis. 2015;33:71–4. 10.1016/j.ijid.2014.12.046
    1. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing (M100–S27). Wayne (PA); The Institute; 2017.
    1. Strandén A, Frei R, Widmer AF. Molecular typing of methicillin-resistant Staphylococcus aureus: can PCR replace pulsed-field gel electrophoresis? J Clin Microbiol. 2003;41:3181–6. 10.1128/JCM.41.7.3181-3186.2003
    1. Osterhout GJ, Shull VH, Dick JD. Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J Clin Microbiol. 1991;29:1822–30.
    1. Abdelbary MMH, Senn L, Moulin E, Prod’hom G, Croxatto A, Greub G, et al. Evaluating the use of whole-genome sequencing for outbreak investigations in the lack of closely related reference genome. Infect Genet Evol. 2018;59:1–6 . 10.1016/j.meegid.2018.01.014
    1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. 10.1089/cmb.2012.0021
    1. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J. ACT: the Artemis Comparison Tool. Bioinformatics. 2005;21:3422–3. 10.1093/bioinformatics/bti553
    1. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream M-A, et al. Artemis: sequence visualization and annotation. Bioinformatics. 2000;16:944–5. 10.1093/bioinformatics/16.10.944
    1. Bugrysheva JV, Cherney B, Sue D, Conley AB, Rowe LA, Knipe KM, et al. Complete genome sequences for three chromosomes of the Burkholderia stabilis type strain (ATCC BAA-67). Genome Announc. 2016;4:e01294–16. 10.1128/genomeA.01294-16
    1. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. 10.1093/bioinformatics/btu153
    1. Larsen MV, Cosentino S, Lukjancenko O, Saputra D, Rasmussen S, Hasman H, et al. Benchmarking of methods for genomic taxonomy. J Clin Microbiol. 2014;52:1529–39. 10.1128/JCM.02981-13
    1. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol. 2012;50:1355–61. 10.1128/JCM.06094-11
    1. Jolley KA, Maiden MC. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics. 2010;11:595. 10.1186/1471-2105-11-595
    1. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91. 10.1099/ijs.0.64483-0
    1. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2010;2:117–34. 10.4056/sigs.531120
    1. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43(W1):W237-43. 10.1093/nar/gkv437
    1. Chetoui H, Melin P, Struelens MJ, Delhalle E, Nigo MM, De Ryck R, et al. Comparison of biotyping, ribotyping, and pulsed-field gel electrophoresis for investigation of a common-source outbreak of Burkholderia pickettii bacteremia. J Clin Microbiol. 1997;35:1398–403.
    1. Fehlberg LC, Andrade LH, Assis DM, Pereira RH, Gales AC, Marques EA. Performance of MALDI-ToF MS for species identification of Burkholderia cepacia complex clinical isolates. Diagn Microbiol Infect Dis. 2013;77:126–8. 10.1016/j.diagmicrobio.2013.06.011
    1. Vandamme P, Mahenthiralingam E, Holmes B, Coenye T, Hoste B, De Vos P, et al. Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol. 2000;38:1042–7.
    1. Henry DA, Mahenthiralingam E, Vandamme P, Coenye T, Speert DP. Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol. 2001;39:1073–8. 10.1128/JCM.39.3.1073-1078.2001
    1. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, et al. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol. 1997;47:1188–200. 10.1099/00207713-47-4-1188
    1. Zbinden A, Böttger EC, Bosshard PP, Zbinden R. Evaluation of the colorimetric VITEK 2 card for identification of gram-negative nonfermentative rods: comparison to 16S rRNA gene sequencing. J Clin Microbiol. 2007;45:2270–3. 10.1128/JCM.02604-06
    1. Samuels SB, Moss CW, Weaver RE. The fatty acids of Pseudomonas multivorans (Pseudomonas cepacia) and Pseudomonas kingii. J Gen Microbiol. 1973;74:275–9. 10.1099/00221287-74-2-275
    1. Rodriguez-R L, Konstantinidis K. Bypassing cultivation to identify bacterial species. Microbe. 2014;9:111–8.
    1. Peeters C, Meier-Kolthoff JP, Verheyde B, De Brandt E, Cooper VS, Vandamme P. Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol. 2016;7:877. 10.3389/fmicb.2016.00877
    1. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60. 10.1186/1471-2105-14-60
    1. Vandamme P, Peeters C. Time to revisit polyphasic taxonomy. Antonie van Leeuwenhoek. 2014;106:57–65. 10.1007/s10482-014-0148-x
    1. Chain PS, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, et al.; Genomic Standards Consortium Human Microbiome Project Jumpstart Consortium. Genomics. Genome project standards in a new era of sequencing. Science. 2009;326:236–7. 10.1126/science.1180614
    1. Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009;191:261–77. 10.1128/JB.01230-08
    1. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet. 2003;35:32–40 . 10.1038/ng1227
    1. Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res. 2008;18:729–41. 10.1101/gr.075069.107
    1. Fernández-González E, Bakioui S, Gomes MC, O’Callaghan D, Vergunst AC, Sangari FJ, et al. A Functional oriT in the Ptw Plasmid of Burkholderia cenocepacia Can Be Recognized by the R388 Relaxase TrwC. Front Mol Biosci. 2016;3:16. 10.3389/fmolb.2016.00016
    1. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial susceptibility of Burkholderia cepacia complex (BCC). Stockholm: EUCAST; 2013. [cited 01 Dec 2017].
    1. Peeters E, Nelis HJ, Coenye T. In vitro activity of ceftazidime, ciprofloxacin, meropenem, minocycline, tobramycin and trimethoprim/sulfamethoxazole against planktonic and sessile Burkholderia cepacia complex bacteria. J Antimicrob Chemother. 2009;64:801–9. 10.1093/jac/dkp253
    1. Tseng S-P, Tsai W-C, Liang C-Y, Lin Y-S, Huang J-W, Chang C-Y, et al. The contribution of antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates: an emphasis on efflux pump activity. PLoS One. 2014;9:e104986. 10.1371/journal.pone.0104986
    1. Silva IN, Ferreira AS, Becker JD, Zlosnik JE, Speert DP, He J, et al. Mucoid morphotype variation of Burkholderia multivorans during chronic cystic fibrosis lung infection is correlated with changes in metabolism, motility, biofilm formation and virulence. Microbiology. 2011;157:3124–37. 10.1099/mic.0.050989-0
    1. Chantratita N, Wuthiekanun V, Boonbumrung K, Tiyawisutsri R, Vesaratchavest M, Limmathurotsakul D, et al. Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J Bacteriol. 2007;189:807–17. 10.1128/JB.01258-06
    1. Zlosnik JE, Hird TJ, Fraenkel MC, Moreira LM, Henry DA, Speert DP. Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J Clin Microbiol. 2008;46:1470–3. 10.1128/JCM.02273-07
    1. Bernier SP, Nguyen DT, Sokol PA. A LysR-type transcriptional regulator in Burkholderia cenocepacia influences colony morphology and virulence. Infect Immun. 2008;76:38–47. 10.1128/IAI.00874-07
    1. Leekitcharoenphon P, Nielsen EM, Kaas RS, Lund O, Aarestrup FM. Evaluation of whole genome sequencing for outbreak detection of Salmonella enterica. PLoS One. 2014;9:e87991. 10.1371/journal.pone.0087991
    1. Mahenthiralingam E, Baldwin A, Dowson CG. Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol. 2008;104:1539–51. 10.1111/j.1365-2672.2007.03706.x
    1. Haim MS, Mollerach M, Van Domselaar G, Teves SA, Degrossi J, Cardona ST. Draft Genome Sequences of Burkholderia contaminans FFI-28, a strain isolated from a contaminated pharmaceutical solution. Genome Announc. 2016;4:e01177–16. 10.1128/genomeA.01177-16
    1. Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, et al. Environmental Burkholderia cepacia complex isolates in human infections. Emerg Infect Dis. 2007;13:458–61. 10.3201/eid1303.060403

Source: PubMed

3
Subscribe