Farm animal serum proteomics and impact on human health

Francesco Di Girolamo, Alfonsina D'Amato, Isabella Lante, Fabrizio Signore, Marta Muraca, Lorenza Putignani, Francesco Di Girolamo, Alfonsina D'Amato, Isabella Lante, Fabrizio Signore, Marta Muraca, Lorenza Putignani

Abstract

Due to the incompleteness of animal genome sequencing, the analysis and characterization of serum proteomes of most farm animals are still in their infancy, compared to the already well-documented human serum proteome. This review focuses on the implications of the farm animal serum proteomics in order to identify novel biomarkers for animal welfare, early diagnosis, prognosis and monitoring of infectious disease treatment, and develop new vaccines, aiming at determining the reciprocal benefits for humans and animals.

Figures

Figure 1
Figure 1
Routinely pre-analytical and analytical approaches for farm animal serum proteomic studies. Serum samples could be pre-treated (A) to reduce the high dynamic range in protein concentration, or not pre-treated (B,C) and, subsequently, analyzed through electrophoretic, chromatographic and mass spectrometric platforms. The large amount of data produced are, then, processed by sophisticated bioinformatic algorithms for qualitative and quantitative proteomic analysis.

References

    1. Doherty M.K., Beynon R.J., Whitfield P.D. Proteomics and naturally occurring animal diseases: Opportunities for animal and human medicine. Proteomics Clin. Appl. 2008;2:135–141. doi: 10.1002/prca.200780085.
    1. Ceciliani F., Eckersall D., Burchmore R., Lecchi C. Proteomics in veterinary medicine: Applications and trends in disease pathogenesis and diagnostics. Vet. Pathol. 2014;51:351–362. doi: 10.1177/0300985813502819.
    1. Anderson N.L., Anderson N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell Proteomics. 2002;1:845–867. doi: 10.1074/mcp.R200007-MCP200.
    1. Introduction to Mass Spectrometry. [(accessed on 1 September 2014)]. Available online: .
    1. Fang X., Zhang W.W. Affinity separation and enrichment methods in proteomic analysis. J. Proteomics. 2008;71:284–303. doi: 10.1016/j.jprot.2008.06.011.
    1. Righetti P.G., Boschetti E. The ProteoMiner and the FortyNiners: Searching for gold nuggets in the proteomic arena. Mass Spec. Rev. 2008;27:596–608. doi: 10.1002/mas.20178.
    1. Boschetti E., Lomas L., Citterio A., Righetti P.G. Romancing the “hidden proteome”, anno domini two zero zero seven. J. Chromatogr. A. 2007;1153:277–290. doi: 10.1016/j.chroma.2007.01.136.
    1. Boschetti E., Righetti P.G. The art of observing rare protein species in proteomes with peptide ligand libraries. Proteomics. 2009;9:1492–1510. doi: 10.1002/pmic.200800389.
    1. Gundry R.L., White M.Y., Nogee J., Tchernyshyov I., van Eyk J.E. Assessment of albumin removal from an immunoaffinity spin column: Critical implications for proteomic examination of the albuminome and albumin-depleted samples. Proteomics. 2009;9:2021–2028. doi: 10.1002/pmic.200800686.
    1. Zhi W., Purohit S., Carey C., Wang M., She J.X. Proteomic technologies for the discovery of type 1 diabetes biomarkers. J. Diabetes Sci. Technol. 2010;4:993–1002. doi: 10.1177/193229681000400431.
    1. Walther T.C., Mann M. Mass spectrometry-based proteomics in cell biology. J. Cell Biol. 2010;190:491–500. doi: 10.1083/jcb.201004052.
    1. Pan C., Xu S., Zhou H., Fu Y., Ye M., Zou H. Recent developments in methods and technology for analysis of biological samples by MALDI-TOF-MS. Anal. Bioanal. Chem. 2007;387:193–204.
    1. Rodríguez-Suárez E., Whetton A.D. The application of quantification techniques in proteomics for biomedical research. Mass Spectrom. Rev. 2013;32:1–26. doi: 10.1002/mas.21347.
    1. Unlü M., Morgan M.E., Minden J.S. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18:2071–2077. doi: 10.1002/elps.1150181133.
    1. Gygi S.P., Rist B., Gerber S.A., Turecek F., Gelb M.H., Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999;17:994–999. doi: 10.1038/13690.
    1. Ross P.L., Huang Y.N., Marchese J.N., Williamson B., Parker K., Hattan S., Khainovski N., Pillai S., Dey S., Daniels S., et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics. 2004;3:1154–1169. doi: 10.1074/mcp.M400129-MCP200.
    1. Old W.M., Meyer-Arendt K., Aveline-Wolf L., Pierce K.G., Mendoza A., Sevinsky J.R., Resing K.A., Ahn N.G. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell Proteomics. 2005;4:1487–1502. doi: 10.1074/mcp.M500084-MCP200.
    1. Issaq H.J., Veenstra T.D., Conrads T.P., Felschow D. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 2002;292:587–592. doi: 10.1006/bbrc.2002.6678.
    1. UniProt-GOA. [(accessed on 27 August 2014)]. Available online: .
    1. Balakrishnan R., Harris M.A., Huntley R., van Auken K., Cherry J.M. A guide to best practices for Gene Ontology (GO) manual annotation. Database. 2013;9:bat054.
    1. Gene Ontology Consortium. [(accessed on 27 August 2014)]. Available online:
    1. Marco-Ramell A., Arroyo L., Saco Y., García-Heredia A., Camps J., Fina M., Piedrafita J., Bassols A.J. Proteomic analysis reveals oxidative stress response as the main adaptative physiological mechanism in cows under different production systems. Proteomics. 2012;75:4399–4411. doi: 10.1016/j.jprot.2012.04.002.
    1. Della Donna L., Ronci M., Sacchetta P., Di Ilio C., Biolatti B., Federici G., Nebbia C., Urbani A. A food safety control low mass-range proteomics platform for the detection of illicit treatments in veal calves by MALDI-TOF-MS serum profiling. J. Biotechnol. 2009;4:1596–1609. doi: 10.1002/biot.200900085.
    1. Xia C., Zhang H.Y., Wu L., Xu C., Zheng J.S., Yan Y.J., Yang L.J., Shu S. Proteomic analysis of plasma from cows affected with milk fever using two-dimensional differential in-gel electrophoresis and mass spectrometry. Res. Vet. Sci. 2012;93:857–861. doi: 10.1016/j.rvsc.2011.10.025.
    1. Cairoli F., Battocchio M., Veronesi M.C., Brambilla D., Conserva F., Eberini I., Wait R., Gianazza E. Serum protein pattern during cow pregnancy: Acute-phase proteins increase in the peripartum period. Electrophoresis. 2006;27:1617–1625. doi: 10.1002/elps.200500742.
    1. Henning A.K., Groschup M.H., Mettenleiter T.C., Karger A. Analysis of the bovine plasma proteome by matrix-assisted laser desorption/ionisation time-of-flight tandem mass spectrometry. Vet. J. 2014;199:175–80. doi: 10.1016/j.tvjl.2013.10.029.
    1. Turk R., Piras C., Kovačić M., Samardžija M., Ahmed H., de Canio M., Urbani A., Meštrić Z.F., Soggiu A., Bonizzi L., et al. Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis. Proteomics. 2012;75:4412–4428. doi: 10.1016/j.jprot.2012.05.021.
    1. Alonso-Fauste I., Andrés M., Iturralde M., Lampreave F., Gallart J., Alava M.A.J. Proteomic characterization by 2-DE in bovine serum and whey from healthy and mastitis affected farm animals. Proteomics. 2012;75:3015–3030.
    1. Seth. M., Lamont E.A., Janagama H.K., Widdel A., Vulchanova L., Stabel J.R., Waters W.R., Palmer M.V., Sreevatsan S. Biomarker discovery in subclinical mycobacterial infections of cattle. PLoS One. 2009;4:e5478. doi: 10.1371/journal.pone.0005478.
    1. You Q., Verschoor C.P., Pant S.D., Macri J., Kirby G.M., Karrow N.A. Proteomic analysis of plasma from Holstein cows testing positive for Mycobacterium avium subsp. paratuberculosis (MAP) Vet. Immunol. Immunopathol. 2012;148:243–251.
    1. García-Lunar P., Regidor-Cerrillo J., Gutiérrez-Expósito D., Ortega-Mora L., Alvarez-García G. First 2-DE approach towards characterising the proteome and immunome of Besnoitia besnoiti in the tachyzoite stage. Vet. Parasitol. 2013;195:24–34. doi: 10.1016/j.vetpar.2012.12.040.
    1. Vytvytska O., Nagy E., Blüggel M., Meyer H.E., Kurzbauer R., Huber L.A., Klade C.S. Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics. 2002;2:580–590. doi: 10.1002/1615-9861(200205)2:5<580::AID-PROT580>;2-G.
    1. Le Maréchal C., Jan G., Even S., McCulloch J.A., Azevedo V., Thiéry R., Vautor E., le Loir Y.J. Development of serological proteome analysis of mastitis by Staphylococcus aureus in ewes. Methods Microbiol. 2009;79:131–136. doi: 10.1016/j.mimet.2009.08.017.
    1. Zhong L., Taylor D., Begg D.J., Whittington R.J. Biomarker discovery for ovine paratuberculosis (Johne’s disease) by proteomic serum profiling. Comp. Immunol. Microbiol. Infect. Dis. 2011;34:315–326. doi: 10.1016/j.cimid.2011.03.001.
    1. Zhong L., Taylor D.L., Whittington R.J. Proteomic profiling of ovine serum by SELDI-TOF MS: Optimisation, reproducibility and feasibility of biomarker discovery using routinely collected samples. Comp. Immunol. Microbiol. Infect. Dis. 2010;33:47–63. doi: 10.1016/j.cimid.2008.07.009.
    1. Chiaradia E., Avellini L., Tartaglia M., Gaiti A., Just I., Scoppetta F., Czentnar Z., Pich A. Proteomic evaluation of sheep serum proteins. BMC Vet. Res. 2012;25:66.
    1. Marco-Ramell A., Pato R., Peña R., Saco Y., Manteca X., Ruiz de la Torre J.L., Bassols A. Identification of serum stress biomarkers in pigs housed at different stocking densities. Vet. J. 2011;190:e66–e71. doi: 10.1016/j.tvjl.2011.01.003.
    1. Sun J.F., Shi Z.X., Guo H.C., Li S., Tu C.C. Proteomic analysis of swine serum following highly virulent classical swine fever virus infection. Virol. J. 2011;8:107.
    1. Liu Y., Zhang K., Zheng H., Shang Y., Guo J., Tian H., Lu G., Jin Y., He J., Cai X., et al. Proteomics analysis of porcine serum proteins by LC–MS/MS after foot-and-mouth disease virus (FMDV) infection. J. Vet. Med. Sci. 2011;73:1569–1572. doi: 10.1292/jvms.11-0019.
    1. Lee L., Alloosh M., Saxena R., van Alstine W., Watkins B.A., Klaunig J.E., Sturek M., Chalasani N. Nutritional model of steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Hepatology. 2009;50:56–67.
    1. Bell L.N., Lee L., Saxena R., Bemis K.G., Wang M., Theodorakis J.L., Vuppalanchi R., Alloosh M., Sturek M., Chalasani N. Serum proteomic analysis of diet-induced steatohepatitis and metabolic syndrome in the Ossabaw miniature swine. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;298:746–754. doi: 10.1152/ajpgi.00485.2009.
    1. Huang S.Y., Lin J.H., Chen Y.H., Chuang C.K., Chiu Y.F., Chen M.Y., Chen H.H., Lee W.C. Analysis of chicken serum proteome and differential protein expression during development in single-comb White Leghorn hens. Proteomics. 2006;6:2217–2224. doi: 10.1002/pmic.200500410.
    1. Tyler C.D., Lichti C.F., Diekman A.B., Foley S.L. Evaluation of differentially expressed proteins following serum exposure in avian pathogenic Escherichia coli. Avian Dis. 2008;52:23–27.
    1. Li G., Cai W., Hussein A., Wannemuehler Y.M., Logue C.M., Nolan L.K.J. Proteome response of an extraintestinal pathogenic Escherichia coli strain with zoonotic potential to human and chicken sera. Proteomics. 2012;75:4853–4862. doi: 10.1016/j.jprot.2012.05.044.
    1. Gilbert E.R., Cox C.M., Williams P.M., McElroy A.P., Dalloul R.A., Ray W.K., Barri A., Emmerson D.A., Wong E.A., Webb K.E. Eimeria species and genetic background influence the serum protein profile of broilers with coccidiosis. PLoS One. 2011;6:e14636. doi: 10.1371/journal.pone.0014636.
    1. Moore R.E., Knottenbelt D., Matthews J.B., Beynon R.J., Whitfield P.D. Biomarkers for ragwort poisoning in horses: Identification of protein targets. BMC Vet. Res. 2008;8:4–30.
    1. Miller I., Friedlein A., Tsangaris G., Maris A., Fountoulakis M., Gemeiner M. The serum proteome of Equus caballus. Proteomics. 2004;4:3227–3234. doi: 10.1002/pmic.200400846.
    1. Henze A., Aumer F., Grabner A., Raila J., Schweigert F.J. Genetic differences in the serum proteome of horses, donkeys and mules are detectable by protein profiling. J. Nutr. 2011;1:170–173.
    1. Zipplies J.K., Hauck S.M., Schoeffmann S., Amann B., Stangassinger M., Ueffing M., Deeg C.A. Serum PEDF levels are decreased in a spontaneous animal model for human autoimmune uveitis. J. Proteome Res. 2009;8:992–998. doi: 10.1021/pr800694y.
    1. Liu X., Afonso L., Altman E., Johnson S., Brown L., Li J. O-acetylation of sialic acids in N-glycans of Atlantic salmon (Salmo salar) serum is altered by handling stress. Proteomics. 2008;8:2849–2857. doi: 10.1002/pmic.200701093.
    1. Jiang I.F., Kumar V.B., Weng C.F. Acute osmotic stress affects tilapia (Oreochromis mossambicus) innate immune responses. Fish Shellfish Immunol. 2008;25:841–846. doi: 10.1016/j.fsi.2008.09.006.
    1. Kumar V.B., Jiang I.F., Yang H.H., Weng C.F. Effects of serum on phagocytic activity and proteomic analysis of tilapia (Oreochromis mossambicus) serum after acute osmotic stress. Fish Shellfish Immunol. 2009;26:760–767. doi: 10.1016/j.fsi.2009.03.005.
    1. Brunt J., Hansen R., Jamieson D.J., Austin B. Proteomic analysis of rainbow trout (Oncorhynchus mykiss, Walbaum) serum after administration of probiotics in diets. Vet. Immunol. Immunopathol. 2008;121:199–205. doi: 10.1016/j.vetimm.2007.09.010.
    1. Wu Y., Wang S., Peng X. Serum acute phase response (APR)-related proteome of loach to trauma. Fish Shellfish Immunol. 2004;16:381–389.
    1. Liu X., She X.T., Zhu Q.F., Li H., Peng X.X. Heterogeneous interactome between Litopenaeus vannamei plasma proteins and Vibrio parahaemolyticus outer membrane proteins. Fish Shellfish Immunol. 2013;34:192–198. doi: 10.1016/j.fsi.2012.10.023.
    1. Kornegay E.T., Nolter D.R. Effect of floor space and number of pigs per pen on performance. Pig News Inf. 1984;5:23–33.
    1. Kuhlers D.L., Jungst S.B., Marple D.N., Rahe C.H. The effect of pen density during rearing on subsequent reproductive performance in gilts. J. Anim. Sci. 1985;61:1066–1069.
    1. Meunier-Salaun M.C., Vantrimponte M.N., Raab A., Dantzer R. Effect of floor area restriction upon performance, behavior and physiology of growing-finishing pigs. J. Anim. Sci. 1987;64:1371–1377.
    1. Angulo P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 2002;346:1221–1231. doi: 10.1056/NEJMra011775.

Source: PubMed

3
Subscribe