Serum fetuin-A and Ser312 phosphorylated fetuin-A responses and markers of insulin sensitivity after a single bout of moderate intensity exercise

Guang Ren, Robert L Bowers, Teayoun Kim, Alonzo J Mahurin, Peter W Grandjean, Suresh T Mathews, Guang Ren, Robert L Bowers, Teayoun Kim, Alonzo J Mahurin, Peter W Grandjean, Suresh T Mathews

Abstract

Fetuin-A (Fet-A), secreted by the liver and adipose tissue, inhibits insulin receptor tyrosine kinase activity and modulates insulin action. Numerous studies have shown association of elevated serum Fet-A concentrations with obesity, non-alcoholic fatty liver disease, and type 2 diabetes. Both moderate body weight loss (5%-10%) and significant body weight loss have been shown to decrease serum Fet-A and improve insulin sensitivity. Currently, there are no studies examining the effects of a single bout of exercise on serum Fet-A or Ser312-pFet-A (pFet-A) responses. We hypothesized that a single bout of moderate-intensity exercise will lower serum Fet-A and that these changes will be associated with an improvement in insulin sensitivity. Thirty-one individuals with obesity and 11 individuals with normal body weight were recruited. Participants underwent a single bout of treadmill walking, expending 500 kcal at 60%-70% VO2max . Oral glucose tolerance tests (OGTT) were administered before the single bout of exercise (Pre Ex) and 24 h after exercise (24h Post Ex). In individuals with obesity, we observed a transient elevation of serum Fet-A concentrations, but not pFet-A, immediately after exercise (Post Ex). Further, a single bout of exercise decreased glucoseAUC , insulinAUC , and insulin resistance index in individuals with obesity. Consistent with this improvement in insulin sensitivity, we observed that Fet-AAUC , pFet-AAUC , 2 h pFet-A, and 2 h pFet-A/Fet-A were significantly lower following a single bout of exercise. Further, reductions in serum Fet-AAUC 24h Post Ex were correlated with a reduction in insulin resistance index. Together, this suggests that alterations in serum Fet-A following a single bout of moderate-intensity endurance exercise may play a role in the improvement of insulin sensitivity. CLINICAL TRIAL REGISTRATION: NCT03478046; https://ichgcp.net/clinical-trials-registry/NCT03478046.

Keywords: fetuin-A; insulin sensitivity; obesity; phosphofetuin-A; single bout exercise.

Conflict of interest statement

The authors declared no conflicts of interest.

© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Figures

FIGURE 1
FIGURE 1
Timeline for blood sampling and single bout of exercise. On day 3, an oral glucose tolerance test was administered. On day 7, participants completed a single bout of endurance exercise expending 500 kcal, 60%–70% VO2max. Fasting blood samples were obtained pre‐exercise (Pre Ex), post exercise (Post Ex), and 24 h after the single bout of exercise (24h Post Ex) to assess Fet‐A, pFet‐A, and markers of insulin sensitivity. An oral glucose tolerance test was administered 24h Post Ex to analyze area under the curve (AUC) for glucose, insulin, insulin resistance index, Fet‐A, and pFet‐A
FIGURE 2
FIGURE 2
Fasting serum Fet‐A, pFet‐A, pFet‐A/Fet‐A, and metabolic indices individuals with normal weight (n = 11) and individuals with obesity (n = 31) and all participants (n = 42) before exercise (Pre Ex), immediately after exercise (Post Ex), and 24 h after a single bout of exercise expending 500 kcal (24h Post Ex). A representative Western blot depicting alterations in serum pFet‐A, from Pre Ex, Post Ex, and 24h Post Ex timepoints in an individual with normal weight and an individual with obesity is shown (inset). NEFA: non‐esterified fatty acids; HOMA‐IR: Homeostasis model assessment of insulin resistance; Adipose‐IR: adipose insulin resistance; and QUICKI: Quantitative insulin sensitivity check index. Data are expressed as Mean ± SEM. Statistical significance for comparisons of all participants are shown as follows: ***Pre‐Ex vs Post Ex, p < 0.001; ###Post Ex vs 24h Post Ex, p < 0.001; #Post Ex vs 24 h Post Ex, p < 0.05. In individuals with normal weight or obesity, different letters in superscript following values indicate statistical significance, p < 0.05
FIGURE 3
FIGURE 3
Area under the curve (AUC) for glucose, insulin, Fet‐A and pFet‐A was calculated following an oral glucose tolerance test to compare changes (Δ) from Pre Ex to 24h Post Ex in serum Fet‐AAUC with Δ in glucoseAUC (a), insulinAUC (b), and insulin resistance index (insulinAUC × glucoseAUC/106) (c); Δ in pFetAAUC with Δ in glucoseAUC (d); insulinAUC (e); insulin resistance index (f); and Δ in pFet‐AAUC/Fet‐AAUC with Δ in glucoseAUC (g); insulinAUC (h); insulin resistance index (i) in all participants. Correlation was determined using Pearson product‐moment correlation coefficient (individuals with normal weight shown using open circles and individuals with obesity shown using closed circles)

References

    1. Abdul‐Ghani, M. A. , Molina‐Carrion, M. , Jani, R. , Jenkinson, C. , & Defronzo, R. A. (2008). Adipocytes in subjects with impaired fasting glucose and impaired glucose tolerance are resistant to the anti‐lipolytic effect of insulin. Acta Diabetologica, 45, 147–150. 10.1007/s00592-008-0033-z
    1. Auberger, P. , Falquerho, L. , Contreres, J. O. , Pages, G. , Le Cam, G. , Rossi, B. , & Le Cam, A. (1989). Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti‐mitogenic activity. Cell, 58, 631–640.
    1. Booth, F. W. , Roberts, C. K. , & Laye, M. J. (2012). Lack of exercise is a major cause of chronic diseases. Comprehensive Physiology, 2, 1143–1211.
    1. Coates, P. A. , Luzio, S. D. , Brunel, P. , & Owens, D. R. (1995). Comparison of estimates of insulin sensitivity from minimal model analysis of the insulin‐modified frequently sampled intravenous glucose tolerance test and the isoglycemic hyperinsulinemic clamp in subjects with NIDDM. Diabetes, 44, 631–635. 10.2337/diabetes.44.6.631
    1. Devlin, J. T. , Hirshman, M. , Horton, E. D. , & Horton, E. S. (1987). Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes, 36, 434–439. 10.2337/diabetes.36.4.434
    1. Devlin, J. T. , & Horton, E. S. (1985). Effects of prior high‐intensity exercise on glucose metabolism in normal and insulin‐resistant men. Diabetes, 34, 973–979. 10.2337/diabetes.34.10.973
    1. Duncan, G. E. , Perri, M. G. , Theriaque, D. W. , Hutson, A. D. , Eckel, R. H. , & Stacpoole, P. W. (2003). Exercise training, without weight loss, increases insulin sensitivity and postheparin plasma lipase activity in previously sedentary adults. Diabetes Care, 26, 557–562. 10.2337/diacare.26.3.557
    1. Dziegielewska, K. M. , Brown, W. M. , Casey, S. J. , Christie, D. L. , Foreman, R. C. , Hill, R. M. , & Saunders, N. R. (1990). The complete cDNA and amino acid sequence of bovine fetuin. Its homology with alpha 2HS glycoprotein and relation to other members of the cystatin superfamily. Journal of Biological Chemistry, 265, 4354–4357. 10.1016/S0021-9258(19)39571-7
    1. Egan, B. , & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 17, 162–184. 10.1016/j.cmet.2012.12.012
    1. Evans, E. M. , Van Pelt, R. E. , Binder, E. F. , Williams, D. B. , Ehsani, A. A. , & Kohrt, W. M. (2001). Effects of HRT and exercise training on insulin action, glucose tolerance, and body composition in older women. Journal of Applied Physiology, 90, 2001. 10.1152/jappl.2001.90.6.2033
    1. Fischer, C. P. (2006). Interleukin‐6 in acute exercise and training: what is the biological relevance? Exercise in Immunology Review, 12, 6–33.
    1. Frayn, K. N. (2010). Fat as a fuel: emerging understanding of the adipose tissue‐skeletal muscle axis. Acta Psychologica, 199, 509–518.
    1. Gill, J. M. , Frayn, K. N. , Wootton, S. A. , Miller, G. J. , & Hardman, A. E. (2001). Effects of prior moderate exercise on exogenous and endogenous lipid metabolism and plasma factor VII activity. Clinical Science, 100, 517–527. 10.1042/cs1000517
    1. Gill, J. M. , Mees, G. P. , Frayn, K. N. , & Hardman, A. E. (2001). Moderate exercise, postprandial lipaemia and triacylglycerol clearance. European Journal of Clinical Investigation, 31, 201–207. 10.1046/j.1365-2362.2001.00799.x
    1. Goodyear, L. J. , & Kahn, B. B. (1998). Exercise, glucose transport, and insulin sensitivity. Annual Review of Medicine, 49, 235–261. 10.1146/annurev.med.49.1.235
    1. Goustin, A. S. , & Abou‐Samra, A. B. (2011). The "thrifty" gene encoding Ahsg/Fetuin‐A meets the insulin receptor: Insights into the mechanism of insulin resistance. Cellular Signalling, 23, 980–990.
    1. Goustin, A. S. , Derar, N. , & Abou‐Samra, A. B. (2013). Ahsg‐fetuin blocks the metabolic arm of insulin action through its interaction with the 95‐kD beta‐subunit of the insulin receptor. Cellular Signalling, 25, 981–988.
    1. Haglund, A. C. , Ek, B. , & Ek, P. (2001). Phosphorylation of human plasma alpha2‐Heremans‐Schmid glycoprotein (human fetuin) in vivo. The Biochemical Journal, 357, 437–445.
    1. Hawley, J. A. , Hargreaves, M. , Joyner, M. J. , & Zierath, J. R. (2014). Integrative biology of exercise. Cell, 159, 738–749. 10.1016/j.cell.2014.10.029
    1. Hayashi, Y. , Nagasaka, S. , Takahashi, N. , Kusaka, I. , Ishibashi, S. , Numao, S. , Lee, D. J. , Taki, Y. , Ogata, H. , Tokuyama, K. , & Tanaka, K. (2005). A single bout of exercise at higher intensity enhances glucose effectiveness in sedentary men. Journal of Clinical Endocrinology and Metabolism, 90, 4035–4040. 10.1210/jc.2004-2092
    1. Heath, G. W. , Gavin, J. R. 3rd , Hinderliter, J. M. , Hagberg, J. M. , Bloomfield, S. A. , & Holloszy, J. O. (1983). Effects of exercise and lack of exercise on glucose tolerance and insulin sensitivity. Journal of Applied Physiology, 55, 512–517. 10.1152/jappl.1983.55.2.512
    1. Helmrich, S. P. , Ragland, D. R. , & Paffenbarger, R. S. Jr (1994). Prevention of non‐insulin‐dependent diabetes mellitus with physical activity. Medicine and Science in Sports and Exercise, 26, 824–830. 10.1249/00005768-199407000-00003
    1. Henriksen, E. J. (2002). Invited review: Effects of acute exercise and exercise training on insulin resistance. Journal of Applied Physiology, 93, 788–796.
    1. Hoene, M. , Lehmann, R. , Hennige, A. M. , Pohl, A. K. , Haring, H. U. , Schleicher, E. D. , & Weigert, C. (2009). Acute regulation of metabolic genes and insulin receptor substrates in the liver of mice by one single bout of treadmill exercise. Journal of Physiology, 587, 241–252. 10.1113/jphysiol.2008.160275
    1. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444, 860–867. 10.1038/nature05485
    1. Ishibashi, A. , Ikeda, Y. , Ohguro, T. , Kumon, Y. , Yamanaka, S. , Takata, H. , Inoue, M. , Suehiro, T. , & Terada, Y. (2010). Serum fetuin‐A is an independent marker of insulin resistance in Japanese men. Journal of Atherosclerosis and Thrombosis, 17, 925–933. 10.5551/jat.3830
    1. Ix, J. H. , Shlipak, M. G. , Brandenburg, V. M. , Ali, S. , Ketteler, M. , & Whooley, M. A. (2006). Association between human fetuin‐A and the metabolic syndrome: data from the Heart and Soul Study. Circulation, 113, 1760–1767.
    1. Ix, J. H. , Wassel, C. L. , Kanaya, A. M. , Vittinghoff, E. , Johnson, K. C. , Koster, A. , Cauley, J. A. , Harris, T. B. , Cummings, S. R. , Shlipak, M. G. , & Health ABC Study (2008). Fetuin‐A and incident diabetes mellitus in older persons. JAMA, 300, 182–188.
    1. Jenkins, N. T. , McKenzie, J. A. , Hagberg, J. M. , & Witkowski, S. (2011). Plasma fetuin‐A concentrations in young and older high‐ and low‐active men. Metabolism, 60, 265–271. 10.1016/j.metabol.2010.01.026
    1. Jessen, N. , & Goodyear, L. J. (1985). Contraction signaling to glucose transport in skeletal muscle. Journal of Applied Physiology, 99, 330–337. 10.1152/japplphysiol.00175.2005
    1. Jialal, I. , & Pahwa, R. (2019). Fetuin‐A is also an adipokine. Lipids in Health and Disease, 18, 73. 10.1186/s12944-019-1021-8
    1. Katz, A. , Nambi, S. S. , Mather, K. , Baron, A. D. , Follmann, D. A. , Sullivan, G. , & Quon, M. J. (2000). Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. Journal of Clinical Endocrinology and Metabolism, 85, 2402–2410.
    1. Kennedy, J. W. , Hirshman, M. F. , Gervino, E. V. , Ocel, J. V. , Forse, R. A. , Hoenig, S. J. , Aronson, D. , Goodyear, L. J. , & Horton, E. S. (1999). Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes, 48, 1192–1197. 10.2337/diabetes.48.5.1192
    1. Khadir, A. , Kavalakatt, S. , Madhu, D. , Hammad, M. , Devarajan, S. , Tuomilehto, J. , & Tiss, A. (2018). Fetuin‐A levels are increased in the adipose tissue of diabetic obese humans but not in circulation. Lipids in Health and Disease, 17, 291. 10.1186/s12944-018-0919-x
    1. Kjobsted, R. , Munk‐Hansen, N. , Birk, J. B. , Foretz, M. , Viollet, B. , Bjornholm, M. , Zierath, J. R. , Treebak, J. T. , & Wojtaszewski, J. F. (2017). Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK. Diabetes, 66, 598–612. 10.2337/db16-0530
    1. Kraniou, Y. , Cameron‐Smith, D. , Misso, M. , Collier, G. , & Hargreaves, M. (1985). Effects of exercise on GLUT‐4 and glycogenin gene expression in human skeletal muscle. Journal of Applied Physiology, 88, 794–796. 10.1152/jappl.2000.88.2.794
    1. Lebreton, J. P. , Joisel, F. , Raoult, J. P. , Lannuzel, B. , Rogez, J. P. , & Humbert, G. (1979). Serum concentration of human alpha 2 HS glycoprotein during the inflammatory process: Evidence that alpha 2 HS glycoprotein is a negative acute‐phase reactant. The Journal of Clinical Investigation, 64, 1118–1129.
    1. Malin, S. K. , del Rincon, J. P. , Huang, H. , & Kirwan, J. P. (2014). Exercise‐induced lowering of fetuin‐A may increase hepatic insulin sensitivity. Medicine and Science in Sports and Exercise, 46, 2085–2090. 10.1249/MSS.0000000000000338
    1. Malin, S. K. , Mulya, A. , Fealy, C. E. , Haus, J. M. , Pagadala, M. R. , Scelsi, A. R. , Huang, H. , Flask, C. A. , McCullough, A. J. , & Kirwan, J. P. (2013). Fetuin‐A is linked to improved glucose tolerance after short‐term exercise training in nonalcoholic fatty liver disease. Journal of Applied Physiology, 115(7), 988–994. 10.1152/japplphysiol.00237.2013
    1. Malkova, D. , Evans, R. D. , Frayn, K. N. , Humphreys, S. M. , Jones, P. R. , & Hardman, A. E. (2000). Prior exercise and postprandial substrate extraction across the human leg. American Journal of Physiology. Endocrinology and Metabolism, 279, E1020–E1028. 10.1152/ajpendo.2000.279.5.E1020
    1. Mathews, S. T. , Chellam, N. , Srinivas, P. R. , Cintron, V. J. , Leon, M. A. , Goustin, A. S. , & Grunberger, G. (2000). Alpha2‐HSG, a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor. Molecular and Cellular Endocrinology, 164, 87–98.
    1. Mathews, S. T. , Rakhade, S. , Zhou, X. , Parker, G. C. , Coscina, D. V. , & Grunberger, G. (2006). Fetuin‐null mice are protected against obesity and insulin resistance associated with aging. Biochemical and Biophysical Research Communications, 350, 437–443. 10.1016/j.bbrc.2006.09.071
    1. Mathews, S. T. , Srinivas, P. R. , Leon, M. A. , & Grunberger, G. (1997). Bovine fetuin is an inhibitor of insulin receptor tyrosine kinase. Life Sciences, 61, 1583–1592. 10.1016/S0024-3205(97)00737-6
    1. Matthews, D. R. , Hosker, J. P. , Rudenski, A. S. , Naylor, B. A. , Treacher, D. F. , & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and beta‐cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28, 412–419.
    1. Mikines, K. J. , Farrell, P. A. , Sonne, B. , Tronier, B. , & Galbo, H. (1988). Postexercise dose‐response relationship between plasma glucose and insulin secretion. Journal of Applied Physiology, 64(3), 988–999. 10.1152/jappl.1988.64.3.988
    1. Mikines, K. J. , Sonne, B. , Farrell, P. A. , Tronier, B. , & Galbo, H. (1988). Effect of physical exercise on sensitivity and responsiveness to insulin in humans. American Journal of Physiology, 254, E248–E259. 10.1152/ajpendo.1988.254.3.E248
    1. Mori, K. , Emoto, M. , Yokoyama, H. , Araki, T. , Teramura, M. , Koyama, H. , Shoji, T. , Inaba, M. , & Nishizawa, Y. (2006). Association of serum fetuin‐A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care, 29, 468. 10.2337/diacare.29.02.06.dc05-1484
    1. Pal, D. , Dasgupta, S. , Kundu, R. , Maitra, S. , Das, G. , Mukhopadhyay, S. , Ray, S. , Majumdar, S. S. , & Bhattacharya, S. (2012). Fetuin‐A acts as an endogenous ligand of TLR4 to promote lipid‐induced insulin resistance. Nature Medicine, 18(8), 1279–1285. 10.1038/nm.2851
    1. Pedersen, B. K. , & Febbraio, M. A. (2008). Muscle as an endocrine organ: Focus on muscle‐derived interleukin‐6. Physiological Reviews, 88, 1379–1406.
    1. Perseghin, G. , Price, T. B. , Petersen, K. F. , Roden, M. , Cline, G. W. , Gerow, K. , Rothman, D. L. , & Shulman, G. I. (1996). Increased glucose transport‐phosphorylation and muscle glycogen synthesis after exercise training in insulin‐resistant subjects. New England Journal of Medicine, 335, 1357–1362. 10.1056/NEJM199610313351804
    1. Putman, F. W. (1984). The Plasma Proteins. Academic Press.
    1. Qiu, S. H. , Sun, Z. L. , Cai, X. , Liu, L. , & Yang, B. (2012). Improving patients’ adherence to physical activity in diabetes mellitus: a review. Diabetes and Metabolism Journal, 36, 1–5.
    1. Ren, G. , Bowers, R. L. , Kim, T. , Araya‐Ramirez, F. , Mahurin, A. J. , Dean, D. M. , Grandjean, P. W. , & Mathews, S. T. (2020). Alterations of Serum Ser312‐Phosphorylated Fetuin‐A from exercise‐induced moderate body weight loss in individuals with obesity. Obesity, 28, 544–551. 10.1002/oby.22730
    1. Ren, G. , Kim, T. , Papizan, J. B. , Okerberg, C. K. , Kothari, V. M. , Zaid, H. , Bilan, P. J. , Araya‐Ramirez, F. , Littlefield, L. A. , Bowers, R. L. , Mahurin, A. J. , Nickles, M. M. , Ludvigsen, R. , He, X. , Grandjean, P. W. , & Mathews, S. T. (2019). Phosphorylation status of fetuin‐A is critical for inhibition of insulin action and is correlated with obesity and insulin resistance. American Journal of Physiology‐Endocrinology and Metabolism, 317, E250–E260. 10.1152/ajpendo.00089.2018
    1. Schulze, M. B. , & Hu, F. B. (2005). Primary prevention of diabetes: what can be done and how much can be prevented? Annual Review of Public Health, 26, 445–467. 10.1146/annurev.publhealth.26.021304.144532
    1. Srinivas, P. R. , Wagner, A. S. , Reddy, L. V. , Deutsch, D. D. , Leon, M. A. , Goustin, A. S. , & Grunberger, G. (1993). Serum alpha 2‐HS‐glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Molecular Endocrinology, 7, 1445–1455. 10.1210/mend.7.11.7906861
    1. Stefan, N. , Fritsche, A. , Weikert, C. , Boeing, H. , Joost, H. G. , Haring, H. U. , & Schulze, M. B. (2008). Plasma fetuin‐A levels and the risk of type 2 diabetes. Diabetes, 57, 2762–2767. 10.2337/db08-0538
    1. Stefan, N. , & Haring, H. U. (2013). The role of hepatokines in metabolism. Nature Reviews Endocrinology, 9, 144–152. 10.1038/nrendo.2012.258
    1. Thorell, A. , Hirshman, M. F. , Nygren, J. , Jorfeldt, L. , Wojtaszewski, J. F. , Dufresne, S. D. , Horton, E. S. , Ljungqvist, O. , & Goodyear, L. J. (1999). Exercise and insulin cause GLUT‐4 translocation in human skeletal muscle. American Journal of Physiology, 277, E733–E741. 10.1152/ajpendo.1999.277.4.E733
    1. Uhlen, M. , Fagerberg, L. , Hallstrom, B. M. , Lindskog, C. , Oksvold, P. , Mardinoglu, A. , Sivertsson, A. , Kampf, C. , Sjostedt, E. , Asplund, A. , Olsson, I. , Edlund, K. , Lundberg, E. , Navani, S. , Szigyarto, C. A. , Odeberg, J. , Djureinovic, D. Takanen, J. O. , Hober, S. , … Ponten F. (2015) Proteomics. Tissue‐based map of the human proteome. Science, 347, 1260419. 10.1126/science.1260419
    1. Votruba, S. B. , Atkinson, R. L. , Hirvonen, M. D. , & Schoeller, D. A. (2002). Prior exercise increases subsequent utilization of dietary fat. Medicine and Science in Sports and Exercise, 34, 1757–1765. 10.1097/00005768-200211000-00011
    1. Wallberg‐Henriksson, H. , & Holloszy, J. O. (1984). Contractile activity increases glucose uptake by muscle in severely diabetic rats. Journal of Applied Physiology, 57, 1045–1049. 10.1152/jappl.1984.57.4.1045
    1. Weikert, C. , Stefan, N. , Schulze, M. B. , Pischon, T. , Berger, K. , Joost, H. G. , Haring, H. U. , Boeing, H. , & Fritsche, A. (2008). Plasma fetuin‐A levels and the risk of myocardial infarction and ischemic stroke. Circulation, 118, 2555–2562. 10.1161/CIRCULATIONAHA.108.814418
    1. Willis, S. A. , Sargeant, J. A. , Thackray, A. E. , Yates, T. , Stensel, D. J. , Aithal, G. P. , & King, J. A. (2019). Effect of exercise intensity on circulating hepatokine concentrations in healthy men. Applied Physiology, Nutrition and Metabolism, 44, 1065–1072. 10.1139/apnm-2018-0818
    1. Wojtaszewski, J. F. , Hansen, B. F. , Gade, K. B. , Markuns, J. F. , Goodyear, L. J. , & Richter, E. A. (2000). Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes, 49, 325–331. 10.2337/diabetes.49.3.325
    1. Woltje, M. , Tschoke, B. , von Bulow, V. , Westenfeld, R. , Denecke, B. , Graber, S. , & Jahnen‐Dechent, W. (2006). CCAAT enhancer binding protein beta and hepatocyte nuclear factor 3beta are necessary and sufficient to mediate dexamethasone‐induced up‐regulation of alpha2HS‐glycoprotein/fetuin‐A gene expression. Journal of Molecular Endocrinology, 36, 261–277.

Source: PubMed

3
Subscribe