Central Macular Thickness in Children with Myopia, Emmetropia, and Hyperopia: An Optical Coherence Tomography Study

Gordon S K Yau, Jacky W Y Lee, Tiffany T Y Woo, Raymond L M Wong, Ian Y H Wong, Gordon S K Yau, Jacky W Y Lee, Tiffany T Y Woo, Raymond L M Wong, Ian Y H Wong

Abstract

Purpose: To investigate the central macular thickness (CMT) in myopic, emmetropic, and hyperopic Chinese children using Optical Coherence Tomography.

Methods: 168 right eyes of Chinese subjects aged 4-18 were divided into 3 groups based on their postcycloplegic spherical equivalent: myopes (<-1.0 D); emmetropes (≥-1.0 to ≤+1.0 D); and hyperopes (>+1.0 D) and the CMT was compared before/after age adjustment. The CMT was correlated with age, axial length, and peripapillary retinal nerve fibre layer (RNFL).

Results: The mean CMT was 274.9 ± 50.3 μm and the mean population age was 7.6 ± 3.3 years. The CMT was thickest in the myopes (283.3 ± 57.3 μm, n = 56), followed by the hyperopes (266.2 ± 55.31 μm, n = 60) and then emmetropes (259.8 ± 28.7 μm, n = 52) (all P < 0.0001). When adjusted for age, myopes had a thicker CMT than the other 2 groups (all P < 0.0001) but there was no CMT difference between the emmetropes and hyperopes (P > 0.05). There was no significant correlation between CMT with age, axial length, or peripapillary RNFL (all P ≥ 0.2).

Conclusion: Chinese children with myopia had a thicker CMT than those with emmetropia or hyperopia. There was no correlation of the CMT with age, axial length, or peripapillary RNFL thickness.

Figures

Figure 1
Figure 1
Differences in age-adjusted central macular thickness (mean ± standard deviation) in the myopic, emmetropic, and hyperopic children.

References

    1. Hee M. R., Puliafito C. A., Wong C., et al. Quantitative assessment of macular edema with optical coherence tomography. Archives of Ophthalmology. 1995;113(8):1019–1029. doi: 10.1001/archopht.1995.01100080071031.
    1. Soliman W., Sander B., Jørgensen T. M. Enhanced optical coherence patterns of diabetic macular oedema and their correlation with the pathophysiology. Acta Ophthalmologica Scandinavica. 2007;85(6):613–617. doi: 10.1111/j.1600-0420.2007.00917.x.
    1. El-Dairi M. A., Holgado S., Asrani S. G., Enyedi L. B., Freedman S. F. Correlation between optical coherence tomography and glaucomatous optic nerve head damage in children. British Journal of Ophthalmology. 2009;93(10):1325–1330. doi: 10.1136/bjo.2008.142562.
    1. Song W. K., Lee S. C., Lee E. S., Kim C. Y., Kim S. S. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Investigative Ophthalmology and Visual Science. 2010;51(8):3913–3918. doi: 10.1167/iovs.09-4189.
    1. Yasser M. T., Pai A., Li H., et al. Association of birth parameters with OCT measured macular and retinal nerve fibre layer thickness. Investigative Ophthalmology & Visual Science. 2011;52(3):1709–1715. doi: 10.1167/iovs.10-6365.
    1. Zhang Z., He X., Zhu J., Jiang K., Zheng W., Ke B. Macular measurements using optical coherence tomography in healthy Chinese school age children. Investigative Ophthalmology & Visual Science. 2011;52(9):6377–6383. doi: 10.1167/iovs.11-7477.
    1. Al-Hadda C., Barikian A., Jaroudi M., et al. Spectral domain optical coherence tomography in children: normative data and biometric correlations. BMC Ophthalmology. 2014;14(1):p. 53. doi: 10.1186/1471-2415-14-53.
    1. Huynh S. C., Xiu Y. W., Rochtchina E., Mitchell P. Distribution of macular thickness by optical coherence tomography: findings from a population-based study of 6-year-old children. Investigative Ophthalmology and Visual Science. 2006;47(6):2351–2357. doi: 10.1167/iovs.05-1396.
    1. Wakitani Y., Sasoh M., Sugimoto M., Ito Y., Ido M., Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina. 2003;23(2):177–182. doi: 10.1097/00006982-200304000-00007.
    1. Lim M. C., Hoh S. T., Foster P. J., et al. Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Investigative Ophthalmology & Visual Science. 2005;46(3):974–978.
    1. Katz J., Tielsch J. M., Sommer A. Prevalence and risk factors for refractive errors in an adult inner city population. Investigative Ophthalmology and Visual Science. 1997;38(2):334–340.
    1. Wong T. Y., Foster P. J., Hee J., et al Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Investigative Ophthalmology and Visual Science. 2000;41(9):2486–2494.
    1. Wang Q., Klein B. E. K., Klein R., Moss S. E. Refractive status in the Beaver Dam eye study. Investigative Ophthalmology and Visual Science. 1994;35(13):4344–4347.
    1. Fan D. S., Lam D. S., Lam R. F., et al. Prevalence, incidence, and progression of myopia of school children in Hong Kong. Investigative Ophthalmology & Visual Science. 2004;45(4):1071–1175. doi: 10.1167/iovs.03-1151.
    1. French A. N., Morgan I. G., Mitchell P., Rose K. A. Patterns of myopigenic activities with age, gender and ethnicity in Sydney schoolchildren. Ophthalmic and Physiological Optics. 2013;33(3):318–328. doi: 10.1111/opo.12045.
    1. French A. N., Morgan I. G., Mitchell P., Rose K. A. Risk factors for incident myopia in Australian schoolchildren. Ophthalmology. 2013;120(10):2100–2108. doi: 10.1016/j.ophtha.2013.02.035.
    1. Eriksson U., Holmström G., Alm A., Larsson E. A population-based study of macular thickness in full-term children assessed with Stratus OCT: normative data and repeatability. Acta Ophthalmologica. 2009;87(7):741–745. doi: 10.1111/j.1755-3768.2008.01357.x.
    1. Göbel W., Hartmann F., Haigis W. The correlation between retina thickness and axial length as well as age, measured by optical coherence tomography. Ophthalmologe. 2001;98(2):157–162. doi: 10.1007/s003470170177.
    1. Lam D. S., Leung K. S., Mohamed S., et al. Regional variations in the relationship between macular thickness measurements and myopia. Investigative Ophthalmology & Visual Science. 2007;48(1):376–382. doi: 10.1167/iovs.06-0426.
    1. Wong A. C. M., Chan C. W. N., Hui S. P. Relationship of gender, body mass index, and axial length with central retinal thickness using optical coherence tomography. Eye. 2005;19(3):292–297. doi: 10.1038/sj.eye.6701466.
    1. Grover S., Murthy R. K., Brar V. S., Chalam K. V. Comparison of retinal thickness in normal eyes using stratus and spectralis optical coherence tomography. Investigative Ophthalmology and Visual Science. 2010;51(5):2644–2647. doi: 10.1167/iovs.09-4774.
    1. Wolf-Schnurrbusch U. E. K., Ceklic L., Brinkmann C. K., et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Investigative Ophthalmology and Visual Science. 2009;50(7):3432–3437. doi: 10.1167/iovs.08-2970.
    1. Medeiros F. A., Zangwill L. M., Bowd C., Vessani R. M., Susanna R., Jr., Weinreb R. N. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. The American Journal of Ophthalmology. 2005;139(1):44–55. doi: 10.1016/j.ajo.2004.08.069.
    1. Manasia D., Voinea L., Vasinca I. D., et al. Correlation between macular changes and the peripapillary nerve fiber layer in primary open angle glaucoma. Journal of Medicine and Life. 2014;7(1):55–59.

Source: PubMed

3
Subscribe