New Insights in Laboratory Testing for COVID-19 Patients: Looking for the Role and Predictive Value of Human epididymis secretory protein 4 (HE4) and the Innate Immunity of the Oral Cavity and Respiratory Tract

Annalisa Schirinzi, Angela Pia Cazzolla, Roberto Lovero, Lorenzo Lo Muzio, Nunzio Francesco Testa, Domenico Ciavarella, Giuseppe Palmieri, Pietro Pozzessere, Vito Procacci, Francesca Di Serio, Luigi Santacroce, Annalisa Schirinzi, Angela Pia Cazzolla, Roberto Lovero, Lorenzo Lo Muzio, Nunzio Francesco Testa, Domenico Ciavarella, Giuseppe Palmieri, Pietro Pozzessere, Vito Procacci, Francesca Di Serio, Luigi Santacroce

Abstract

COVID-19 is a viral pandemic caused by the new coronavirus SARS-CoV-2, an enveloped positive stranded RNA virus. The mechanisms of innate immunity, considered as the first line of antiviral defense, is essential towards viruses. A significant role in host defense of the lung, nasal and oral cavities is played by Human epididymis secretory protein 4 (HE4) HE4 has been demonstrated to be serum inflammatory biomarker and to show a role in natural immunity at the level of oral cavity, nasopharynx and respiratory tract with both antimicrobial/antiviral and anti-inflammatory activity. Several biomarkers like IL-6, presepsin (PSP), procalcitonin (PCT), CRP, D-Dimer have showed a good function as predictor factors for the clinical evolution of COVID-19 patients (mild, severe and critical). The aim of this study was to correlate the blood levels of CRP, IL-6, PSP, PCT, D-Dimer with He4, to identify the predictive values of these biomarkers for the evolution of the disease and to evaluate the possible role of HE4 in the defense mechanisms of innate immunity at the level of oral cavity, nasopharynx and respiratory tract. Of 134 patients admitted at COVID hospital of Policlinico-University of Bari, 86 (58 men age 67.6 ± 12.4 and 28 women age 65.7 ± 15.4) fulfilled the inclusion criteria: in particular, 80 patients (93%) showed prodromal symptoms (smell and/or taste dysfunctions) and other typical clinical manifestations and 19 died (13 men age 73.4 ± 7.7 and 6 women age 74.8 ± 6.7). 48 patients were excluded because 13 finished chemotherapy and 6 radiotherapy recently, 5 presented suspected breast carcinoma, 5 suspected lung carcinoma, 6 suspected ovarian carcinoma or ovary cyst, 1 cystic fibrosis, 3 renal fibrosis and 9 were affected by autoimmune diseases in treatment with monoclonal antibodies. The venous sample was taken for each patient on the admission and during the hospital stay. For each patient, six measurements relating to considered parameters were performed. Significant correlations between He4 and IL-6 levels (r = 0.797), between He4 and PSP (r = 0.621), between He4 and PCT (r = 0.447), between He4 and D-Dimer (r = 0.367), between He4 and RCP (r = 0.327) have been found. ROC curves analysis showed an excellent accuracy for He4 (AUC = 0.92) and IL-6 (AUC = 0.91), a very good accuracy for PSP (AUC = 0.81), a good accuracy for PCT (AUC = 0.701) and D-Dimer (AUC = 0.721) and sufficient accuracy for RCP (AUC = 0.616). These results demonstrated the important correlation between He4, IL6 and PSP, an excellent accuracy of He4 and IL6 and showed a probable role of He4 in the innate immunity in particularly at the level of oral cavity, nasopharynx and respiratory tract. Besides He4 together with IL6 might be involved in the onset of smell and/or taste disorders and it might be used as innovative biomarker to monitor clinical evolution of COVID-19 because He4 could indicate a multi-organ involvement.

Keywords: COVID-19; Human epididymis secretory protein 4 (HE4); SARS-CoV-2; innate immunity; interleukin-6 (IL-6); laboratory test; presepsin (PSP); procalcitonin (PCT).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
IL-6 and He4 sex distributions showed an increase in females compared to males; PSP, D-Dimer, RCP and PCT sex distributions showed an increase in males compared to females (Mann Whitney U test p < 0.05).
Figure 2
Figure 2
Area under curve/AUC) of considered biomarkers: in all patients (a) excellent accuracy for He4 (AUC = 0.92), IL-6 (AUC = 0.91), and very good accuracy for PSP (AUC = 0.81); (b) good accuracy for PCT (AUC = 0.701) and D-Dimer (AUC = 0.721), sufficient accuracy for RCP (AUC = 0.616); in mild patients (c) excellent accuracy for He4 (AUC = 0.978), IL-6 (AUC = 0.96), very good accuracy for PSP (AUC = 0.873); (d) good accuracy for RCP (AUC = 0.705), D-Dimer (AUC = 0.753); sufficient accuracy for PCT (AUC = 0.622); in severe patients (e) very good accuracy for He4 (AUC = 0.897), IL-6 (AUC = 0.851), good accuracy for PSP (AUC = 0.738); (f) a sufficent accuracy for PCT (AUC = 0.622) and D-Dimer (AUC = 0.6.83); a bad accuracy for RCP (AUC = 0.513).

References

    1. Santacroce L., Charitos I., Del Prete R. COVID-19 in Italy: An overview from the first case to date. Electron. J. Gen. Med. 2020;17:em235. doi: 10.29333/ejgm/7926.
    1. Santacroce L., Bottalico L., Charitos I.A. The Impact of COVID-19 on Italy: A Lesson for the Future. Int. J. Occup. Environ. Med. 2020;11:151–152. doi: 10.34172/ijoem.2020.1984.
    1. Park S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome -coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) Clin. Exp. Pediatr. 2020;63:119–124. doi: 10.3345/cep.2020.00493.
    1. Rokni M., Ghasemi V., Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev. Med. Virol. 2020;30:e2107. doi: 10.1002/rmv.2107.
    1. Wölfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Müller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C., et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469. doi: 10.1038/s41586-020-2196-x.
    1. Miller R.W. There’s a New Symptom of Coronavirus, Doctors Say: Sudden Loss of Smell or Taste. [(accessed on 26 June 2020)];2020 Available online:
    1. Hopkins C., Kumar N. Loss of Sense of Smell as Marker of COVID-19 Infection, ENT UK. [(accessed on 26 June 2020)];2020 Available online:
    1. Vaira L.A., Hopkins C., Salzano G., Petrocelli M., Melis A., Cucurullo M., Ferrari M., Gagliardini L., Pipolo C., Deiana G., et al. Olfactory and gustatory function impairment in COVID-19 patients: Italian objective multicenter-study. Head Neck. 2020;42:1560–1569. doi: 10.1002/hed.26269.
    1. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020;11:995–998. doi: 10.1021/acschemneuro.0c00122.
    1. Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L., Liu C., Yang C. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 2020;87:18–22. doi: 10.1016/j.bbi.2020.03.031.
    1. Cazzolla A.P., Lovero R., Lo Muzio L., Testa N.F., Schirinzi A., Palmieri G., Pozzessere P., Procacci V., Di Comite M., Ciavarella D., et al. Taste and smell disorders in COVID-19 patients: Role of Interleukin-6. ACS Chem. Neurosci. 2020;11:2774–2781. doi: 10.1021/acschemneuro.0c00447.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Ballini A., Dipalma G., Isacco C.G., Boccellino M., Di Domenico M., Santacroce L., Nguyễn K.C., Scacco S., Calvani M., Boddi A., et al. Oral Microbiota and Immune System Crosstalk: A Translational Research. Biology. 2020;9:131. doi: 10.3390/biology9060131.
    1. Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L., Lang C., Xiao Q., Xiao K., Yi Z., et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br. J. Haematol. 2020;189:428–437. doi: 10.1111/bjh.16659.
    1. Tang N., Li D., Wang X., Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020;18:844–847. doi: 10.1111/jth.14768.
    1. Ciceri F., Beretta L., Scandroglio A.M., Colombo S., Landoni G., Ruggeri A., Peccatori J., D’Angelo A., De Cobelli F., Rovere-Querini P. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): An atypical acute respiratory distress syndrome working hypothesis. Crit. Care Resusc. 2020;22:95–97.
    1. Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M., Ruiz C., Melguizo-Rodríguez L. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020;54:62–75. doi: 10.1016/j.cytogfr.2020.06.001.
    1. Venkataraman T., Frieman M.B. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antivir. Res. 2017;143:142–150. doi: 10.1016/j.antiviral.2017.03.022.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Wang H., Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am. J. Emerg. Med. 2008;26:711–715. doi: 10.1016/j.ajem.2007.10.031.
    1. Guan W.J., Liang W.H., Zhao Y., Liang H.R., Chen Z.S., Li Y.M., Liu X.Q., Chen R.C., Tang C.L., Wang T., et al. China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: A nationwide analysis. Eur. Respir. J. 2020;55:2000547. doi: 10.1183/13993003.00547-2020.
    1. Zhou Y., Fu B., Zheng X., Wang D., Zhao C., Qi Y., Sun R., Tian Z., Xu X., Wei H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev. 2020;13:nwaa041. doi: 10.1093/nsr/nwaa041.
    1. Vabret N., Britton G.J., Gruber C., Hegde S., Kim J., Kuksin M., Levantovsky R., Malle L., Moreira A., Park M.D., et al. Immunology of COVID-19: Current state of the science. Immunity. 2020;52:910–941. doi: 10.1016/j.immuni.2020.05.002.
    1. Schirinzi A., Cazzolla A.P., Mascolo E., Palmieri G., Pesce F., Gesualdo L., Santacroce L., Ballini A., Lovero R., Di Serio F. Determination of the upper reference limit of Human epididymis secretory protein 4 (HE4) in healthy male individuals and correlation with renal and fertility markers. Endocr. Metab. Immune Disord. Drug Targets. 2020 doi: 10.2174/1871530320666200807121050.
    1. Bingle L., Cross S.S., High A.S., Wallace W.A., Rassl D., Yuan G., Hellstrom I., Campos M.A., Bingle C.D. WFDC2 (HE4): A potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. Respir. Res. 2006;7:61. doi: 10.1186/1465-9921-7-61.
    1. Galgano M.T., Hampton G.M., Frierson H.F. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod. Pathol. 2006;19:847–853. doi: 10.1038/modpathol.3800612.
    1. Kirchhoff C., Habben I., Ivell R., Krull N. A Major Human Epididymis-Specific cDNA Encodes a Protein with Sequence Homology to Extracellular Proteinase Inhibitors1. Biol. Reprod. 1991;45:350–357. doi: 10.1095/biolreprod45.2.350.
    1. Mardani R., Vasmehjani A.A., Zali F., Gholami A., Nasab S.D.M., Kaghazian H., Kaviani M., Ahmadi N. Laboratory parameters in detection of COVID-19 patients with positive RT-PCR; a diagnostic accuracy study. Arch. Acad. Emerg. Med. 2020;8:e43.
    1. Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 2020;18:1324–1329. doi: 10.1111/jth.14859.
    1. Wynants L., Van Calster B., Collins G.S., Riley R.D., Heinze G., Schuit E., Bonten M.M.J., Damen J.A.A., Debray T.P.A., De Vos M., et al. Prediction models for diagnosis and prognosis of covid-19 infection: Systematic review and critical appraisal. BMJ. 2020;369:m1328. doi: 10.1136/bmj.m1328.
    1. Tanaka T., Narazaki M., Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014;6:a016295. doi: 10.1101/cshperspect.a016295.
    1. Kermali M., Khalsa R.K., Pillai K., Ismail Z., Harky A. The role of biomarkers in diagnosis of COVID-19—A systematic review. Life Sci. 2020;254:117788. doi: 10.1016/j.lfs.2020.117788.
    1. Yu B., Li X., Chen J., Ouyang M., Zhang H., Zhao X., Tang L., Luo Q., Xu M., Yang L. Evaluation of variation in D-dimer levels among COVID-19 and bacterial pneumonia: A retrospective analysis. J. Thromb. Thrombolysis. 2020;50:548–557. doi: 10.1007/s11239-020-02171-y.
    1. Marietta M., Ageno W., Artoni A., De Candia E., Gresele P., Marchetti M., Marcucci R., Tripodi A. COVID-19 and haemostasis: A position paper from Italian Society on Thrombosis and Haemostasis (SISET) Blood Transfus. 2020;18:167–169.
    1. Pagaduan J.V., Tam E., Devaraj S. Validation of the Procalcitonin Assay on the Abbott Architect i1000. J. Appl. Lab. Med. 2019;3:936–942. doi: 10.1373/jalm.2018.027904.
    1. Charitos I.A., Ballini A., Bottalico L., Cantore S., Passarelli P.C., Inchingolo F., D’Addona A., Santacroce L. Special features of SARS-CoV2 in daily practice. World J. Clin. Cases. 2020;8:3920. doi: 10.12998/wjcc.v8.i18.3920.
    1. Di Serio F., Lovero R., D’Agostino D., Nisi L., Miragliotta G., Contino R., Man A., Ciccone M.M., Santacroce L. Evaluation of procalcitonin, Vitamin D and C-reactive protein levels in septic patients with positive emocoltures. Our preliminary experience. Acta Med. Mediterr. 2016;32:1911–1914.
    1. Zaninotto M., Mion M.M., Cosma C., Rinaldi D., Plebani M. Presepsin in risk stratification of SARS-CoV-2 patients. Clin. Chim. Acta. 2020;507:161–163. doi: 10.1016/j.cca.2020.04.020.
    1. Wei X., Su J., Yang K., Wei J., Wan H., Cao X., Tan W., Wang H. Elevations of serum cancer biomarkers correlate with severity of COVID-19. J. Med. Virol. 2020;92:2036–2041. doi: 10.1002/jmv.25957.
    1. Dhama K., Patel S.K., Pathak M., Yatoo M.I., Tiwari R., Malik Y.S., Singh R., Sah R., Rabaan A.A., Bonilla-Aldana D.K. An update on SARS-CoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies. Travel Med. Infect. Dis. 2020;37:101755. doi: 10.1016/j.tmaid.2020.101755.
    1. Xiang J., Wen J., Yuan X., Xiong S., Zhou X., Liu C., Min X. Potential Biochemical Markers to Identify Severe Cases among COVID-19 Patients. medRxiv. 2020 doi: 10.1101/2020.03.19.20034447.
    1. Chhikara N., Saraswat M., Tomar A.K., Dey S., Singh S., Yadav S. Human epididymis protein-4 (HE-4): A novel cross-class protease inhibitor. PLoS ONE. 2012;7:e47672. doi: 10.1371/journal.pone.0047672.
    1. Madanchi H., Shoushtari M., Kashani H., Sardari S. Antimicrobial peptides of the vaginal innate immunity and their role in the fight against sexually transmitted diseases. New Microbes New Infect. 2020;34:100627. doi: 10.1016/j.nmni.2019.100627.
    1. Dhochak N., Singhal T., Kabra S., Lodha R. Pathophysiology of COVID-19: Why Children Fare Better than Adults? Indian J. Pediatrics. 2020;87:537–546. doi: 10.1007/s12098-020-03322-y.
    1. Vardhana S.A., Wolchok J.D. The many faces of the anti-COVID immune response. J. Exp. Med. 2020;217:e20200678. doi: 10.1084/jem.20200678.
    1. Blanco-Melo D., Nilsson-Payant B.E., Liu W.-C., Uhl S., Hoagland D., Møller R., Jordan T.X., Oishi K., Panis M., Sachs D., et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181:1036–1045.e9. doi: 10.1016/j.cell.2020.04.026.
    1. Santacroce L., Charitos I.A., Ballini A., Inchingolo F., Luperto P., De Nitto E., Topi S. The Human Respiratory System and its Microbiome at a Glimpse. Biology. 2020;9:318. doi: 10.3390/biology9100318.
    1. Cantore S., Ballini A. Coronavirus Disease 2019 (COVID-19) pandemic burst and its relevant consequences in dental practice. Open Dent. 2020;14:111–112. doi: 10.2174/1874210602014010111.
    1. Pham V.H., Gargiulo I.C., Nguyen K.C.D., Le S.H., Tran D.K., Nguyen Q.V., Pham H.T., Aityan S., Pham S.T., Cantore S., et al. Rapid and sensitive diagnostic procedure for multiple detection of pandemic Coronaviridae family members SARS-CoV-2, SARS-CoV, MERS-CoV and HCoV: A translational research and cooperation between the Phan Chau Trinh University in Vietnam and University of Bari “Aldo Moro” in Italy. Eur. Rev. Med. Pharmacol. Sci. 2020;24:7173–7191.
    1. Ballini A., Cantore S., Scacco S., Coletti D., Tatullo M. Mesenchymal stem cells as promoters, enhancers, and playmakers of the translational regenerative medicine 2018. Stem Cells Int. 2018;2018:6927401. doi: 10.1155/2018/6927401.
    1. Santacroce L., Charitos I.A., Bottalico L. A successful history: Probiotics and their potential as antimicrobials. Expert Rev. Anti-Infect. Ther. 2019;17:635–645. doi: 10.1080/14787210.2019.1645597.
    1. Ballini A., Gnoni A., De Vito D., Dipalma G., Cantore S., Gargiulo I.C., Saini R., Santacroce L., Topi S., Scarano A., et al. Effect of probiotics on the occurrence of nutrition absorption capacities in healthy children: A randomized double-blinded placebo-controlled pilot study. Eur. Rev. Med. Pharmacol. Sci. 2019;23:8645–8657.
    1. Inchingolo F., Dipalma G., Cirulli N., Cantore S., Saini R.S., Altini V., Santacroce L., Ballini A., Saini R. Microbiological results of improvement in periodontal condition by administration of oral probiotics. J. Biol. Regul. Homeost. Agents. 2018;32:1323–1328.
    1. Ballini A., Santacroce L., Cantore S., Bottalico L., Dipalma G., Vito D., Saini R., Inchingolo F. Probiotics Improve Urogenital Health in Women. Open Access Maced. J. Med. Sci. 2018;6:1845–1850. doi: 10.3889/oamjms.2018.406.
    1. Lamy P.J., Plassot C., Pujol J.L. Serum HE4: An Independent Prognostic Factor in Non-Small Cell Lung Cancer. PLoS ONE. 2015;10:e0128836. doi: 10.1371/journal.pone.0128836.
    1. Gąsiorowska E., Magnowska M., Iżycka N., Warchoł W., Nowak-Markwitz E. The role of HE4 in differentiating benign and malignant endometrial pathology. Ginekol. Pol. 2016;87:260–264. doi: 10.17772/gp/62356.
    1. Kappelmayer J., Antal-Szalmás P., Nagy B., Jr. Human epididymis protein 4 (HE4) in laboratory medicine and an algorithm in renal disorders. Clin. Chim. Acta. 2015;438:35–42. doi: 10.1016/j.cca.2014.07.040.
    1. Huang J., Chen J., Huang Q. Diagnostic value of HE4 in ovarian cancer: A meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018;231:35–42. doi: 10.1016/j.ejogrb.2018.10.008.

Source: PubMed

3
Subscribe