Ultrasound Guidance to Reduce Vascular and Bleeding Complications of Percutaneous Transfemoral Transcatheter Aortic Valve Replacement: A Propensity Score-Matched Comparison

Flavien Vincent, Hugues Spillemaeker, Maéva Kyheng, Cassandre Belin-Vincent, Cédric Delhaye, Adeline Piérache, Tom Denimal, Basile Verdier, Nicolas Debry, Mouhamed Moussa, Guillaume Schurtz, Sina Porouchani, Alessandro Cosenza, Francis Juthier, Thibault Pamart, Marjorie Richardson, Augustin Coisne, Adrien Hertault, Jonathan Sobocinski, Thomas Modine, François Pontana, Alain Duhamel, Julien Labreuche, Eric Van Belle, Flavien Vincent, Hugues Spillemaeker, Maéva Kyheng, Cassandre Belin-Vincent, Cédric Delhaye, Adeline Piérache, Tom Denimal, Basile Verdier, Nicolas Debry, Mouhamed Moussa, Guillaume Schurtz, Sina Porouchani, Alessandro Cosenza, Francis Juthier, Thibault Pamart, Marjorie Richardson, Augustin Coisne, Adrien Hertault, Jonathan Sobocinski, Thomas Modine, François Pontana, Alain Duhamel, Julien Labreuche, Eric Van Belle

Abstract

Background Ultrasound (US) guidance provides the unique opportunity to control the puncture zone of the artery during transfemoral transcatheter aortic valve replacement and may decrease major vascular complications (VC) and life-threatening or major bleeding complications. This study aimed to evaluate the clinical impact of US guidance using a propensity score-matched comparison. Methods and Results US guidance was implemented as the default approach for all transfemoral transcatheter aortic valve replacement cases in our institution in June 2013. We defined 3 groups of consecutive patients according to the method of puncture (fluoroscopic/US guidance) and the use of a transcatheter heart valve. Patients in the US-guided second-generation group (Sapien XT [Edwards Lifesciences, Irvine, CA], Corevalve [Medtronic, Dublin, Ireland]) were successfully 1:1 matched with patients in the fluoroscope-guided second-generation group (n=95) with propensity score matching. In a second analysis we described the consecutive patients of the US-guided third-generation group (Evolut-R [Medtronic], Sapien 3 [Edwards Lifesciences], n=308). All vascular and bleeding complications were reduced in the US-guided second-generation group compared with the fluoroscope-guided second-generation group: VC (16.8% versus 6.3%; P=0.023); life-threatening or major bleeding (22.1% versus 6%; P=0.004); and VC related to vascular access (12.6% versus 4.2%; P=0.052). In the US-guided third-generation group the rates of major VC and life-threatening or major bleeding were 3.2% (95% CI, 1.6% to 5.9%) and 3.6% (95% CI, 1.8% to 6.3%). In the overall population (n=546), life-threatening or major bleeding was associated with a 1.7-fold increased mortality risk (P=0.02). Conclusions We demonstrated that US guidance effectively reduced VC and bleeding complications for transfemoral transcatheter aortic valve replacement and should be considered the standard puncture method. Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT02628509.

Keywords: bleeding; fluoroscopy; transcatheter aortic valve replacement; ultrasound; vascular complications.

Figures

Figure 1
Figure 1
Study design. Fluo indicates fluoroscope; gen., generation; TAVR, transcatheter aortic valve replacement; THV, transcatheter heart valve; and US, ultrasound.
Figure 2
Figure 2
Schematic representation of ultrasound (US) survey required to localize the femoral bifurcation between the superficial femoral artery (SFA) and the profound femoral artery (PFA) to determine the ideal puncture zone: below the inguinal ligament (IL) (parallel strands of echogenic fibers), in the middle of the noncalcified anterior wall, and in the horizontal segment of the common femoral artery (CFA). Imaging in longitudinal (long‐axis) and/or transverse (short‐axis) views. *Calcification.
Figure 3
Figure 3
Vascular, bleeding, and periprocedural complications by fluoroscope‐guided or US‐guided vascular access. Propensity score–matching analysis. IQR indicates interquartile range; OR, odds ratio; RBC, red blood cells; and US, ultrasound.
Figure 4
Figure 4
Details of major and minor vascular complications according to fluoroscope‐guided or US‐guided vascular access: Propensity score matching analysis (relative areas of each pies are proportional to the total number of complications). AV indicates arteriovenous; and US, ultrasound.
Figure 5
Figure 5
Vascular complications rate in the fluoroscope‐guided second‐generation (propensity score–matched), US‐guided second‐generation (propensity score–matched), and US‐guided third‐generation population. *P<0.05; **P<0.01; ***P<0.001. US indicates ultrasound; and VC, vascular complications.

References

    1. Barbanti M, Buccheri S, Rodés‐Cabau J, Gulino S, Généreux P, Pilato G, Dvir D, Picci A, Costa G, Tamburino C, et al. Transcatheter aortic valve replacement with new‐generation devices: a systematic review and meta‐analysis. Int J Cardiol. 2017;245:83–89.
    1. Généreux P, Webb JG, Svensson LG, Kodali SK, Satler LF, Fearon WF, Davidson CJ, Eisenhauer AC, Makkar RR, Bergman GW, et al. Vascular complications after transcatheter aortic valve replacement. J Am Coll Cardiol. 2012;60:1043–1052.
    1. Tchetche D, Van der Boon RMA, Dumonteil N, Chieffo A, Van Mieghem NM, Farah B, Buchanan GL, Saady R, Marcheix B, Serruys PW, et al. Adverse impact of bleeding and transfusion on the outcome post‐transcatheter aortic valve implantation: insights from the Pooled‐RotterdAm‐Milano‐Toulouse In Collaboration Plus (PRAGMATIC Plus) initiative. Am Heart J. 2012;164:402–409.
    1. Piazza N, Cribier A, De Palma R. The PCR‐EAPCI Textbook: Percutaneous Interventional Cardiovascular Medicine. Transcatheter aortic valve implantation. Available at: . Accessed November 24, 2017.
    1. Frankel HL, Kirkpatrick AW, Elbarbary M, Blaivas M, Desai H, Evans D, Summerfield DT, Slonim A, Breitkreutz R, Price S, et al. Guidelines for the appropriate use of bedside general and cardiac ultrasonography in the evaluation of critically ill patients—part I: general ultrasonography. Crit Care Med. 2015;43:2479–2502.
    1. Elbaz‐Greener G, Zivkovic N, Arbel Y, Radhakrishnan S, Fremes SE, Wijeysundera HC. Use of two‐dimensional ultrasonographically guided access to reduce access‐related complications for transcatheter aortic valve replacement. Can J Cardiol. 2017;33:918–924.
    1. Soverow J, Oyama J, Lee MS. Adoption of routine ultrasound guidance for femoral arterial access for cardiac catheterization. J Invasive Cardiol. 2016;28:311–314.
    1. Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, Brott TG, Cohen DJ, Cutlip DE, van Es G‐A, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation. J Am Coll Cardiol. 2012;60:1438–1454.
    1. Grube E, Schuler G, Buellesfeld L, Gerckens U, Linke A, Wenaweser P, Sauren B, Mohr F‐W, Walther T, Zickmann B, et al. Percutaneous aortic valve replacement for severe aortic stenosis in high‐risk patients using the second‐ and current third‐generation self‐expanding CoreValve prosthesis: device success and 30‐day clinical outcome. J Am Coll Cardiol. 2007;50:69–76.
    1. Himbert D, Roy D, Brecker S, Brochet E, Depoix J‐P, Radu C, Laborde J‐C, Vahanian A. Tools & techniques: transcatheter aortic valve implantation: transfemoral approach. EuroIntervention. 2011;6:784–785.
    1. Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46:399–424.
    1. Austin PC. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity‐score matched samples. Stat Med. 2009;28:3083–3107.
    1. Austin PC. A comparison of 12 algorithms for matching on the propensity score. Stat Med. 2014;33:1057–1069.
    1. Schoenfeld D. Partial residuals for the proportional hazards regression model. Biometrika. 1982;69:239–241.
    1. Auffret V, Lefevre T, Van Belle E, Eltchaninoff H, Iung B, Koning R, Motreff P, Leprince P, Verhoye JP, Manigold T, et al. Temporal trends in transcatheter aortic valve replacement in France: FRANCE 2 to FRANCE TAVI. J Am Coll Cardiol. 2017;70:42–55.
    1. Grube E, Sinning J‐M. The “Big Five” complications after transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2019;12:370–372.
    1. Généreux P, Cohen DJ, Mack M, Rodes‐Cabau J, Yadav M, Xu K, Parvataneni R, Hahn R, Kodali SK, Webb JG, et al. Incidence, predictors, and prognostic impact of late bleeding complications after transcatheter aortic valve replacement. J Am Coll Cardiol. 2014;64:2605–2615.
    1. Toggweiler S, Leipsic J, Binder RK, Freeman M, Barbanti M, Heijmen RH, Wood DA, Webb JG. Management of vascular access in transcatheter aortic valve replacement: part 1: basic anatomy, imaging, sheaths, wires, and access routes. JACC Cardiovasc Interv. 2013;6:643–653.
    1. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, Thourani VH, Tuzcu EM, Miller DC, Herrmann HC, et al. Transcatheter or surgical aortic‐valve replacement in intermediate‐risk patients. N Engl J Med. 2016;374:1609–1620.
    1. Webb JG, Doshi D, Mack MJ, Makkar R, Smith CR, Pichard AD, Kodali S, Kapadia S, Miller DC, Babaliaros V, et al. A randomized evaluation of the SAPIEN XT transcatheter heart valve system in patients with aortic stenosis who are not candidates for surgery. JACC Cardiovasc Interv. 2015;8:1797–1806.
    1. Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, Kapadia SR, Malaisrie SC, Cohen DJ, Pibarot P, et al. Transcatheter aortic‐valve replacement with a balloon‐expandable valve in low‐risk patients. N Engl J Med. 2019;380:1695–1705.
    1. Saugel B, Scheeren TWL, Teboul J‐L. Ultrasound‐guided central venous catheter placement: a structured review and recommendations for clinical practice. Crit Care. 2017;21:225.
    1. Naidu SS, Aronow HD, Box LC, Duffy PL, Kolansky DM, Kupfer JM, Latif F, Mulukutla SR, Rao SV, Swaminathan RV, et al. SCAI expert consensus statement: 2016 best practices in the cardiac catheterization laboratory. Catheter Cardiovasc Interv. 2016;88:407–423.
    1. Sandoval Y, Burke MN, Lobo AS, Lips DL, Seto AH, Chavez I, Sorajja P, Abu‐Fadel MS, Wang Y, Poulouse A, et al. Contemporary arterial access in the cardiac catheterization laboratory. JACC Cardiovasc Interv. 2017;10:2233–2241.
    1. Bertrand O, De Palma R, Meerkin D. Vascular access The PCR‐EAPCI Textbook. Available at: .
    1. Rao SV, Stone GW. Arterial access and arteriotomy site closure devices. Nat Rev Cardiol. 2016;13:641–650.
    1. Seto AH, Abu‐Fadel MS, Sparling JM, Zacharias SJ, Daly TS, Harrison AT, Suh WM, Vera JA, Aston CE, Winters RJ, et al. Real‐time ultrasound guidance facilitates femoral arterial access and reduces vascular complications. JACC Cardiovasc Interv. 2010;3:751–758.
    1. Koshy LM, Aberle LH, Krucoff MW, Hess CN, Mazzaferri E, Jolly SS, Jacobs A, Gibson CM, Mehran R, Gilchrist IC, et al. Comparison of radial access, guided femoral access, and non‐guided femoral access among women undergoing percutaneous coronary intervention. J Invasive Cardiol. 2018;30:18–22.
    1. Damluji AA, Nelson DW, Valgimigli M, Windecker S, Byrne RA, Cohen F, Patel T, Brilakis ES, Banerjee S, Mayol J, et al. Transfemoral approach for coronary angiography and intervention: a collaboration of International Cardiovascular Societies. JACC Cardiovasc Interv. 2017;10:2269–2279.
    1. Thourani VH, Kodali S, Makkar RR, Herrmann HC, Williams M, Babaliaros V, Smalling R, Lim S, Malaisrie SC, Kapadia S, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate‐risk patients: a propensity score analysis. Lancet. 2016;387:2218–2225.
    1. Mattei A. Estimating and using propensity score in presence of missing background data: an application to assess the impact of childbearing on wellbeing. Stat Methods Appl. 2009;18:257–273.
    1. Toutenburg H Rubin DB. Multiple imputation for nonresponse in surveys. Stat Pap. 1990;31:180.

Source: PubMed

3
Subscribe