Genetic profiling of fatty acid desaturase polymorphisms identifies patients who may benefit from high-dose omega-3 fatty acids in cardiac remodeling after acute myocardial infarction-Post-hoc analysis from the OMEGA-REMODEL randomized controlled trial

Raymond Y Kwong, Bobak Heydari, Yin Ge, Shuaib Abdullah, Kana Fujikura, Kyoichi Kaneko, William S Harris, Michael Jerosch-Herold, Elliott M Antman, Jonathan G Seidman, Marc A Pfeffer, Raymond Y Kwong, Bobak Heydari, Yin Ge, Shuaib Abdullah, Kana Fujikura, Kyoichi Kaneko, William S Harris, Michael Jerosch-Herold, Elliott M Antman, Jonathan G Seidman, Marc A Pfeffer

Abstract

Background: The double-blind OMEGA-REMODEL placebo-controlled randomized trial of high-dose omega-3 fatty acids (O-3FA) post-acute myocardial infarction (AMI) reported improved cardiac remodeling and attenuation of non-infarct myocardial fibrosis. Fatty acid desaturase 2 (FADS2) gene cluster encodes key enzymes in the conversion of essential omega-3 and omega-6 fatty acids into active arachidonic (ArA) and eicosapentaenoic acids (EPA), which influence cardiovascular outcomes.

Methods and results: We tested the hypothesis that the genotypic status of FADS2 (rs1535) modifies therapeutic response of O-3FA in post-AMI cardiac remodeling in 312 patients. Consistent with known genetic polymorphism of FADS2, patients in our cohort with the guanine-guanine (GG) genotype had the lowest FADS2 activity assessed by arachidonic acid/linoleic acid (ArA/LA) ratio, compared with patients with the adenine-adenine (AA) and adenine-guanine (AG) genotypes (GG:1.62±0.35 vs. AA: 2.01±0.36, p<0.0001; vs. AG: 1.76±0.35, p = 0.03). When randomized to 6-months of O-3FA treatment, GG patients demonstrated significant lowering of LV end-systolic volume index (LVESVi), N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and galectin-3 levels compared to placebo (-4.4 vs. 1.2 ml/m2, -733 vs. -181 pg/mL, and -2.0 vs. 0.5 ng/mL; p = 0.006, 0.006, and 0.03, respectively). In contrast, patients with either AA or AG genotype did not demonstrate significant lowering of LVESVi, NT-proBNP, or galectin-3 levels from O-3FA treatment, compared to placebo. The odds ratios for improving LVESVi by 10% with O-3FA treatment was 7.2, 1.6, and 1.2 in patients with GG, AG, and AA genotypes, respectively.

Conclusion: Genetic profiling using FADS2 genotype can predict the therapeutic benefits of O-3FA treatment against adverse cardiac remodeling during the convalescent phase of AMI.

Clinical trial registration information: clinicaltrials.gov Identifier: NCT00729430.

Conflict of interest statement

The commercial affiliation of author WH with OmegaQuant does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Quantitative assessment of cardiac remodeling…
Fig 1. Quantitative assessment of cardiac remodeling and myocardial fibrosis by cardiac magnetic resonance imaging.
From left to right, a short-axis cine image, a late gadolinium enhancement (LGE) infarction image, and a myocardial extracellular volume (ECV) map in a matching short-axis location of the left ventricle are shown, respectively. LGE characterizes areas of subendocardial infarct (white arrows). An ECV map was constructed by serial T1 maps before and after gadolinium contrast injection. Non-infarct fibrosis was determined from the ECV maps with matching segments containing LGE removed.
Fig 2. Markedly different fatty acid desaturase…
Fig 2. Markedly different fatty acid desaturase activity was seen in patients with various rs-1535 genotypes.
Fatty acid desaturase activity was assessed by the ArA/LA ratio in red blood cell membrane assay. Note that patients with GG alleles have diminished ArA/LA ratio consistent with reduced fatty acid desaturase activity.
Fig 3. Significant improvement of post-AMI LV…
Fig 3. Significant improvement of post-AMI LV remodeling from omega-3 fatty acids treatment in patients with the rs1535 GG genotype.
Note the divergent response in LVESVi improvement over the first 6 months after the index AMI in patients with GG allele who were assigned O-3FA compared to placebo. This divergence of cardiac remodeling response to O-3FA treatment was not observed in the AA and AG groups.
Fig 4. O-3FA treatment effects on cardiac…
Fig 4. O-3FA treatment effects on cardiac remodeling related biomarkers.
Patients with the GG genotype experienced substantial reduction of NT-proBNP, and Galectin-3, and serum lipoprotein A, when assigned O-3FA.
Fig 5. Effects on EPA, DHA, and…
Fig 5. Effects on EPA, DHA, and O3I levels from treatment assignment, stratified by rs-1535 genotypes.
P-values were adjusted by the Bonferroni method. The p-values came from paired Wilcoxon tests that compare for each sub-group the baseline against 6-month values.

References

    1. Bhatt AS, Ambrosy AP, Velazquez EJ. Adverse Remodeling and Reverse Remodeling After Myocardial Infarction. Curr Cardiol Rep. 2017;19(8):71 Epub 2017/07/01. 10.1007/s11886-017-0876-4 .
    1. Heydari B, Abdullah S, Pottala JV, Shah R, Abbasi S, Mandry D, et al. Effect of Omega-3 Acid Ethyl Esters on Left Ventricular Remodeling After Acute Myocardial Infarction: The OMEGA-REMODEL Randomized Clinical Trial. Circulation. 2016;134(5):378–91. Epub 2016/08/03. 10.1161/CIRCULATIONAHA.115.019949
    1. Bisgaard H, Stokholm J, Chawes BL, Vissing NH, Bjarnadottir E, Schoos AM, et al. Fish Oil-Derived Fatty Acids in Pregnancy and Wheeze and Asthma in Offspring. N Engl J Med. 2016;375(26):2530–9. Epub 2016/12/29. 10.1056/NEJMoa1503734 .
    1. Caspi A, Williams B, Kim-Cohen J, Craig IW, Milne BJ, Poulton R, et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proc Natl Acad Sci U S A. 2007;104(47):18860–5. Epub 2007/11/07. 10.1073/pnas.0704292104
    1. Martinelli N, Girelli D, Malerba G, Guarini P, Illig T, Trabetti E, et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am J Clin Nutr. 2008;88(4):941–9. Epub 2008/10/10. 10.1093/ajcn/88.4.941 .
    1. Jiang B, Liao R. The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res. 2010;3(4):410–6. 10.1007/s12265-010-9193-7 .
    1. Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, et al. Inflammation as a Driver of Adverse Left Ventricular Remodeling After Acute Myocardial Infarction. Journal of the American College of Cardiology. 2016;67(17):2050–60. Epub 2016/04/30. 10.1016/j.jacc.2016.01.073 .
    1. Sansbury BE, Spite M. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology. Circ Res. 2016;119(1):113–30. Epub 2016/06/25. 10.1161/CIRCRESAHA.116.307308
    1. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med. 2000;192(8):1197–204. Epub 2000/10/18. 10.1084/jem.192.8.1197
    1. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med. 2002;196(8):1025–37. Epub 2002/10/23. 10.1084/jem.20020760
    1. Leaf A, Weber PC. A new era for science in nutrition. Am J Clin Nutr. 1987;45(5 Suppl):1048–53. Epub 1987/05/01. 10.1093/ajcn/45.5.1048 .
    1. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. The New England journal of medicine. 2000;343(20):1445–53. Epub 2000/11/18. 10.1056/NEJM200011163432003 .
    1. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42. Epub 2002/01/30. 10.1161/hc0402.102975 .
    1. Deichmann R HA. Quantification of T1 Values by SNAPSHOT-FLASH NMR imaging. Journal of Magnetic Resonance. 1992;96:608–12.
    1. Coelho-Filho OR, Mongeon FP, Mitchell R, Moreno H Jr., Nadruz W Jr., Kwong R, et al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circulation Cardiovascular imaging. 2013;6(1):134–41. Epub 2012/11/20. 10.1161/CIRCIMAGING.112.979815
    1. Jerosch-Herold M, Sheridan DC, Kushner JD, Nauman D, Burgess D, Dutton D, et al. Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. American journal of physiology Heart and circulatory physiology. 2008;295(3):H1234–H42. Epub 2008/07/29. 10.1152/ajpheart.00429.2008
    1. Desta L, Jernberg T, Lofman I, Hofman-Bang C, Hagerman I, Spaak J, et al. Incidence, temporal trends, and prognostic impact of heart failure complicating acute myocardial infarction. The SWEDEHEART Registry (Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies): a study of 199,851 patients admitted with index acute myocardial infarctions, 1996 to 2008. JACC Heart Fail. 2015;3(3):234–42. Epub 2015/03/07. 10.1016/j.jchf.2014.10.007 .
    1. Hung J, Teng TH, Finn J, Knuiman M, Briffa T, Stewart S, et al. Trends from 1996 to 2007 in incidence and mortality outcomes of heart failure after acute myocardial infarction: a population-based study of 20,812 patients with first acute myocardial infarction in Western Australia. J Am Heart Assoc. 2013;2(5):e000172 Epub 2013/10/10. 10.1161/JAHA.113.000172
    1. Seropian IM, Toldo S, Van Tassell BW, Abbate A. Anti-inflammatory strategies for ventricular remodeling following ST-segment elevation acute myocardial infarction. Journal of the American College of Cardiology. 2014;63(16):1593–603. Epub 2014/02/18. 10.1016/j.jacc.2014.01.014 .
    1. Mozaffarian D, Wu JH. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. Journal of the American College of Cardiology. 2011;58(20):2047–67. Epub 2011/11/05. 10.1016/j.jacc.2011.06.063 .
    1. Gani OA, Sylte I. Molecular recognition of docosahexaenoic acid by peroxisome proliferator-activated receptors and retinoid-X receptor alpha. J Mol Graph Model. 2008;27(2):217–24. Epub 2008/06/13. 10.1016/j.jmgm.2008.04.008 .
    1. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):687–98. Epub 2010/09/04. 10.1016/j.cell.2010.07.041
    1. Zhao Y, Joshi-Barve S, Barve S, Chen LH. Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J Am Coll Nutr. 2004;23(1):71–8. Epub 2004/02/14. 10.1080/07315724.2004.10719345 .
    1. Spite M, Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 2014;19(1):21–36. Epub 2013/11/19. 10.1016/j.cmet.2013.10.006
    1. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101. Epub 2014/06/06. 10.1038/nature13479
    1. Keyes KT, Ye Y, Lin Y, Zhang C, Perez-Polo JR, Gjorstrup P, et al. Resolvin E1 protects the rat heart against reperfusion injury. Am J Physiol Heart Circ Physiol. 2010;299(1):H153–64. Epub 2010/05/04. 10.1152/ajpheart.01057.2009 .
    1. Kain V, Ingle KA, Colas RA, Dalli J, Prabhu SD, Serhan CN, et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J Mol Cell Cardiol. 2015;84:24–35. Epub 2015/04/15. 10.1016/j.yjmcc.2015.04.003
    1. Endo J, Arita M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J Cardiol. 2016;67(1):22–7. Epub 2015/09/12. 10.1016/j.jjcc.2015.08.002 .
    1. Liu Y, Wang R, Li J, Rao J, Li W, Falck JR, et al. Stable EET urea agonist and soluble epoxide hydrolase inhibitor regulate rat pulmonary arteries through TRPCs. Hypertens Res. 2011;34(5):630–9. Epub 2011/02/11. 10.1038/hr.2011.5
    1. Spector AA, Kim HY. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism. Biochim Biophys Acta. 2015;1851(4):356–65. Epub 2014/08/06. 10.1016/j.bbalip.2014.07.020
    1. Endo J, Sano M, Isobe Y, Fukuda K, Kang JX, Arai H, et al. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. J Exp Med. 2014;211(8):1673–87. Epub 2014/07/23. 10.1084/jem.20132011
    1. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK, et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet. 2011;7(7):e1002193 Epub 2011/08/11. 10.1371/journal.pgen.1002193
    1. Tanaka T, Shen J, Abecasis GR, Kisialiou A, Ordovas JM, Guralnik JM, et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 2009;5(1):e1000338 Epub 2009/01/17. 10.1371/journal.pgen.1000338
    1. Hu Y, Li H, Lu L, Manichaikul A, Zhu J, Chen YD, et al. Genome-wide meta-analyses identify novel loci associated with n-3 and n-6 polyunsaturated fatty acid levels in Chinese and European-ancestry populations. Hum Mol Genet. 2016;25(6):1215–24. Epub 2016/01/09. 10.1093/hmg/ddw002

Source: PubMed

3
Subscribe