Anterior Nares Diversity and Pathobionts Represent Sinus Microbiome in Chronic Rhinosinusitis

Ilke De Boeck, Stijn Wittouck, Katleen Martens, Jos Claes, Mark Jorissen, Brecht Steelant, Marianne F L van den Broek, Sven F Seys, Peter W Hellings, Olivier M Vanderveken, Sarah Lebeer, Ilke De Boeck, Stijn Wittouck, Katleen Martens, Jos Claes, Mark Jorissen, Brecht Steelant, Marianne F L van den Broek, Sven F Seys, Peter W Hellings, Olivier M Vanderveken, Sarah Lebeer

Abstract

It is generally believed that the microbiome plays a role in the pathophysiology of chronic rhinosinusitis (CRS), though its exact contribution to disease development and severity remains unclear. Here, samples were collected from the anterior nares, nasopharynx, and maxillary and ethmoid sinuses of 190 CRS patients and from the anterior nares and nasopharynx of 100 controls. Microbial communities were analyzed by Illumina sequencing of the V4 region of 16S rRNA. The phenotype and patient characteristics were documented, and several serum inflammatory markers were measured. Our data indicate a rather strong continuity for the microbiome in the different upper respiratory tract (URT) niches in CRS patients, with the microbiome in the anterior nares being most similar to the sinus microbiome. Bacterial diversity was reduced in CRS patients without nasal polyps compared to that in the controls but not in CRS patients with nasal polyps. Statistically significant differences in the presence/absence or relative abundance of several taxa were found between the CRS patients and the healthy controls. Of these, Dolosigranulum pigrum was clearly more associated with URT samples from healthy subjects, while the Corynebacterium tuberculostearicum, Haemophilus influenzae/H. aegyptius, and Staphylococcus taxa were found to be potential pathobionts in CRS patients. However, CRS versus health as a predictor explained only 1 to 2% of the variance in the microbiome profiles in an adonis model. A history of functional endoscopic sinus surgery, age, and sex also showed a minor association. This study thus indicates that functional studies on the potential beneficial versus pathogenic activity of the different indicator taxa found here are needed to further understand the pathology of CRS and its different phenotypes. (This study has been registered at ClinicalTrials.gov under identifier NCT02933983.)IMPORTANCE There is a clear need to better understand the pathology and specific microbiome features in chronic rhinosinusitis patients, but little is known about the bacterial topography and continuity between the different niches of the upper respiratory tract. Our work showed that the anterior nares could be an important reservoir for potential sinus pathobionts. This has implications for the diagnosis, prevention, and treatment of CRS. In addition, we found a potential pathogenic role for the Corynebacterium tuberculostearicum, Haemophilus influenzae/H. aegyptius, and Staphylococcus taxa and a potential beneficial role for Dolosigranulum Finally, a decreased microbiome diversity was observed in patients with chronic rhinosinusitis without nasal polyps compared to that in healthy controls but not in chronic rhinosinusitis patients with nasal polyps. This suggests a potential role for the microbiome in disease development or progression of mainly this phenotype.

Keywords: chronic rhinosinusitis; microbiome; sinus pathobionts; upper respiratory tract.

Copyright © 2019 De Boeck et al.

Figures

FIG 1
FIG 1
Bacterial profiles and diversity of the different URT sites sampled in CRS patients. (A) Dominant genera in the anterior nares, nasopharynx, and maxillary and ethmoid sinus samples. The order of the samples is determined by hierarchical clustering on pooled samples per participant. (B) Comparison of the inverse Simpson index (top) and richness (bottom) of the different URT sites sampled in CRS patients at the ASV level. P values (determined by unpaired Welch t tests with the Holm-Bonferroni correction for multiple testing) of less than 0.05 were considered significant. Asterisks represent statistically significant differences between the niches. ***, P ≤ 0.001; ****, P ≤ 0.0001. (C) Bray-Curtis dissimilarities as an indicator of intrapersonal and interpersonal differences between the nose, nasopharynx, and maxillary and ethmoid sinuses at the ASV level; horizontal bars represent median dissimilarity values.
FIG 2
FIG 2
Comparison of alpha diversity measures in the anterior nares (left) and nasopharynx (right) between healthy controls, CRSsNP patients, and CRSwNP patients. Asterisks represent statistically significant differences between the niches (determined by unpaired Welch t tests with the Holm-Bonferroni correction for multiple testing). *, P ≤ 0.05; **, P ≤ 0.01.
FIG 3
FIG 3
Differences in the presence/absence and relative abundance of the most prevalent taxa in CRS patients versus healthy controls (CON). (A) Correlation between the presence of ASVs in healthy controls and CRS patients in the anterior nares (left) and the nasopharynx (right). A Fisher exact test was used to test for the significance of ASVs that were more present in healthy controls or CRS patients (P ≤ 0.05). Only ASVs with a significant presence and more than 25% presence under at least one of the conditions are shown with a name label. (B) Correlation between the mean relative abundance of ASVs in the anterior nares (left) and the nasopharynx (right) of healthy controls and CRS patients. Only ASVs with a mean relative abundance of greater than 30% under at least one of the conditions are shown with a name label.
FIG 4
FIG 4
Associations between the nasopharyngeal microbiome profiles of CRS patients (n = 172) and covariates. Adonis tests were performed for each covariate for either all CRS subjects (left), only the CRSsNP subjects (middle), or only the CRSwNP subjects (right). The bars represent the effect sizes of the covariates (R2 values); statistical significance (P < 0.05) is indicated with an asterisk. Covariates are colored based on the metadata category. The numbers depicted next to each bar represent the number of subjects used in the adonis model.
FIG 5
FIG 5
Associations of numerical (A) and categorical (B) microbiome covariates with microbiome-based subject clusters. (A) Box plot visualization of age, IFN-γ concentration, IL-5 concentration, periostin concentration, and 22-item Sino-Nasal Outcome Test (SNOT-22) and Visual Analog Scale (VAS) scores for the six microbiome clusters. (B) Mosaic plot showing the association of the categorical variables with the microbiome clusters. The surface of each colored area is proportional to the number of subjects that it represents. Significance tests of associations of the covariates with the microbiome were performed using the adonis model.
FIG 6
FIG 6
Graphical summary of the URT sampling sites and patient covariates, sample processing, and main findings of this study.

References

    1. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P, Georgalas C, Goossens H, Harvey R, Hellings P, Hopkins C, Jones N, Joos G, Kalogjera L, Kern B, Kowalski M, Price D, Riechelmann H, Schlosser R, Senior B, Thomas M, Toskala E, Voegels R, Wang DY, Wormald PJ. 2012. European position paper on rhinosinusitis and nasal polyps 2012. A summary for otorhinolaryngologists. Rhinology 50:1–12. doi:10.4193/Rhino50E2.
    1. Hastan D, Fokkens WJ, Bachert C, Newson RB, Bislimovska J, Bockelbrink A, Bousquet PJ, Brozek G, Bruno A, Dahlén SE, Forsberg B, Gunnbjörnsdóttir M, Kasper L, Krämer U, Kowalski ML, Lange B, Lundbäck B, Salagean E, Todo-Bom A, Tomassen P, Toskala E, van Drunen CM, Bousquet J, Zuberbier T, Jarvis D, Burney P. 2011. Chronic rhinosinusitis in Europe—an underestimated disease. A GA2LEN study. Allergy 66:1216–1223. doi:10.1111/j.1398-9995.2011.02646.x.
    1. Tomassen P, Vandeplas G, Van Zele T, Cardell L-O, Arebro J, Olze H, Förster-Ruhrmann U, Kowalski ML, Olszewska-Ziąber A, Holtappels G, De Ruyck N, Wang X, Van Drunen C, Mullol J, Hellings P, Hox V, Toskala E, Scadding G, Lund V, Zhang L, Fokkens W, Bachert C. 2016. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol 137:1449–1456.e4. doi:10.1016/j.jaci.2015.12.1324.
    1. Rudmik L. 2017. Economics of chronic rhinosinusitis. Curr Allergy Asthma Rep 17:20. doi:10.1007/s11882-017-0690-5.
    1. Bachert C, Akdis CA. 2016. Phenotypes and emerging endotypes of chronic rhinosinusitis. J Allergy Clin Immunol Pract 4:621–628. doi:10.1016/j.jaip.2016.05.004.
    1. Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, Schleimer RP, Ledford D. 2013. Endotypes and phenotypes of chronic rhinosinusitis: A PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 131:1479–1490. doi:10.1016/j.jaci.2013.02.036.
    1. De Greve G, Hellings PW, Fokkens WJ, Pugin B, Steelant B, Seys SF. 2017. Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy 7:22. doi:10.1186/s13601-017-0157-8.
    1. Abreu NA, Nagalingam NA, Song Y, Roediger FC, Pletcher SD, Goldberg AN, Lynch SV. 2012. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med 4:151ra124. doi:10.1126/scitranslmed.3003783.
    1. Biswas K, Hoggard M, Jain R, Taylor MW, Douglas RG. 2015. The nasal microbiota in health and disease: variation within and between subjects. Front Microbiol 6:134. doi:10.3389/fmicb.2015.00134.
    1. Cope EK, Goldberg AN, Pletcher SD, Lynch SV. 2017. Compositionally and functionally distinct sinus microbiota in chronic rhinosinusitis patients have immunological and clinically divergent consequences. Microbiome 5:53. doi:10.1186/s40168-017-0266-6.
    1. Ramakrishnan VR, Hauser LJ, Feazel LM, Ir D, Robertson CE, Frank DN. 2015. Sinus microbiota varies among chronic rhinosinusitis phenotypes and predicts surgical outcome. J Allergy Clin Immunol 136:334–342.e1. doi:10.1016/j.jaci.2015.02.008.
    1. Cleland EJ, Bassiouni A, Vreugde S, Wormald PJ. 2016. The bacterial microbiome in chronic rhinosinusitis: richness, diversity, postoperative changes, and patient outcomes. Am J Rhinol Allergy 30:37–43. doi:10.2500/ajra.2016.30.4261.
    1. Aurora R, Chatterjee D, Hentzleman J, Prasad G. 2014. Contrasting the microbiomes from healthy volunteers and patients with chronic rhinosinusitis. JAMA Otolaryngol Neck Surg 139:1328–1338. doi:10.1001/jamaoto.2013.5465.
    1. Chalermwatanachai T, Vilchez-Vargas R, Holtappels G, Lacoere T, Jáuregui R, Kerckhof FM, Pieper DH, Van De Wiele T, Vaneechoutte M, Van Zele T, Bachert C. 2018. Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota. Sci Rep 8:7926. doi:10.1038/s41598-018-26327-2.
    1. Joss TV, Burke CM, Hudson BJ, Darling AE, Forer M, Alber DG, Charles IG, Stow NW. 2016. Bacterial communities vary between sinuses in chronic rhinosinusitis patients. Front Microbiol 6:1532. doi:10.3389/fmicb.2015.01532.
    1. Choi E-B, Hong S-W, Kim D-K, Jeon SG, Kim K-R, Cho S-H, Gho YS, Jee Y-K, Kim Y-K. 2014. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy 69:517–526. doi:10.1111/all.12374.
    1. Feazel LM, Robertson CE, Ramakrishnan VR, Frank DN. 2012. Microbiome complexity and Staphylococcus aureus in chronic rhinosinusitis. Laryngoscope 122:467–472. doi:10.1002/lary.22398.
    1. Scholz CFP, Kilian M. 2016. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 66:4422–4432. doi:10.1099/ijsem.0.001367.
    1. Wagner Mackenzie B, Waite DW, Hoggard M, Douglas RG, Taylor MW, Biswas K. 2017. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ Microbiol 19:381–392. doi:10.1111/1462-2920.13632.
    1. Mahdavinia M, Engen PA, LoSavio PS, Naqib A, Khan RJ, Tobin MC, Mehta A, Kota R, Preite NZ, Codispoti CD, Tajudeen BA, Schleimer RP, Green SJ, Keshavarzian A, Batra PS. 2018. The nasal microbiome in patients with chronic rhinosinusitis: analyzing the effects of atopy and bacterial functional pathways in 111 patients. J Allergy Clin Immunol 142:287–290.e4. doi:10.1016/j.jaci.2018.01.033.
    1. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi:10.1099/ijsem.0.001755.
    1. Jonstam K, Westman M, Holtappels G, Holweg CTJ, Bachert C. 2017. Serum periostin, IgE, and SE-IgE can be used as biomarkers to identify moderate to severe chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 140:1705–1708.e3. doi:10.1016/j.jaci.2017.07.031.
    1. De Rudder C, Calatayud Arroyo M, Lebeer S, Van de Wiele T. 2018. Modelling upper respiratory tract diseases: getting grips on host-microbe interactions in chronic rhinosinusitis using in vitro technologies. Microbiome 6:75. doi:10.1186/s40168-018-0462-z.
    1. De Boeck I, Wittouck S, Wuyts S, Oerlemans EFM, van den Broek MFL, Vandenheuvel D, Vanderveken O, Lebeer S. 2017. Comparing the healthy nose and nasopharynx microbiota reveals continuity as well as niche-specificity. Front Microbiol 8:2372. doi:10.3389/fmicb.2017.02372.
    1. Ghyselinck J, Pfeiffer S, Heylen K, Sessitsch A, De Vos P. 2013. The effect of primer choice and short read sequences on the outcome of 16S rRNA gene based diversity studies. PLoS One 8:e71360. doi:10.1371/journal.pone.0071360.
    1. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, Grice EA. 2016. Skin microbiome surveys are strongly influenced by experimental design. J Invest Dermatol 136:947–956. doi:10.1016/j.jid.2016.01.016.
    1. Lemon K. 2010. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx. mBio 1:e00129-10. doi:10.1128/mBio.00129-10.
    1. Bassis CM, Tang AL, Young VB, Pynnonen MA. 2014. The nasal cavity microbiota of healthy adults. Microbiome 2:27. doi:10.1186/2049-2618-2-27.
    1. Bustamante-Marin XM, Ostrowski LE. 2017. Cilia and mucociliary clearance. Cold Spring Harb Perspect Biol 9:a028241. doi:10.1101/cshperspect.a028241.
    1. Man WH, de Steenhuijsen Piters WAA, Bogaert D. 2017. The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 15:259–270. doi:10.1038/nrmicro.2017.14.
    1. Koppen IJN, Bosch AATM, Sanders EAM, van Houten MA, Bogaert D. 2015. The respiratory microbiota during health and disease: a paediatric perspective. Pneumonia (Nathan) 6:90–100. doi:10.15172/pneu.2015.6/656.
    1. Ramakrishnan VR, Gitomer S, Kofonow JM, Robertson CE, Frank DN. 2017. Investigation of sinonasal microbiome spatial organization in chronic rhinosinusitis. Int Forum Allergy Rhinol 7:16–23. doi:10.1002/alr.21854.
    1. Koeller K, Herlemann DPR, Schuldt T, Ovari A, Guder E, Collin M. 2018. Microbiome and culture based analysis of chronic rhinosinusitis compared to healthy sinus mucosa. Front Microbiol 9:643. doi:10.3389/fmicb.2018.00643.
    1. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, Curtis JL. 2017. Bacterial topography of the healthy human lower respiratory tract. mBio 8:e02287-16. doi:10.1128/mBio.02287-16.
    1. Xu X, He J, Xue J, Wang Y, Li K, Zhang K, Guo Q, Liu X, Zhou Y, Cheng L, Li M, Li Y, Li Y, Shi W, Zhou X. 2015. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol 17:699–710. doi:10.1111/1462-2920.12502.
    1. Ramakrishnan VR, Frank DN. 2015. Impact of cigarette smoking on the middle meatus microbiome in health and chronic rhinosinusitis. Int Forum Allergy Rhinol 5:981–989. doi:10.1002/alr.21626.
    1. Biswas K, Chang A, Hoggard M, Radcliff FJ, Jiang Y, Taylor MW, Darveau R, Douglas RG. 2017. Toll-like receptor activation by sino-nasal mucus in chronic rhinosinusitis. Rhinology 55:59–69. doi:10.4193/Rhin16.201.
    1. Vandeputte D, Kathagen G, D'hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito RY, De Commer L, Darzi Y, Vermeire S, Falony G, Raes J. 2017. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551:507–511. doi:10.1038/nature24460.
    1. Biesbroek G, Tsivtsivadze E, Sanders EAM, Montijn R, Veenhoven RH, Keijser BJF, Bogaert D. 2014. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Am J Respir Crit Care Med 190:1283–1292. doi:10.1164/rccm.201407-1240OC.
    1. Laufer AS, Metlay JP, Gent JF, Fennie KP, Kong Y, Pettigrew MM. 2011. Microbial communities of the upper respiratory tract and otitis media in children. mBio 2:e00245-10. doi:10.1128/mBio.00245-10.
    1. Aguirre M, Morrison D, Cookson BD, Gay FW, Collins MD. 1993. Phenotypic and phylogenetic characterization of some Gemella‐like organisms from human infections: description of Dolosigranulum pigrum gen. nov., sp. nov. J Appl Bacteriol 75:608–612. doi:10.1111/j.1365-2672.1993.tb01602.x.
    1. Lebeer S, Vanderleyden J, De Keersmaecker S. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764. doi:10.1128/MMBR.00017-08.
    1. Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S. 2015. Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health. Front Physiol 6:81. doi:10.3389/fphys.2015.00081.
    1. Bachert C, Zhang N, Holtappels G, De Lobel L, van Cauwenberge P, Liu S, Lin P, Bousquet J, Van Steen K. 2010. Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol 126:962–968, 968.e1–e6. doi:10.1016/j.jaci.2010.07.007.
    1. Lan F, Zhang N, Holtappels G, De Ruyck N, Krysko O, Van Crombruggen K, Braun H, Johnston SL, Papadopoulos NG, Zhang L, Bachert C. 2018. Staphylococcus aureus induces a mucosal type 2 immune response via epithelial cell-derived cytokines. Am J Respir Crit Care Med 198:452–463. doi:10.1164/rccm.201710-2112OC.
    1. Bachert C, Holtappels G, Merabishvili M, Meyer T, Murr A, Zhang N, Van Crombruggen K, Gevaert E, Völker U, Bröker BM, Vaneechoutte M, Schmidt F. 2018. Staphylococcus aureus controls interleukin-5 release in upper airway inflammation. J Proteomics 180:53–60. doi:10.1016/j.jprot.2017.12.003.
    1. Rasmussen TT, Kirkeby LP, Poulsen K, Reinholdt J, Kilian M. 2000. Resident aerobic microbiota of the adult human nasal cavity. APMIS 108:663–675. doi:10.1034/j.1600-0463.2000.d01-13.x.
    1. Hoggard M, Biswas K, Zoing M, Wagner Mackenzie B, Taylor MW, Douglas RG. 2017. Evidence of microbiota dysbiosis in chronic rhinosinusitis. Int Forum Allergy Rhinol 7:230–239. doi:10.1002/alr.21871.
    1. Hasegawa K, Mansbach JM, Ajami NJ, Espinola JA, Henke DM, Petrosino JF, Piedra PA, Shaw CA, Sullivan AF, Camargo CA. 2016. Association of nasopharyngeal microbiota profiles with bronchiolitis severity in infants hospitalised for bronchiolitis. Eur Respir J 48:1329–1339. doi:10.1183/13993003.00152-2016.
    1. Ivanchenko OA, Karpishchenko SA, Kozlov RS, Krechikova OI, Otvagin IV, Sopko ON, Piskunov GZ, Lopatin AS. 2016. The microbiome of the maxillary sinus and middle nasal meatus in chronic rhinosinusitis. Rhinology 54:68–74. doi:10.4193/Rhin15.018.
    1. Falcony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De Sutter L, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. 2016. Population-level analysis of gut microbiome variation. Science 352:560–564. doi:10.1126/science.aad3503.
    1. Liu CM, Soldanova K, Nordstrom L, Dwan MG, Moss OL, Contente-Cuomo TL, Keim P, Price LB, Lane AP. 2013. Medical therapy reduces microbiota diversity and evenness in surgically recalcitrant chronic rhinosinusitis. Int Forum Allergy Rhinol 3:775–781. doi:10.1002/alr.21195.
    1. Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561. doi:10.1073/pnas.1000087107.
    1. SanMiguel AJ, Meisel JS, Horwinski J, Zheng Q, Grice EA. 2017. Topical antimicrobial treatments can elicit shifts to resident skin bacterial communities and reduce colonization by Staphylococcus aureus competitors. Antimicrob Agents Chemother 61:e00774-17. doi:10.1128/AAC.00774-17.
    1. Callahan BJ, Mcmurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi:10.1038/nmeth.3869.
    1. Wickham H. 2016. tidyverse: easily install and load “tidyverse” packages. R package, version 1.0.0. R Foundation for Statistical Computing, Vienna, Austria: .
    1. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H, Oksanen MJ. 2018. Vegan: community ecology package. R package, version 2, p 4–6. R Foundation for Statistical Computing, Vienna, Austria: .
    1. Hopkins C, Gillett S, Slack R, Lund VJ, Browne JP. 2009. Psychometric validity of the 22-item sinonasal outcome test. Clin Otolaryngol 34:447–454. doi:10.1111/j.1749-4486.2009.01995.x.
    1. Klimek L, Bergmann K-C, Biedermann T, Bousquet J, Hellings P, Jung K, Merk H, Olze H, Schlenter W, Stock P, Ring J, Wagenmann M, Wehrmann W, Mösges R, Pfaar O. 2017. Visual analogue scales (VAS): measuring instruments for the documentation of symptoms and therapy monitoring in cases of allergic rhinitis in everyday health care: position paper of the German Society of Allergology (AeDA) and the German Society of Allergy and Clinical Immunology (DGAKI), ENT Section, in collaboration with the working group on Clinical Immunology, Allergology and Environmental Medicine of the German Society of Otorhinolaryngology, Head and Neck Surgery (DGHNOKHC). Allergo J Int 26:16–24. doi:10.1007/s40629-016-0006-7.

Source: PubMed

3
Subscribe