Computerized physical and cognitive training improves the functional architecture of the brain in adults with Down syndrome: A network science EEG study

Alexandra Anagnostopoulou, Charis Styliadis, Panagiotis Kartsidis, Evangelia Romanopoulou, Vasiliki Zilidou, Chrysi Karali, Maria Karagianni, Manousos Klados, Evangelos Paraskevopoulos, Panagiotis D Bamidis, Alexandra Anagnostopoulou, Charis Styliadis, Panagiotis Kartsidis, Evangelia Romanopoulou, Vasiliki Zilidou, Chrysi Karali, Maria Karagianni, Manousos Klados, Evangelos Paraskevopoulos, Panagiotis D Bamidis

Abstract

Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain's intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.

Keywords: Adaptive neuroplasticity; Cognitive training; Down syndrome; Electroencephalography; Network science indices; Physical training.

© 2020 Massachusetts Institute of Technology.

Figures

Figure 1.
Figure 1.
Cortical connectivity between post- and pre-intervention networks and for each time point (t value > 3.52). The color scales represent t values. (A) Circular graph depicting the cortical reorganization in the Down syndrome (DS) brain (cyan: left hemisphere; lime: right hemisphere; blue: frontal lobe; green: occipital lobe; purple: parietal lobe; orange: temporal lobe; maroon: limbic lobe). The cortical reorganization is characterized by the strengthening of direct connections within (i) the left hemisphere, from nodes in the occipital and temporal lobe to the frontal lobe, and from the frontal lobe to the parietal lobe; (ii) the right hemisphere, from nodes in the occipital and temporal lobe to the frontal lobe; and between (i) nodes of the left fusiform gyrus, and inferior temporal lobe and the right frontal lobe; (ii) the right middle occipital lobe, subgyral, parahippocampal and fusiform gyrus to the left frontal lobe; (iii) the left inferior temporal lobe to the right anterior cingulate; and (iv) the right frontal lobe to the left postcentral and middle frontal gyrus. (B) Depiction of pre- and post-intervention networks in comparison to the null hypothesis. The t values indicate that the post-resting-state network has significantly stronger connections than the pre-network. (C) Post vs. Pre. Significant post-pre connectivity differences. Information direction is depicted through line arrows. The visualized networks are significant at a level of p < 0.05, corrected for multiple comparisons via the nonparametric NBS method with an internal threshold of 0.8. The difference in nodal size depicts the increase in the node degree centrality; the nodes with the most increased connectivity are located at the left parietal lobe.
Figure 2.
Figure 2.
Depiction of the shifts in the clustering coefficient (CC) of nodes. The colormap indicates significance at an alpha value (α < 0.05) coupled with the direction of the shift. The black nodes have no significant shifts in CC values post- and pre-intervention, blue nodes show a significant increase at α < 0.05, while magenta nodes show a significant decrease at α < 0.05.
Figure 3.
Figure 3.
Illustration of our theoretical proposal. Changes in connectivity and graph-theory characteristics, as an outcome of the adaptational neuroplasticity in the DS brain, characterize the post-intervention DS network (B → C) as a transitional state from the random-like organization of the pre-intervention DS network (Ahmadlou et al., 2013) (B) toward a healthier functional structure. Random networks (Erdös–Rényi, random graph) (A) are characterized by high global efficiency (GE; overintegration) and low clustering (under-segregation) and exemplify the general abilities of general intelligence (low intelligence level). Small-world (SW) networks (C) feature the functional organization of typically developed brain networks and incorporate characteristics of both random and regular networks, achieving an optimal balance between global and local characteristics. SW networks (C) are associated with the broad abilities’ component of general intelligence (higher intelligence level). The pre-intervention DS network (B) showed a random-like, simplified architecture, with impaired segregation and integration, as evidenced by the low CC (random network characteristic) and decreased GE and increased characteristic path length (CPL), respectively. This is in line with previous literature (Ahmadlou et al., ; Anderson et al., ; Pujol et al., ; Vega et al., 2015). The DS pre-network’s (B) integration-related characteristics (lower GE, higher CPL) are not common in random networks. Hence, the DS pre-network (B) is classified as random-like and not entirely random, maintaining an equal distance from random (A) and SW (C) networks. The DS post-network (B → C) exhibits an increase in integration (random network characteristic), as well as segregation (regular network characteristic), so it is interpreted as a step toward an SW-like architecture that highlights a healthier brain organization.
Figure 4.
Figure 4.
Down Syndrome–Long Lasting Memories (DS-LLM) Care design and flow of participants with DS. CT, cognitive training; PT, physical training.
Figure 5.
Figure 5.
EEG data analysis schematic. Preprocessing (blue): EEG data were interpolated and artifact corrected, visually inspected, high-pass, bandpass, and low-pass filtered. Independent component analysis (ICA), as well as visual inspection, were used to reject artifactual data. Fifteen segments of 4 seconds were randomly selected. Source reconstruction (orange): the data were processed within 0.53–35 Hz frequency range, source reconstructed (4-D LORETA, for all time points), and a previously used 863-node atlas (Paraskevopoulos et al., 2015) was applied to extract the time series of every voxel from every segment per subject, which were used to estimate 1,000 surrogate time series per subject/group. Functional connectivity (green): functional connectivity was computed for every segment of every subject, using the phase transfer entropy metric (PTE), and the 15 matrices of every subject were averaged into one. PTE networks were estimated for every surrogate time series of each subject to create a null model for the rejection of noise in the real data. A network science approach was taken for the computation of graph measures per subject. Group average statistics were calculated to identify the statistically significant differences between post- and pre-intervention networks.

References

    1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17. DOI:, PMID:, PMCID:
    1. Ahmadlou, M., Gharib, M., Hemmati, S., Vameghi, R., & Sajedi, F. (2013). Disrupted small-world brain network in children with Down syndrome. Clinical Neurophysiology, 124(9), 1755–1764. DOI:, PMID:
    1. Akiki, T. J., & Abdallah, C. G. (2019). Determining the hierarchical architecture of the human brain using subject-level clustering of functional networks. Scientific Reports, 9(1), 1–15. DOI:, PMID:, PMCID:
    1. Anderson, J. S., Nielsen, J. A., Ferguson, M. A., Burback, M. C., Cox, E. T., Dai, L., … Korenberg, J. R. (2013). Abnormal brain synchrony in Down syndrome. NeuroImage: Clinical, 2, 703–715. DOI:, PMID:, PMCID:
    1. Andrés, P., Parmentier, F. B. R., & Escera, C. (2006). The effect of age on involuntary capture of attention by irrelevant sounds: A test of the frontal hypothesis of aging. Neuropsychologia, 44(12), 2564–2568. DOI:, PMID:
    1. Babiloni, C., Albertini, G., Onorati, P., Muratori, C., Buffo, P., Condoluci, C., … Rossini, P. M. (2010). Cortical sources of EEG rhythms are abnormal in Down syndrome. Clinical Neurophysiology, 121(8), 1205–1212. DOI:, PMID:
    1. Babiloni, C., Albertini, G., Onorati, P., Vecchio, F., Buffo, P., Sarà, M., … Rossini, P. M. (2009). Inter-hemispheric functional coupling of eyes-closed resting EEG rhythms in adolescents with Down syndrome. Clinical Neurophysiology, 120(9), 1619–1627. DOI:, PMID:
    1. Bamidis, P. D., Fissler, P., Papageorgiou, S. G., Zilidou, V. I., Konstantinidis, E. I., Billis, A. S., … Kolassa, I. T. (2015). Gains in cognition through combined cognitive and physical training: The role of training dosage and severity of neurocognitive disorder. Frontiers in Aging Neuroscience, 7(152), 152. DOI:, PMID:, PMCID:
    1. Bamidis, P. D., Konstantinidis, E. I., Billis, A. S., & Siountas, A. (2017). From e-homes to living labs: Founding and organising the Greek active and healthy ageing living lab (thess-AHALL) and its networked services. Hellenic Journal of Nuclear Medicine, 20(2), 112–126.
    1. Bamidis, P. D., Vivas, A. B., Styliadis, C., Frantzidis, C. A., Klados, M. A., Schlee, W., … Papageorgiou, S. G. (2014). A review of physical and cognitive interventions in aging. Neuroscience & Biobehavioral Reviews, 44, 206–220. DOI:, PMID:
    1. Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in Cognitive Sciences, 22(1), 8–20. DOI:, PMID:
    1. Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 38(7), 813–822. DOI:, PMID:
    1. Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “reading the Mind in the eyes” Test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 42(2), 241–251. 10.1111/1469-7610.00715
    1. Baroncelli, L., Braschi, C., Spolidoro, M., Begenisic, T., Maffei, L., & Sale, A. (2011). Brain plasticity and disease: A matter of inhibition. Neural Plasticity, 11. DOI:, PMID:, PMCID:
    1. Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12(6), 512–523. DOI:, PMID:
    1. Bertapelli, F., Pitetti, K., Agiovlasitis, S., & Guerra-Junior, G. (2016). Overweight and obesity in children and adolescents with Down syndrome—prevalence, determinants, consequences, and interventions: A literature review. Research in Developmental Disabilities, 57, 181–192. DOI:, PMID:
    1. Billis, A. S., Konstantinidis, E. I., Mouzakidis, C., Tsolaki, M. N., Pappas, C., & Bamidis, P. D. (2010). A game-like interface for training seniors’ dynamic balance and coordination. In XII Mediterranean Conference on Medical and Biological Engineering and Computing (pp. 691–694). Springer Berlin Heidelberg. 10.1007/978-3-642-13039-7_174
    1. Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. 10.1088/1742-5468/2008/10/P10008
    1. Bohannon, R. W. (1997). Comfortable and maximum walking speed of adults aged 20–79 years: Reference values and determinants. Age and Ageing, 26(1), 15–19. DOI:, PMID:
    1. Bolaños, M., Bernat, E. M., He, B., & Aviyente, S. (2013). A weighted small world network measure for assessing functional connectivity. Journal of Neuroscience Methods, 212(1), 133–142. DOI:, PMID:
    1. Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336–349. DOI:, PMID:
    1. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(11), 1166–1170. DOI:, PMID:
    1. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P. E., McAuley, E., Cohen, N. J., … Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3316–3321. DOI:, PMID:, PMCID:
    1. Costa, A. C. S. (2011). On the promise of pharmacotherapies targeted at cognitive and neurodegenerative components of down syndrome. Developmental Neuroscience, 33(5), 414–427. DOI:, PMID:, PMCID:
    1. Cotman, C., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9), 464–472. DOI:, PMID:
    1. Dierssen, M. (2012). Down syndrome: The brain in trisomic mode. Nature, Reviews Neuroscience, 13(12), 844–858. DOI:, PMID:
    1. Dierssen, M., Herault, Y., & Estivill, X. (2009). Aneuploidy: From a physiological mechanism of variance to Down syndrome. Physiological Reviews, 89(3), 887–920. DOI:, PMID:
    1. Edgin, J. O., Clark, C. A. C., Massand, E., & Karmiloff-Smith, A. (2015). Building an adaptive brain across development: Targets for neurorehabilitation must begin in infancy. Frontiers in Behavioral Neuroscience, 9. 10.3389/fnbeh.2015.00232
    1. Elliott, D., Weeks, D. J., & Chua, R. (1994). Anomalous cerebral lateralization and Down syndrome. Brain and Cognition, 26(2), 191–195. DOI:, PMID:
    1. Erickson, K. I., Voss, M. W., Prakash, R., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017–3022. DOI:, PMID:, PMCID:
    1. Fonseca, L. M., Navatta, A. C. R., Bottino, C. M. C., & Miotto, E. C. (2015). Cognitive rehabilitation of dementia in adults with Down syndrome: A review of non-pharmacological interventions. Dementia and Geriatric Cognitive Disorders Extra, 5(3), 330–340. DOI:, PMID:, PMCID:
    1. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. 10.1016/0378-8733(78)90021-7
    1. García-Alba, J., Ramírez-Toraño, F., Esteba-Castillo, S., Bruña, R., Moldenhauer, F., Novell, R., … Fernández, A. (2019). Neuropsychological and neurophysiological characterization of mild cognitive impairment and Alzheimer’s disease in Down syndrome. Neurobiology of Aging, 84, 70–79. DOI:, PMID:
    1. Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., … Wallace, R. B. (1994). A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. Journal of Gerontology, 49(2), M85–M94. DOI:, PMID:
    1. Haier, R. J., Head, K., Head, E., & Lott, I. T. (2008). Neuroimaging of individuals with Down’s syndrome at-risk for dementia: Evidence for possible compensatory events. NeuroImage, 39(3), 1324–1332. DOI:, PMID:, PMCID:
    1. Hardee, J. P., & Fetters, L. (2017). The effect of exercise intervention on daily life activities and social participation in individuals with down syndrome: A systematic review. Research in Developmental Disabilities, 62, 81–103. DOI:, PMID:
    1. Hayasaka, S., & Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. NeuroImage, 23(1), 54–63. DOI:, PMID:
    1. Head, E., Lott, I. T., Patterson, D., Doran, E., & Haier, R. J. (2007). Possible Compensatory events in adult Down syndrome brain prior to the development of Alzheimer disease neuropathology: Targets for nonpharmacological intervention. Journal of Alzheimer’s Disease, 11(1), 61–76. DOI:, PMID:
    1. Hemmati, S., Ahmadlou, M., Gharib, M., Vameghi, R., & Sajedi, F. (2013). Down syndrome’s brain dynamics: Analysis of fractality in resting state. Cognitive Neurodynamics, 7(4), 333–340. DOI:, PMID:, PMCID:
    1. Hilger, K., Fukushima, M., Sporns, O., & Fiebach, C. J. (2019). Temporal stability of functional brain modules associated with human intelligence. Human Brain Mapping, 41(2), 362–372. DOI:, PMID:, PMCID:
    1. Humphries, M. D., & Gurney, K. (2008). Network “small-world- ness”: A quantitative method for determining canonical network equivalence. PLoS One, 3(4). DOI:, PMID:, PMCID:
    1. Ille, N., Berg, P., & Scherg, M. (2002). Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. Journal of Clinical Neurophysiology, 19(2), 113–124. DOI:, PMID:
    1. John, J., & Raven, J. (2003). Raven progressive matrices. Boston, MA: Springer US. 10.1007/978-1-4615-0153-4_11
    1. Johnson, B. L., & Nelson, J. K. (1979). Practical measurements for evaluation in physical education. Minneapolis, MN: Burgess Publishing.
    1. Jones, C. J., & Rikli, R. E. (2002). Measuring functional fitness in older adults. The Journal of Active Ageing, 1(1), 24–30.
    1. Kálmán, J., Juhász, A., Laird, G., Dickens, P., Járdánházy, T., Rimanóczy, A., … Janka, Z. (2009). Serum interleukin-6 levels correlate with the severity of dementia in Down syndrome and in Alzheimer’s disease. Acta Neurologica Scandinavica, 96(4), 236–240. DOI:, PMID:
    1. Kishnani, P. S., Heller, J. H., Spiridigliozzi, G. A., Lott, I., Escobar, L., Richardson, S., … McRae, T. (2010). Donepezil for treatment of cognitive dysfunction in children with Down syndrome aged 10–17. American Journal of Medical Genetics Part A, 152(12), 3028–3035. DOI:, PMID:
    1. Klados, M. A., Styliadis, C., Frantzidis, C. A., Paraskevopoulos, E., & Bamidis, P. D. (2016). Beta-band functional connectivity is reorganized in mild cognitive impairment after combined computerized physical and cognitive training. Frontiers in Neuroscience, 10, 55. DOI:, PMID:, PMCID:
    1. Konstantinidis, E. I., Bamparopoulos, G., & Bamidis, P. D. (2016). Moving real exergaming engines on the web: The webFitForAll case study in an active and healthy ageing living lab environment. IEEE Journal of Biomedical and Health Informatics, 21(3), 859–866. DOI:, PMID:
    1. Konstantinidis, E. I., Billis, A. S., Bratsas, C., Siountas, A. & Bamidis, P. D. (2016). Thessaloniki Active and Healthy Ageing Living Lab: The roadmap from a specific project to a living lab towards openness. In 9th International Conference PErvasive Technologies Related to Assistive Environments (PETRA) (pp. 1–4). 10.1145/2910674.2935846
    1. Kramer, A. F., Hahn, S., Cohen, N. J., Banich, M. T., McAuley, E., Harrison, C. R., … Colcombe, A. (1999). Ageing, fitness and neurocognitive function. Nature, 400(6743), 418–419. DOI:, PMID:
    1. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701. DOI:, PMID:
    1. Lee, T. W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Computation, 11(2), 409–433. DOI:, PMID:
    1. Lobier, M., Siebenhühner, F., Palva, S., & Palva, J. M. (2014). Phase transfer entropy: A novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions. NeuroImage, 85, 853–872. DOI:, PMID:
    1. Lott, I. T., Doran, E., Nguyen, V. Q., Tournay, A., Head, E., & Gillen, D. L. (2011). Down syndrome and dementia: A randomized, controlled trial of antioxidant supplementation. American Journal of Medical Genetics Part A, 155(8), 1939–1948. DOI:, PMID:, PMCID:
    1. McGlinchey, E., McCarron, M., Holland, A., & McCallion, P. (2019). Examining the effects of computerised cognitive training on levels of executive function in adults with Down syndrome. Journal of Intellectual Disability Research, 63(9), 1137–1150. DOI:, PMID:
    1. Menghini, D., Costanzo, F., & Vicari, S. (2011). Relationship between brain and cognitive processes in Down syndrome. Behavior Genetics, 41(3), 381–393. DOI:, PMID:
    1. Mohan, M., Carpenter, P. K., & Bennett, C. (2009). Donepezil for dementia in people with Down syndrome. Cochrane Database of Systematic Reviews, 2009(1). DOI:, PMID:, PMCID:
    1. Newman, M. E. J. (2002). Random graphs as models of networks. Handbook of Graphs and Networks, 35–68. 10.1002/3527602755.ch2
    1. Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256. 10.1137/S003614450342480
    1. Nichols, T. E., & Holmes, A. (2002). Nonparametric permutation tests for functional neuroimaging: A primer with examples. Human Brain Mapping, 15(1), 1–25. DOI:, PMID:, PMCID:
    1. Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J. M. (2011). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 156869. DOI:, PMID:, PMCID:
    1. Paraskevopoulos, E., Kraneburg, A., Herholz, S. C., Bamidis, P. D., & Pantev, C. (2015). Musical expertise is related to altered functional connectivity during audiovisual integration. Proceedings of the National Academy of Sciences, 112(40), 2015–10662. DOI:, PMID:, PMCID:
    1. Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18(1), 49–65. 10.1016/0167-8760(84)90014-X
    1. Pinter, J. D., Eliez, S., Schmitt, J. E., Capone, G. T., & Reiss, A. L. (2001). Neuroanatomy of Down’s syndrome: A high-resolution MRI study. American Journal of Psychiatry, 158(10), 1659–1665. DOI:, PMID:
    1. Pujol, J., del Hoyo, L., Blanco-Hinojo, L., de Sola, S., Macià, D., Martínez-Vilavella, G., … de la Torre, R. (2015). Anomalous brain functional connectivity contributing to poor adaptive behavior in down syndrome. Cortex, 64, 148–156. DOI:, PMID:
    1. Romanopoulou, E. D., Zilidou, V. I., & Bamidis, P. D. (2017). Creating and sustaining a social health care ecosystem: The case of LLM care services in Greece. Hellenic Journal of Nuclear Medicine, 20(2), 40–48.
    1. Romanopoulou, E. D., Zilidou, V. I., Savvidis, T., Chatzisevastou-Loukidou, C., & Bamidis, P. D. (2018). Unmet needs of persons with Down syndrome: How assistive technology and game-based training may fill the gap. Studies in Health Technology and Informatics, 251, 15–18.
    1. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52(3), 1059–1069. DOI:, PMID:
    1. Ruiz-González, L., Lucena-Antón, D., Salazar, A., Martín-Valero, R., & Moral-Munoz, J. A. (2019). Physical therapy in Down syndrome: Systematic review and meta-analysis. Journal of Intellectual Disability Research, 63(8), 1041–1067. DOI:, PMID:
    1. Sanz, J. M., Schoonheim, M. M., Damoiseaux, J. S., Rombouts, A. A., Maris, E., Barkhof, F., … Stam, C. J. (2010). Loss of “small-world” networks in Alzheimer’s disease: Graph analysis of fMRI resting-state functional connectivity. PLoS One, 5(11). DOI:, PMID:, PMCID:
    1. Scott, D. W. (1992). Multivariate density estimation: Theory, practice, and visualization. Hoboken, NJ: Wiley. 10.1002/9780470316849
    1. Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for falls in community-dwelling older adults using the Timed Up and Go Test. Physical Therapy, 80(9), 896–903. DOI:, PMID:
    1. Smith, G. E., Housen, P., Yaffe, K., Ruff, R., Kennison, R. F., Mahncke, H. W., … Zelinski, E. M. (2009). A cognitive training program based on principles of brain plasticity: Results from the improvement in memory with plasticity-based adaptive cognitive training (IMPACT) study. Journal of the American Geriatrics Society, 57(4), 594–603. DOI:, PMID:, PMCID:
    1. Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annual Review of Psychology, 67(1), 613–640. DOI:, PMID:, PMCID:
    1. Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 92–99. DOI:, PMID:
    1. Styliadis, C., Kartsidis, P., & Paraskevopoulos, E. (2015). Neuroimaging approaches for elderly studies. In Bamidis P. D., Tarnanas I., Hadjileontiadis L., & Tsolaki M. (Eds.), Handbook of research on innovations in the diagnosis and treatment of dementia (pp. 47–86). Hershey, PA: IGI Global. DOI:
    1. Styliadis, C., Kartsidis, P., Paraskevopoulos, E., Ioannides, A. A., & Bamidis, P. D. (2015). Neuroplastic effects of combined computerized physical and cognitive training in elderly individuals at risk for dementia: An eLORETA controlled study on resting states. Neural Plasticity, 2015. DOI:, PMID:, PMCID:
    1. Takashima, M., Takahashi, S., Iwata, O., Iwata, S., Yokoo, M., & Takashima, S. (2014). Neuronal plasticity in the developing and aging cerebral cortices of patients with Down syndrome. International Journal of Neurorehabilitation, 01(02). 10.4172/2376-0281.1000111
    1. Timme, N. M., Ito, S., Myroshnychenko, M., Nigam, S., Shimono, M., Yeh, F. C., … Beggs, J. M. (2016). High-degree neurons feed cortical computations. PLoS Computational Biology, 125(5), e1004–858. DOI:, PMID:, PMCID:
    1. Trojan, S., & Pokorny, J. (1999). Theoretical aspects of neuroplasticity. Physiological Research, 48, 87–98.
    1. Vega, J. N., Hohman, T. J., Pryweller, J. R., Dykens, E. M., & Thornton-Wells, T. A. (2015). Resting-state functional connectivity in individuals with Down syndrome and Williams syndrome compared with typically developing controls. Brain Connectivity, 5(8), 461–475. DOI:, PMID:, PMCID:
    1. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442. DOI:, PMID:
    1. Wells, K. F., & Dillon, E. K. (1952). The sit and reach—a test of back and leg flexibility. Research Quarterly. American Association for Health. Physical Education and Recreation, 23(1), 115–118. 10.1080/10671188.1952.10761965
    1. White, N. S., Alkire, M. T., & Haier, R. J. (2003). A voxel-based morphometric study of nondemented adults with down syndrome. NeuroImage, 20(1), 393–403. 10.1016/S1053-8119(03)00273-8
    1. Whitney, S. L., Marchetti, G. F., Morris, L. O., & Sparto, P. J. (2007). The reliability and validity of the four square step test for people with balance deficits secondary to a vestibular disorder. Archives of Physical Medicine and Rehabilitation, 88(1), 99–104. DOI:, PMID:
    1. Woolger,C. (2001). Wechsler intelligence scale for children-(WISC-III). In Understanding Psychological Assessment (pp. 219–233). Springer US. 10.1007/978-1-4615-1185-4_11
    1. Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A network visualization tool for human brain connectomics. PloS One, 8(7), e68910. DOI:, PMID:, PMCID:
    1. Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. DOI:, PMID:, PMCID:
    1. Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. NeuroImage, 53(4), 1197–1207. DOI:, PMID:

Source: PubMed

3
Subscribe