Efficacy of different interaction devices using non-immersive virtual tasks in individuals with Amyotrophic Lateral Sclerosis: a cross-sectional randomized trial

Isabela Lopes Trevizan, Talita Dias Silva, Helen Dawes, Thais Massetti, Tânia Brusque Crocetta, Francis Meire Favero, Acary Souza Bulle Oliveira, Luciano Vieira de Araújo, Ana Carolina Costa Santos, Luiz Carlos de Abreu, Shelly Coe, Carlos Bandeira de Mello Monteiro, Isabela Lopes Trevizan, Talita Dias Silva, Helen Dawes, Thais Massetti, Tânia Brusque Crocetta, Francis Meire Favero, Acary Souza Bulle Oliveira, Luciano Vieira de Araújo, Ana Carolina Costa Santos, Luiz Carlos de Abreu, Shelly Coe, Carlos Bandeira de Mello Monteiro

Abstract

Background: Amyotrophic Lateral Sclerosis (ALS) is a rapid progressive neurodegenerative disease, characterized by a selective loss of motor neurons, brain stem and spinal cord which leads to deterioration of motor abilities. Devices that promote interaction with tasks on computers can enhance performance and lead to greater independence and utilization of technology.

Objective: To evaluate performance on a computer task in individuals with ALS using three different commonly used non-immersive devices.

Method: Thirty individuals with ALS (18 men and 12 women, mean age 59 years, range 44-74 years) with a mean score of 26, (minimum score of 14 and maximum 41) on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) and 30 healthy controls matched for age and gender, participated. All participants were randomly divided into three groups, each using a different device system (motion tracking, finger motion control or touchscreen) to perform three task phases (acquisition, retention and transfer).

Results: Both the ALS and control group (CG) showed better performance on the computer task when using the touchscreen device, but there was limited transfer of performance onto the task performed on the Finger Motion control or motion tracking. However, we found that using the motion tracking device led to transfer of performance to the touchscreen.

Conclusion: This study presents novel and important findings when selecting interaction devices for individuals with ALS to access technology by demonstrating immediate performance benefits of using a touchscreen device, such as improvement of motor skills. There were possible transferable skills obtained when using virtual systems which may allow flexibility and enable individuals to maintain performance overtime.

Trial registration: Registration name: Virtual Task in Amyotrophic Lateral Sclerosis; Registration number: NCT03113630 ; retrospectively registered on 04/13/2017. Date of enrolment of the first participant to the trial: 02/02/2016.

Keywords: Amyotrophic lateral sclerosis; Motor activity; Rehabilitation; User-computer Interface; Virtual reality exposure therapy.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Ethics Committee for Research Project Analysis of the School of Medicine, University of São Paulo (Comitê de Ética em Pesquisa da Faculdade de Medicina da Universidade de São Paulo – CEP FMUSP) under the number CAEE: 43456015.0.0000.0065. All participants signed an informed consent form and received written and verbal information before participation of this study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Graphic representation of an individual with ALS using the motion tracking (a), the finger motion control (b) and the touchscreen interface (c) during a proposed virtual task. a (upper left) initial screen of the task with 126 bubbles; (middle left) individual defines the skill zone by touching the screen for 10 s; (bottom left) researcher defines a target bubble in the center of bottom of the range line; (upper right) individual touches the bubble that appears randomly (in the chase area); (middle right) a return to bubble target; (bottom right) some touches are in a bubble outside the chase area, challenging the limits of the individual. The protocol was the same for all interfaces
Fig. 2
Fig. 2
Study design. ALS Amyotrophic Lateral Sclerosis group, CG Control group
Fig. 3
Fig. 3
Representation (mean and standard error) of touched bubbles in all phases of the study in both groups: ALS and control. MT: Motion Tracking interface used; TS: Touchscreen interface used; FMC: Finger Motion Control interface used; FA: First attempt in the acquisition phase; LA: Last attempt in the acquisition phase; R: Tentative of retention phase; T1: First attempt at transfer phase with interface change; T2: Second attempt at transfer phase with the third interface; ALS: Amyotrophic Lateral Sclerosis group; Control: healthy control group

References

    1. Mulder DW. Clinical limits of amyotrophic lateral sclerosis. Adv Neurol. 1982;36:15–22.
    1. Couratier P, Corcia P, Lautrette G, Nicol M, Preux PM, Marin B. Epidemiology of amyotrophic lateral sclerosis: a review of literature. Rev Neurol (Paris) 2016;172(1):37–45.
    1. Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, et al. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry. 2010;81(4):385–390.
    1. Handy CR, Krudy C, Boulis N, Federici T. Pain in amyotrophic lateral sclerosis: a neglected aspect of disease. Neurol Res Int. 2011;2011:403808.
    1. Eisen A, Kuwabara S. The split hand syndrome in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2012;83(4):399–403.
    1. Menon P, Kiernan MC, Vucic S. ALS pathophysiology: insights from the split-hand phenomenon. Clin Neurophysiol. 2014;125(1):186–193.
    1. Cook AM, Polgar JM. Assistive technologies-E-book: principles and practice: Elsevier Health Sciences; 2014.
    1. Londral A, Pinto A, Pinto S, Azevedo L, De Carvalho M. Quality of life in amyotrophic lateral sclerosis patients and caregivers: impact of assistive communication from early stages. Muscle Nerve. 2015;52(6):933–941.
    1. Funke A, Spittel S, Grehl T, Grosskreutz J, Kettemann D, Petri S, et al. Provision of assistive technology devices among people with ALS in Germany: a platform-case management approach. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19:342–350.
    1. Nam CS, Woo J, Bahn S. Severe motor disability affects functional cortical integration in the context of brain–computer interface (BCI) use. Ergonomics. 2012;55(5):581–591.
    1. Crocetta TB, de Araújo LV, Guarnieri R, Massetti T, Ferreira FHIB, de Abreu LC, et al. Virtual reality software package for implementing motor learning and rehabilitation experiments. Virtual Reality. 2018;22(3):199–209.
    1. Henderson A, Korner-Bitensky N, Levin M. Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 2007;14(2):52–61.
    1. Massetti T, Fávero FM, LDCd M, Alvarez MPB, Crocetta TB, Guarnieri R, et al. Achievement of virtual and real objects using a short-term motor learning protocol in people with duchenne muscular dystrophy: a crossover randomized controlled trial. Games health J. 2018;7(2):107–115.
    1. Saposnik G, Cohen LG, Mamdani M, Pooyania S, Ploughman M, Cheung D, et al. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–1027.
    1. da Silva TD, de Mello Monteiro CB, Corrêa AGD, Alonso AC, Greve JMDA. REALIDADE VIRTUAL NA PARALISIA CEREBRAL Definição, tipos e possibilidades de intervenção. PARALISIA CEREBRAL. 2015;1:249.
    1. Silvoni S, Cavinato M, Volpato C, Ruf CA, Birbaumer N, Piccione F. Amyotrophic lateral sclerosis progression and stability of brain-computer interface communication. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(5–6):390–396.
    1. Thompson DE, Gruis KL, Huggins JE. A plug-and-play brain-computer interface to operate commercial assistive technology. Disabil Rehabil Assist Technol. 2014;9(2):144–150.
    1. Lancioni GE, Singh NN, O’Reilly MF, Green VA, Ferlisi G, Ferrarese G, et al. A man with amyotrophic lateral sclerosis uses a mouth pressure microswitch to operate a text messaging system with a word prediction function. Dev Neurorehabil. 2013;16(5):315–320.
    1. Caligari M, Godi M, Guglielmetti S, Franchignoni F, Nardone A. Eye tracking communication devices in amyotrophic lateral sclerosis: impact on disability and quality of life. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):546–552.
    1. Linse K, Rüger W, Joos M, Schmitz-Peiffer H, Storch A, Hermann A. Usability of eyetracking computer systems and impact on psychological wellbeing in patients with advanced amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2018;19(3–4):212–219.
    1. Linse K, Rüger W, Joos M, Schmitz-Peiffer H, Storch A, Hermann A. Eye-tracking–based assessment suggests preserved well-being in locked-in patients. Ann Neurol. 2017;81(2):310–315.
    1. Cohen AR, Lohani S, Manjila S, Natsupakpong S, Brown N, Cavusoglu MC. Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training. Childs Nerv Syst. 2013;29(8):1235–1244.
    1. Huber M, Rabin B, Docan C, Burdea GC, AbdelBaky M, Golomb MR. Feasibility of modified remotely monitored in-home gaming technology for improving hand function in adolescents with cerebral palsy. IEEE Trans Inf Technol Biomed. 2010;14(2):526–534.
    1. Hurkmans HL, Van den Berg-Emons RJ, Stam HJ. Energy expenditure in adults with cerebral palsy playing Wii sports. Arch Phys Med Rehabil. 2010;91(10):1577–1581.
    1. Vissers M, Van den Berg-Emons R, Sluis T, Bergen M, Stam H, Bussmann H. Barriers to and facilitators of everyday physical activity in persons with a spinal cord injury after discharge from the rehabilitation Centre. J Rehabil Med. 2008;40(6):461–467.
    1. Wilson PN, Foreman N, Stanton D. Virtual reality, disability and rehabilitation. Disabil Rehabil. 1997;19(6):213–220.
    1. de Mello Monteiro CB, Massetti T, da Silva TD, van der Kamp J, de Abreu LC, Leone C, et al. Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Res Dev Disabil. 2014;35(10):2430–2437.
    1. Faria DC, Fávero FM, Fontes SV, Quadros AAJ, Oliveira ASB. Perfil clinico de pacientes com doença do neuronio motor no ambulatorio da Unifesp. Rev Neurocienci. 2008;16:189–193.
    1. Ross MA, Miller R, Berchert L, Parry G, Barohn R, Armon C, et al. Toward earlier diagnosis of amyotrophic lateral sclerosis revised criteria. Neurology. 1998;50(3):768–772.
    1. Guedes K, Pereira C, Pavan K, Valério BCO. Cross-cultural adaptation and validation of als functional rating scale-revised in Portuguese language. Arq Neuropsiquiatr. 2010;68(1):44–47.
    1. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale: application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol. 1989;46(10):1121–1123.
    1. Pavan K, Marangoni BE, Zinezzi MO, Schmidt KB, Oliveira BC, Buainain RP, et al. Validation of the amyotrophic lateral sclerosis assessment questionnaire (ALSAQ-40) scale in the portuguese language. Arq Neuropsiquiatr. 2010;68(1):48–51.
    1. Jenkinson C, Levvy G, Fitzpatrick R, Garratt A. The amyotrophic lateral sclerosis assessment questionnaire (ALSAQ-40): tests of data quality, score reliability and response rate in a survey of patients. J Neurol Sci. 2000;180(1–2):94–100.
    1. DiFilippo NM, Jouaneh MK. Characterization of different Microsoft Kinect sensor models. IEEE Sensors J. 2015;15(8):4554–4564.
    1. Zhao K, Luximon A, Balasankar G, Chan C. A new representational method of human foot anatomical landmark and its application in foot posture data acquisition. Adv Appl Digital Human Model. 2014;4:79.
    1. Fujimura M, Sato S, Higashi T, Oguri K, editors. Study of mirror box therapy support system by leap motion. Consumer Electronics-Taiwan (ICCE-TW), 2015 IEEE International Conference on; 2015: IEEE.
    1. Marin G, Dominio F, Zanuttigh P, editors. Hand gesture recognition with leap motion and kinect devices. Image Processing (ICIP), 2014 IEEE International Conference on; 2014: IEEE.
    1. Hou Z, Zhang Y, Yang Y, editors. Enhancing touch screen games through a cable-driven force feedback device. Virtual Reality and Visualization (ICVRV), 2012 International Conference on; 2012: IEEE.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. Hillsdale, NJ: erlbaum; 1988.
    1. Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10(11):661.
    1. Lohse K, Shirzad N, Verster A, Hodges N, Van der Loos HM. Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J Neurol Phys Ther. 2013;37(4):166–175.
    1. de Mello Monteiro CB, da Silva TD, de Abreu LC, Fregni F, de Araujo LV, Ferreira FHIB, et al. Short-term motor learning through non-immersive virtual reality task in individuals with Down syndrome. BMC Neurol. 2017;17(1):71.
    1. Iosa M, Morone G, Fusco A, Castagnoli M, Fusco FR, Pratesi L, et al. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study. Top Stroke Rehabil. 2015;22(4):306–316.
    1. Bulmaro A, Van der Loos H. Biofeedback vs. game scores for reducing trunk compensation after stroke: a randomized crossover trial (vol 25, pg 96, 2017). Top Stroke Rehabil 2018;25(3):239-.
    1. Lin C-HJ, Yang H-C, Knowlton BJ, Wu AD, Iacoboni M, Ye Y-L, et al. Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. NeuroImage. 2018;181:1–15.
    1. Linse K, Aust E, Joos M, Hermann A. Communication matters–pitfalls and promise of hightech communication devices in palliative care of severely physically disabled patients with amyotrophic lateral sclerosis. Front Neurol. 2018;9:603.

Source: PubMed

3
Subscribe