Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease

Darryl J Hill, Natalie J Griffiths, Elena Borodina, Mumtaz Virji, Darryl J Hill, Natalie J Griffiths, Elena Borodina, Mumtaz Virji

Abstract

The human species is the only natural host of Neisseria meningitidis, an important cause of bacterial meningitis globally, and, despite its association with devastating diseases, N. meningitidis is a commensal organism found frequently in the respiratory tract of healthy individuals. To date, antibiotic resistance is relatively uncommon in N. meningitidis isolates but, due to the rapid onset of disease in susceptible hosts, the mortality rate remains approx. 10%. Additionally, patients who survive meningococcal disease often endure numerous debilitating sequelae. N. meningitidis strains are classified primarily into serogroups based on the type of polysaccharide capsule expressed. In total, 13 serogroups have been described; however, the majority of disease is caused by strains belonging to one of only five serogroups. Although vaccines have been developed against some of these, a universal meningococcal vaccine remains a challenge due to successful immune evasion strategies of the organism, including mimicry of host structures as well as frequent antigenic variation. N. meningitidis express a range of virulence factors including capsular polysaccharide, lipopolysaccharide and a number of surface-expressed adhesive proteins. Variation of these surface structures is necessary for meningococci to evade killing by host defence mechanisms. Nonetheless, adhesion to host cells and tissues needs to be maintained to enable colonization and ensure bacterial survival in the niche. The aims of the present review are to provide a brief outline of meningococcal carriage, disease and burden to society. With this background, we discuss several bacterial strategies that may enable its survival in the human respiratory tract during colonization and in the blood during infection. We also examine several known meningococcal adhesion mechanisms and conclude with a section on the potential processes that may operate in vivo as meningococci progress from the respiratory niche through the blood to reach the central nervous system.

Figures

Figure 1. Schematic diagram showing structural organization…
Figure 1. Schematic diagram showing structural organization of N. meningitidis LPS and some important determinants of immunotypes
The membrane-located part of meningococcal LPS comprises lipid A bound to two KDO and two heptose (HepI and HepII) moieties. Extended from the membrane are the structurally variable α- and β-chains of LPS. The different immunotypes of LPS are determined by variations both in the HepI α-chain extensions (Glc, Gal, GlcNAc, Gal and sialic acid) and the HepII β-chain extensions (GlcNAc, PEA and Glc). These arise as a result of phase variation in a number of genes shown and account for the antigenic variation of meningococcal LPS (see [48] for details). PEA may be added at position 3 or 6 on HepII by two distinct enzymes encoded by lpt3 and lpt6 [143]. The α-chain structures of the L3, L7 and L8 immunotypes are indicated. LNnT and silaylation: the immunotypes L7/L9, L2/L4/L5 contain identical α-chains terminating in LNnT (Gal-GlcNAc-Gal-Glc structure bound to HepI) which can be sialylated. The L7 immunotype, found in serogroup B and C isolates, refers to the immunotype lacking sialic acid, whereas L3 is sialylated. Phase variation of the lgtA gene gives rise to the immunotype L8, which cannot be sialylated [48].
Figure 2. Pili of N. meningitidis
Figure 2. Pili of N. meningitidis
(A) Transmission electron micrograph of negatively stained preparations of a meningococcal strain (M. Virji and D.J.P. Ferguson, unpublished work). Bundles of hair-like pilus filaments stretch several micrometres from bacterial surfaces (arrows). The scale bar represents 0.5 μm. (B) Schematic diagram indicating the relative cellular location of the gene products involved in pilus biogenesis. Several of these proteins (PilD, F, M, N, O and P) are implicated in the early stages of pilus synthesis, others (PilC, G, H, I, J, K, and W) may be necessary for functional maturation of the pilus. The pilus is extruded through the outer-membrane pore formed by PilQ. The remainder of the proteins play roles in pilus function. For instance, PilF and PilT (both inner-membrane-associated ATPases) appear to have opposing roles in pilus extension and retraction, and control pilus-associated functions, including twitching motility. PilX has been reported to be involved in bacterial aggregation and could have a role in colonization through promotion of microcolony formation by N. meningitidis (based on [60]). (C) Ribbon diagram of the three-dimensional structure of a pilin monomer of strain C311 (M. Virji and A. Hadfield, unpublished work) based on that of N. gonorrhoeae pilin [144]. The asterisk shows the structure and position of the unusual glycan modification (digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose) of the pilin [69]. Pili are made up of multiple pilin monomers stacked in a helical array, such that each helical turn is made up of five monomers (shown in a schematic representation of the fibre cross-section, bottom right).
Figure 3. Structures of the β-barrel outer-membrane…
Figure 3. Structures of the β-barrel outer-membrane proteins NspA and Opc
(A) The ribbon diagram shown represents an Opa-like eight-stranded β-barrel with four surface-exposed loops. The structure is derived from the co-ordinates of an Opa-like molecule, NspA [82], and was kindly provided by Professor Leo Brady (Department of Biochemistry, University of Bristol, Bristol, U.K.). The transmembrane domains are highly conserved between NspA and Opa proteins. However, the flexible surface loops are dissimilar and, in Opa proteins, the first loop is semivariable (SV), whereas the second and third loops are more extensively variable (designated hypervariable: HV1 and HV2). (B) Structure of N. meningitidis Opc protein presented as a ribbon diagram. Opc is a ten-stranded β-barrel presenting five largely invariant surface-exposed loops. This Figure was kindly provided by Professor Jeremy Derrick (Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, U.K.) and is reprinted by permission from MacMillan Publishers Ltd: Nature Reviews Microbiology [23], copyright (2009) (http://www.nature.com/nrmicro/index.html).
Figure 4. Schematic overview of meningococcal interactions…
Figure 4. Schematic overview of meningococcal interactions at the epithelial barrier of the nasopharynx and the mode of barrier penetration
Encapsulated (and possibly acapsulate) meningococci inhaled via respiratory droplets must first adhere to the epithelium within the nasopharynx to avoid removal by innate immune mechanisms such as mucus clearance. Pili extending beyond the capsule are considered to mediate the primary interaction with epithelial cells. Capsule down-modulation (or up-regulation of host receptors during inflammatory condition) allows interactions between outer-membrane proteins and their cognate host receptors. For example, Opa proteins may bind to CEACAMs and HSPGs, and Opc proteins can interact with HSPGs and, via vitronectin and fibronectin, to their integrin receptors. Although some minor adhesins such as NhhA have been shown to interact with HSPGs, the receptors targeted by MspA, App and NadA remain to be determined. Engagement of CEACAMs, integrins and HSPGs can result in meningococcal internalization by epithelial cells (1) by triggering a variety of host cell signalling mechanisms. Meningococci can be found in subepithelial tissue (2) in healthy individuals thus cellular entry or otherwise traversal across the epithelium may not be an unusual event. In addition, the fact that meningococci can interact with subcellular proteins such as α-actinin may also lend some support to this notion, although the role of this interaction in vivo remains unclear. On crossing the epithelial barrier, meningococci are able to interact further with proteins of the extracellular matrix including fibronectin (Fn) and vitronectin (Vn). Internalized bacteria may also migrate back to the apical surface for transmission to a new host (3). An animated version of the Figure is available at http://www.ClinSci.org/cs/118/0547/cs1180547add.htm.
Figure 5. Meningococcal entry into and survival…
Figure 5. Meningococcal entry into and survival within the vasculature
Capillaries in close proximity to mucosal epithelial tissues are a possible point of entry into the blood for N. meningitidis. In vivo, meningococci initially encounter the basolateral surface of endothelial cells and need to traverse in a basal to apical direction to enter the vasculature. The in vitro studies, however, do not allow easy examination of basal interactions as cultured cells present their apical surfaces to the media. Both integrins and HSPGs are known to be expressed on the basolateral surface of endothelial cells and, hence, are likely targets for vascular penetration. However, it should be noted that these receptors are also expressed apically and are also probably involved in the exit from the bloodstream. Once in the blood, only capsulate meningococci appear to survive; whether acapsulate bacteria arising naturally can survive in any microenvironment is not known. In addition, meningococci are able to bind to a number of negative regulators of complement such as C4bp, factor H and vitronectin. Acquisition of such factors could lead to decreased complement-mediated killing in vivo. Interactions with vascular cells via protein adhesins and their cognate receptors and via LPS–TLR4 provoke an inflammatory response leading to cytokine release and cellular damage. This could increase further cell barrier penetration and leakage, which accounts for the damage and clinical symptoms observed during meningococcal sepsis, typified in latter stages by a petechial rash (see inset; from meningitis.org). LPS has also been shown to be toxic for human endothelial cells in vitro [40].
Figure 6. Meningococcal penetration of the BBB…
Figure 6. Meningococcal penetration of the BBB and interaction with the meninges leading to meningitis
In areas of low blood flow and, hence, low shear stress, meningococci have been shown to adhere to the vasculature within the brain [139]. In addition, cytoskeletal re-arrangements leading to lipid microdomain formation could facilitate resistance to shearing forces once bacteria are bound [145]. Whether bacterial transmigration in this niche is predominantly by transcytosis across intact cell barriers or requires damage to the barrier (for example, due to the action of pro-inflammatory cytokines) for ease of passage is unknown, although more than one mechanism may operate. Once the BBB is breached, meningococcal interaction with cells lining the leptomeninges leads to the release of pro-inflammatory cytokines [9,108,142], provoking an inflammatory reaction resulting in meningitis.

References

    1. Stabler R. A., Marsden G. L., Witney A. A., Li Y., Bentley S. D., Tang C. M., Hinds J. Identification of pathogen-specific genes through microarray analysis of pathogenic and commensal Neisseria species. Microbiology. 2005;151:2907–2922.
    1. Cartwright K. Chichester: John Wiley & Sons; 1995. Meningococcal Carriage and Disease.
    1. Frasch C. E., Zollinger W. D., Poolman J. T. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev. Infect. Dis. 1985;7:504–510.
    1. Brehony C., Jolley K. A., Maiden M. C. Multilocus sequence typing for global surveillance of meningococcal disease. FEMS Microbiol. Rev. 2007;31:15–26.
    1. Cartwright K. A., Stuart J. M., Jones D. M., Noah N. D. The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol. Infect. 1987;99:591–601.
    1. Orr H. J., Gray S. J., Macdonald M., Stuart J. M. Saliva and meningococcal transmission. Emerg. Infect. Dis. 2003;9:1314–1315.
    1. Caugant D. A., Hoiby E. A., Rosenqvist E., Froholm L. O., Selander R. K. Transmission of Neisseria meningitidis among asymptomatic military recruits and antibody analysis. Epidemiol. Infect. 1992;109:241–253.
    1. Emonts M., Hazelzet J. A., de Groot R., Hermans P. W. Host genetic determinants of Neisseria meningitidis infections. Lancet Infect. Dis. 2003;3:565–577.
    1. Stephens D. S., Greenwood B., Brandtzaeg P. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet. 2007;369:2196–2210.
    1. Wilder-Smith A. Meningococcal disease: risk for international travellers and vaccine strategies. Travel Med. Infect. Dis. 2008;6:182–186.
    1. Yazdankhah S. P., Kriz P., Tzanakaki G., Kremastinou J., Kalmusova J., Musilek M., Alvestad T., Jolley K. A., Wilson D. J., McCarthy N. D., et al. Distribution of serogroups and genotypes among disease-associated and carried isolates of Neisseria meningitidis from the Czech Republic, Greece, and Norway. J. Clin. Microbiol. 2004;42:5146–5153.
    1. Brandtzaeg P. Pathogenesis and pathophysiology of invasive meningococcal disease. In: Frosch M., Maiden M. C. J., editors. Handbook of Meningococcal Disease: Infection Biology, Vaccination, Clinical Management. Weinheim: Wiley-VCH; 2006. pp. 427–480.
    1. Borg J., Christie D., Coen P. G., Booy R., Viner R. M. Outcomes of meningococcal disease in adolescence: prospective, matched-cohort study. Pediatrics. 2009;123:e502–e509.
    1. Chaudhuri A., Martinez-Martin P., Kennedy P. G., Andrew Seaton R., Portegies P., Bojar M., Steiner I. EFNS guideline on the management of community-acquired bacterial meningitis: report of an EFNS Task Force on acute bacterial meningitis in older children and adults. Eur. J. Neurol. 2008;15:649–659.
    1. Perea-Milla E., Olalla J., Sanchez-Cantalejo E., Martos F., Matute-Cruz P., Carmona-Lopez G., Fornieles Y., Cayuela A., Garcia-Alegria J. Pre-hospital antibiotic treatment and mortality caused by invasive meningococcal disease, adjusting for indication bias. BMC Public Health. 2009;9:95.
    1. Gold R., Lepow M. L., Goldschneider I., Gotschlich E. C. Immune Response of human infants of polysaccharide vaccines of group A and C Neisseria meningitidis. J. Infect. Dis. 1977;136(Suppl.):S31–S35.
    1. Trotter C. L., Ramsay M. E. Vaccination against meningococcal disease in Europe: review and recommendations for the use of conjugate vaccines. FEMS Microbiol. Rev. 2007;31:101–107.
    1. Smith M. J. Meningococcal tetravalent conjugate vaccine. Expert Opin. Biol. Ther. 2008;8:1941–1946.
    1. Fredriksen J. H., Rosenqvist E., Wedege E., Bryn K., Bjune G., Froholm L. O., Lindbak A. K., Mogster B., Namork E., Rye U., et al. Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. NIPH Ann. 1991;14:67–79.
    1. Oster P., Lennon D., O'Hallahan J., Mulholland K., Reid S., Martin D. MeNZB: a safe and highly immunogenic tailor-made vaccine against the New Zealand Neisseria meningitidis serogroup B disease epidemic strain. Vaccine. 2005;23:2191–2196.
    1. Rodriguez A. P., Dickinson F., Baly A., Martinez R. The epidemiological impact of antimeningococcal B vaccination in Cuba. Mem. Inst. Oswaldo Cruz. 1999;94:433–440.
    1. Giuliani M. M., Adu-Bobie J., Comanducci M., Arico B., Savino S., Santini L., Brunelli B., Bambini S., Biolchi A., Capecchi B., et al. A universal vaccine for serogroup B meningococcus. Proc. Natl. Acad. Sci. U.S.A. 2006;103:10834–10839.
    1. Virji M. Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat. Rev. Microbiol. 2009;7:274–286.
    1. Gorringe A. R., Reddin K. M., Funnell S. G., Johansson L., Rytkonen A., Jonsson A. B. Experimental disease models for the assessment of meningococcal vaccines. Vaccine. 2005;23:2214–2217.
    1. Sjolinder H., Jonsson A. B. Imaging of disease dynamics during meningococcal sepsis. PLoS ONE. 2007;2:e241.
    1. Stephens D. S., Farley M. M. Pathogenic events during infection of the human nasopharynx with Neisseria meningitidis and Haemophilus influenzae. Rev. Infect. Dis. 1991;13:22–33.
    1. Segal E., Hagblom P., Seifert H. S., So M. Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. Proc. Natl. Acad. Sci. U.S.A. 1986;83:2177–2181.
    1. Stern A., Brown M., Nickel P., Meyer T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell. 1986;47:61–71.
    1. Frosch M., Vogel U. Structure and genetics of the meningococcal capsule. In: Frosch M., Maiden M. C. J., editors. Handbook of Meningococcal Disease: Infection Biology, Vaccination, Clinical Management. Weinheim: Wiley-VCH; 2006. pp. 145–162.
    1. van der Woude M. W., Baumler A. J. Phase and antigenic variation in bacteria. Clin. Microbiol. Rev. 2004;17:581–611.
    1. Sarkari J., Pandit N., Moxon E. R., Achtman M. Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol. Microbiol. 1994;13:207–217.
    1. Kahler C. M., Stephens D. S. Genetic basis for biosynthesis, structure, and function of meningococcal lipooligosaccharide (endotoxin) Crit. Rev. Microbiol. 1998;24:281–334.
    1. Jarva H., Ram S., Vogel U., Blom A. M., Meri S. Binding of the complement inhibitor C4bp to serogroup B Neisseria meningitidis. J. Immunol. 2005;174:6299–6307.
    1. McNeil G., Virji M. Phenotypic variants of meningococci and their potential in phagocytic interactions: the influence of opacity proteins, pili, PilC and surface sialic acids. Microb. Pathog. 1997;22:295–304.
    1. Vitovski S., Read R. C., Sayers J. R. Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J. 1999;13:331–337.
    1. Jones D. M., Borrow R., Fox A. J., Gray S., Cartwright K. A., Poolman J. T. The lipooligosaccharide immunotype as a virulence determinant in Neisseria meningitidis. Microb. Pathog. 1992;13:219–224.
    1. Frosch M., Weisgerber C., Meyer T. F. Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc. Natl. Acad. Sci. U.S.A. 1989;86:1669–1673.
    1. Claus H., Vogel U., Muhlenhoff M., Gerardy-Schahn R., Frosch M. Molecular divergence of the sia locus in different serogroups of Neisseria meningitidis expressing polysialic acid capsules. Mol. Gen. Genet. 1997;257:28–34.
    1. Warren L., Blacklow R. S. Biosynthesis of N-acetyl-neuraminic acid and cytidine-5′-monophosphoN-acetyl-neuraminic acid in Neisseria meningitidis. Biochem. Biophys. Res. Commun. 1962;7:433–438.
    1. Swartley J. S., Liu L. J., Miller Y. K., Martin L. E., Edupuganti S., Stephens D. S. Characterization of the gene cassette required for biosynthesis of the (α1→6)-linked N-acetyl-Dmannosamine-1-phosphate capsule of serogroup A Neisseria meningitidis. J. Bacteriol. 1998;180:1533–1539.
    1. Diaz Romero J., Outschoorn I. M. Current status of meningococcal group B vaccine candidates: capsular or noncapsular? Clin. Microbiol. Rev. 1994;7:559–575.
    1. Swartley J. S., Marfin A. A., Edupuganti S., Liu L. J., Cieslak P., Perkins B., Wenger J. D., Stephens D. S. Capsule switching of Neisseria meningitidis. Proc. Natl. Acad. Sci. U.S.A. 1997;94:271–276.
    1. Kahler C. M., Martin L. E., Shih G. C., Rahman M. M., Carlson R. W., Stephens D. S. The (α2→8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect. Immun. 1998;66:5939–5947.
    1. Tsang R. S., Law D. K., Tyler S. D., Stephens G. S., Bigham M., Zollinger W. D. Potential capsule switching from serogroup Y to B: the characterization of three such Neisseria meningitidis isolates causing invasive meningococcal disease in Canada. Can. J. Infect. Dis. Med. Microbiol. 2005;16:171–174.
    1. Beddek A. J., Li M. S., Kroll J. S., Jordan T. W., Martin D. R. Evidence for capsule switching between carried and disease-causing Neisseria meningitidis strains. Infect. Immun. 2009;77:2989–2994.
    1. Simoes M. J., Cunha M., Almeida F., Furtado C., Brum L. Molecular surveillance of Neisseria meningitidis capsular switching in Portugal, 2002–2006. Epidemiol. Infect. 2009;137:161–165.
    1. Snape M. D., Pollard A. J. Meningococcal polysaccharide-protein conjugate vaccines. Lancet Infect. Dis. 2005;5:21–30.
    1. Jennings M. P., Srikhanta Y. N., Moxon E. R., Kramer M., Poolman J. T., Kuipers B., van der Ley P. The genetic basis of the phase variation repertoire of lipopolysaccharide immunotypes in Neisseria meningitidis. Microbiology. 1999;145:3013–3021.
    1. Bayliss C. D., Hoe J. C., Makepeace K., Martin P., Hood D. W., Moxon E. R. Neisseria meningitidis escape from the bactericidal activity of a monoclonal antibody is mediated by phase variation of lgtG and enhanced by a mutator phenotype. Infect. Immun. 2008;76:5038–5048.
    1. Jennings M. P., Hood D. W., Peak I. R., Virji M., Moxon E. R. Molecular analysis of a locus for the biosynthesis and phase-variable expression of the lacto-N-neotetraose terminal lipopolysaccharide structure in Neisseria meningitidis. Mol. Microbiol. 1995;18:729–740.
    1. Gilbert M., Watson D. C., Cunningham A. M., Jennings M. P., Young N. M., Wakarchuk W. W. Cloning of the lipooligosaccharide α-2,3-sialyltransferase from the bacterial pathogens Neisseria meningitidis and Neisseria gonorrhoeae. J. Biol. Chem. 1996;271:28271–28276.
    1. Mandrell R. E., Kim J. J., John C. M., Gibson B. W., Sugai J. V., Apicella M. A., Griffiss J. M., Yamasaki R. Endogenous sialylation of the lipooligosaccharides of Neisseria meningitidis. J. Bacteriol. 1991;173:2823–2832.
    1. Mandrell R. E., Griffiss J. M., Macher B. A. Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydrate sequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS and human erythrocytes. J. Exp. Med. 1988;168:107–126.
    1. Schneider M. C., Exley R. M., Ram S., Sim R. B., Tang C. M. Interactions between Neisseria meningitidis and the complement system. Trends Microbiol. 2007;15:233–240.
    1. Jones C., Virji M., Crocker P. R. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol. Microbiol. 2003;49:1213–1225.
    1. Perkins-Balding D., Ratliff-Griffin M., Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol. Mol. Biol. Rev. 2004;68:154–171.
    1. Massari P., Ram S., Macleod H., Wetzler L. M. The role of porins in neisserial pathogenesis and immunity. Trends Microbiol. 2003;11:87–93.
    1. Proft T., Baker E. N. Pili in Gram-negative and Gram-positive bacteria - structure, assembly and their role in disease. Cell. Mol. Life Sci. 2009;66:613–635.
    1. Merz A. J., So M., Sheetz M. P. Pilus retraction powers bacterial twitching motility. Nature. 2000;407:98–102.
    1. Carbonnelle E., Hill D. J., Morand P., Griffiths N. J., Bourdoulous S., Murillo I., Nassif X., Virji M. Meningococcal interactions with the host. Vaccine. 2009;27(Suppl. 2):B78–B89.
    1. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A. Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol. Cell. 2006;23:651–662.
    1. Jonsson A. B., Ilver D., Falk P., Pepose J., Normark S. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol. 1994;13:403–416.
    1. Virji M., Alexandrescu C., Ferguson D. J., Saunders J. R., Moxon E. R. Variations in the expression of pili: the effect on adherence of Neisseria meningitidis to human epithelial and endothelial cells. Mol. Microbiol. 1992;6:1271–1279.
    1. Kirchner M., Meyer T. F. The PilC adhesin of the Neisseria type IV pilus-binding specificities and new insights into the nature of the host cell receptor. Mol. Microbiol. 2005;56:945–957.
    1. Orihuela C. J., Mahdavi J., Thornton J., Mann B., Wooldridge K. G., Abouseada N., Oldfield N. J., Self T., Ala'Aldeen D. A., Tuomanen E. I. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J. Clin. Invest. 2009;119:1638–1646.
    1. Hegge F. T., Hitchen P. G., Aas F. E., Kristiansen H., Lovold C., Egge-Jacobsen W., Panico M., Leong W. Y., Bull V., Virji M., et al. Unique modifications with phosphocholine and phosphoethanolamine define alternate antigenic forms of Neisseria gonorrhoeae type IV pili. Proc. Natl. Acad. Sci. U.S.A. 2004;101:10798–10803.
    1. Virji M. Post-translational modifications of meningococcal pili. Identification of common substituents: glycans and α-glycerophosphate: a review. Gene. 1997;192:141–147.
    1. Weiser J. N., Goldberg J. B., Pan N., Wilson L., Virji M. The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infect. Immun. 1998;66:4263–4267.
    1. Stimson E., Virji M., Makepeace K., Dell A., Morris H. R., Payne G., Saunders J. R., Jennings M. P., Barker S., Panico M., et al. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 1995;17:1201–1214.
    1. Virji M., Saunders J. R., Sims G., Makepeace K., Maskell D., Ferguson D. J. Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol. Microbiol. 1993;10:1013–1028.
    1. Marceau M., Forest K., Beretti J. L., Tainer J., Nassif X. Consequences of the loss of O-linked glycosylation of meningococcal type IV pilin on piliation and pilus-mediated adhesion. Mol. Microbiol. 1998;27:705–715.
    1. Serino L., Virji M. Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae. Mol. Microbiol. 2000;35:1550–1559.
    1. Weiser J. N., Shchepetov M., Chong S. T. Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect. Immun. 1997;65:943–950.
    1. Cundell D. R., Gerard N. P., Gerard C., Idanpaan-Heikkila I., Tuomanen E. I. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature. 1995;377:435–438.
    1. Serino L., Virji M. Genetic and functional analysis of the phosphorylcholine moiety of commensal Neisseria lipopolysaccharide. Mol. Microbiol. 2002;43:437–448.
    1. Kallstrom H., Blackmer Gill D., Albiger B., Liszewski M. K., Atkinson J. P., Jonsson A. B. Attachment of Neisseria gonorrhoeae to the cellular pilus receptor CD46: identification of domains important for bacterial adherence. Cell. Microbiol. 2001;3:133–143.
    1. Tobiason D. M., Seifert H. S. Inverse relationship between pilus-mediated gonococcal adherence and surface expression of the pilus receptor, CD46. Microbiology. 2001;147:2333–2340.
    1. Edwards J. L., Apicella M. A. I-Domain-containing integrins serve as pilus receptors for Neisseria gonorrhoeae adherence to human epithelial cells. Cell. Microbiol. 2005;7:1197–1211.
    1. Aho E. L., Dempsey J. A., Hobbs M. M., Klapper D. G., Cannon J. G. Characterization of the opa (class 5) gene family of Neisseria meningitidis. Mol. Microbiol. 1991;5:1429–1437.
    1. Stern A., Meyer T. F. Common mechanism controlling phase and antigenic variation in pathogenic neisseriae. Mol. Microbiol. 1987;1:5–12.
    1. Malorny B., Morelli G., Kusecek B., Kolberg J., Achtman M. Sequence diversity, predicted two-dimensional protein structure, and epitope mapping of neisserial Opa proteins. J. Bacteriol. 1998;180:1323–1330.
    1. Vandeputte-Rutten L., Bos M. P., Tommassen J., Gros P. Crystal structure of Neisserial surface protein A (NspA), a conserved outer membrane protein with vaccine potential. J. Biol. Chem. 2003;278:24825–24830.
    1. Callaghan M. J., Jolley K. A., Maiden M. C. Opacity-associated adhesin repertoire in hyperinvasive Neisseria meningitidis. Infect. Immun. 2006;74:5085–5094.
    1. Prince S. M., Achtman M., Derrick J. P. Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis. Proc. Natl. Acad. Sci. U.S.A. 2002;99:3417–3421.
    1. Virji M., Makepeace K., Ferguson D. J., Watt S. M. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol. Microbiol. 1996;22:941–950.
    1. Virji M., Watt S. M., Barker S., Makepeace K., Doyonnas R. The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol. Microbiol. 1996;22:929–939.
    1. Hammarstrom S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 1999;9:67–81.
    1. Virji M., Evans D., Hadfield A., Grunert F., Teixeira A. M., Watt S. M. Critical determinants of host receptor targeting by Neisseria meningitidis and Neisseria gonorrhoeae: identification of Opa adhesiotopes on the N-domain of CD66 molecules. Mol. Microbiol. 1999;34:538–551.
    1. de Jonge M. I., Hamstra H. J., van Alphen L., Dankert J., van der Ley P. Mapping the binding domains on meningococcal Opa proteins for CEACAM1 and CEA receptors. Mol. Microbiol. 2003;50:1005–1015.
    1. Villullas S., Hill D. J., Sessions R. B., Rea J., Virji M. Mutational analysis of human CEACAM1: the potential of receptor polymorphism in increasing host susceptibility to bacterial infection. Cell. Microbiol. 2007;9:329–346.
    1. Dansky-Ullmann C., Salgaller M., Adams S., Schlom J., Greiner J. W. Synergistic effects of IL-6 and IFN-γ on carcinoembryonic antigen (CEA) and HLA expression by human colorectal carcinoma cells: role for endogenous IFN-β. Cytokine. 1995;7:118–129.
    1. Fahlgren A., Baranov V., Frangsmyr L., Zoubir F., Hammarstrom M. L., Hammarstrom S. Interferon-γa tempers the expression of carcinoembryonic antigen family molecules in human colon cells: a possible role in innate mucosal defence. Scand J. Immunol. 2003;58:628–641.
    1. Griffiths N. J., Bradley C. J., Heyderman R. S., Virji M. IFN-γ amplifies NFκB-dependent Neisseria meningitidis invasion of epithelial cells via specific upregulation of CEA-related cell adhesion molecule 1. Cell. Microbiol. 2007;9:2968–2983.
    1. Moore J., Bailey S. E., Benmechernene Z., Tzitzilonis C., Griffiths N. J., Virji M., Derrick J. P. Recognition of saccharides by the OpcA, OpaD, and OpaB outer membrane proteins from Neisseria meningitidis. J. Biol. Chem. 2005;280:31489–31497.
    1. Virji M., Makepeace K., Moxon E. R. Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol. Microbiol. 1994;14:173–184.
    1. Virji M., Makepeace K., Peak I. R., Ferguson D. J., Jennings M. P., Moxon E. R. Opc- and pilus-dependent interactions of meningococci with human endothelial cells: molecular mechanisms and modulation by surface polysaccharides. Mol. Microbiol. 1995;18:741–754.
    1. Unkmeir A., Latsch K., Dietrich G., Wintermeyer E., Schinke B., Schwender S., Kim K. S., Eigenthaler M., Frosch M. Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol. Microbiol. 2002;46:933–946.
    1. de Vries F. P., Cole R., Dankert J., Frosch M., van Putten J. P. Neisseria meningitidis producing the Opc adhesin binds epithelial cell proteoglycan receptors. Mol. Microbiol. 1998;27:1203–1212.
    1. Duensing T. D., Wing J. S., van Putten J. P. Sulfated polysaccharide-directed recruitment of mammalian host proteins: a novel strategy in microbial pathogenesis. Infect. Immun. 1999;67:4463–4468.
    1. Hogasen K., Mollnes T. E., Brandtzaeg P. Low levels of vitronectin and clusterin in acute meningococcal disease are closely associated with formation of the terminal-complement complex and the vitronectin-thrombin-antithrombin complex. Infect. Immun. 1994;62:4874–4880.
    1. Feavers I. M., Pizza M. Meningococcal protein antigens and vaccines. Vaccine. 2009;27(Suppl. 2):B42–B50.
    1. Capecchi B., Adu-Bobie J., Di Marcello F., Ciucchi L., Masignani V., Taddei A., Rappuoli R., Pizza M., Arico B. Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol. Microbiol. 2005;55:687–698.
    1. Comanducci M., Bambini S., Caugant D. A., Mora M., Brunelli B., Capecchi B., Ciucchi L., Rappuoli R., Pizza M. NadA diversity and carriage in Neisseria meningitidis. Infect. Immun. 2004;72:4217–4223.
    1. Serruto D., Adu-Bobie J., Scarselli M., Veggi D., Pizza M., Rappuoli R., Arico B. Neisseria meningitidis App, a new adhesin with autocatalytic serine protease activity. Mol. Microbiol. 2003;48:323–334.
    1. Turner D. P., Marietou A. G., Johnston L., Ho K. K., Rogers A. J., Wooldridge K. G., Ala'Aldeen D. A. Characterization of MspA, an immunogenic autotransporter protein that mediates adhesion to epithelial and endothelial cells in Neisseria meningitidis. Infect. Immun. 2006;74:2957–2964.
    1. Swain C. L., Martin D. R. Survival of meningococci outside of the host: implications for acquisition. Epidemiol. Infect. 2007;135:315–320.
    1. Leimkugel J., Hodgson A., Forgor A. A., Pfluger V., Dangy J. P., Smith T., Achtman M., Gagneux S., Pluschke G. Clonal waves of Neisseria colonisation and disease in the African meningitis belt: eight-year longitudinal study in northern Ghana. PLoS Med. 2007;4:e101.
    1. van Deuren M., Brandtzaeg P., van der Meer J. W. Update on meningococcal disease with emphasis on pathogenesis and clinical management. Clin. Microbiol. Rev. 2000;13:144–166.
    1. Rowe H. A., Griffiths N. J., Hill D. J., Virji M. Co-ordinate action of bacterial adhesins and human carcinoembryonic antigen receptors in enhanced cellular invasion by capsulate serum resistant Neisseria meningitidis. Cell. Microbiol. 2007;9:154–168.
    1. Muenzner P., Rohde M., Kneitz S., Hauck C. R. CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteriainduced detachment of epithelial cells. J. Cell Biol. 2005;170:825–836.
    1. Virji M., Makepeace K., Ferguson D. J., Achtman M., Sarkari J., Moxon E. R. Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol. Microbiol. 1992;6:2785–2795.
    1. Sokolova O., Heppel N., Jagerhuber R., Kim K. S., Frosch M., Eigenthaler M., Schubert-Unkmeir A. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell. Microbiol. 2004;6:1153–1166.
    1. Cunha C. S., Griffiths N. J., Murillo I., Virji M. Neisseria meningitidis Opc invasin binds to the cytoskeletal protein α-actinin. Cell. Microbiol. 2009;11:389–405.
    1. Schubert-Unkmeir A., Sokolova O., Panzner U., Eigenthaler M., Frosch M. Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infect. Immun. 2007;75:899–914.
    1. Gupta S., Anderson R. M. Population structure of pathogens: the role of immune selection. Parasitol. Today. 1999;15:497–501.
    1. de Vries F. P., van Der Ende A., van Putten J. P., Dankert J. Invasion of primary nasopharyngeal epithelial cells by Neisseria meningitidis is controlled by phase variation of multiple surface antigens. Infect. Immun. 1996;64:2998–3006.
    1. Sim R. J., Harrison M. M., Moxon E. R., Tang C. M. Underestimation of meningococci in tonsillar tissue by nasopharyngeal swabbing. Lancet. 2000;356:1653–1654.
    1. Braun J. M., Blackwell C. C., Poxton I. R., El Ahmer O., Gordon A. E., Madani O. M., Weir D. M., Giersen S., Beuth J. Proinflammatory responses to lipo-oligosaccharide of Neisseria meningitidis immunotype strains in relation to virulence and disease. J. Infect. Dis. 2002;185:1431–1438.
    1. Brandtzaeg P., Bryn K., Kierulf P., Ovstebo R., Namork E., Aase B., Jantzen E. Meningococcal endotoxin in lethal septic shock plasma studied by gas chromatography, mass-spectrometry, ultracentrifugation, and electron microscopy. J. Clin. Invest. 1992;89:816–823.
    1. Brandtzaeg P., Kierulf P., Gaustad P., Skulberg A., Bruun J. N., Halvorsen S., Sorensen E. Plasma endotoxin as a predictor of multiple organ failure and death in systemic meningococcal disease. J. Infect. Dis. 1989;159:195–204.
    1. Brandtzaeg P., Bjerre A., Ovstebo R., Brusletto B., Joo G. B., Kierulf P. Neisseria meningitidis lipopolysaccharides in human pathology. J. Endotoxin Res. 2001;7:401–420.
    1. Chow J. C., Young D. W., Golenbock D. T., Christ W. J., Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J. Biol. Chem. 1999;274:10689–10692.
    1. Fransen F., Heckenberg S. G., Hamstra H. J., Feller M., Boog C. J., van Putten J. P., van de Beek D., van der Ende A., van der Ley P. Naturally occurring lipid A mutants in Neisseria meningitidis from patients with invasive meningococcal disease are associated with reduced coagulopathy. PLoS Pathog. 2009;5:e1000396.
    1. Geoffroy M. C., Floquet S., Metais A., Nassif X., Pelicic V. Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res. 2003;13:391–398.
    1. Uria M. J., Zhang Q., Li Y., Chan A., Exley R. M., Gollan B., Chan H., Feavers I., Yarwood A., Abad R., et al. A generic mechanism in Neisseria meningitidis for enhanced resistance against bactericidal antibodies. J. Exp. Med. 2008;205:1423–1434.
    1. Madico G., Welsch J. A., Lewis L. A., McNaughton A., Perlman D. H., Costello C. E., Ngampasutadol J., Vogel U., Granoff D. M., Ram S. The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance. J. Immunol. 2006;177:501–510.
    1. Nassif X., Pujol C., Morand P., Eugene E. Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol. Microbiol. 1999;32:1124–1132.
    1. Massari P., Henneke P., Ho Y., Latz E., Golenbock D. T., Wetzler L. M. Cutting edge: Immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent. J. Immunol. 2002;168:1533–1537.
    1. Massari P., Ho Y., Wetzler L. M. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc. Natl. Acad. Sci. U.S.A. 2000;97:9070–9075.
    1. Virji M., Griffiths N. J. Sixteenth International Pathogenic Neisseria Conference 2008. The Netherlands: Rotterdam; 2008. Binding of Opc to vitronectin contributes to increased serum resistance of Neisseria meningitidis isolates. P096 ( )
    1. Wiertz E. J., Delvig A., Donders E. M., Brugghe H. F., van Unen L. M., Timmermans H. A., Achtman M., Hoogerhout P., Poolman J. T. T-cell responses to outer membrane proteins of Neisseria meningitidis: comparative study of the Opa, Opc, and PorA proteins. Infect. Immun. 1996;64:298–304.
    1. Lee H. S., Boulton I. C., Reddin K., Wong H., Halliwell D., Mandelboim O., Gorringe A. R., Gray-Owen S. D. Neisserial outer membrane vesicles bind the coinhibitory receptor carcinoembryonic antigen-related cellular adhesion molecule 1 and suppress CD4+ T lymphocyte function. Infect. Immun. 2007;75:4449–4455.
    1. Wedege E., Bolstad K., Aase A., Herstad T. K., McCallum L., Rosenqvist E., Oster P., Martin D. Functional and specific antibody responses in adult volunteers in new zealand who were given one of two different meningococcal serogroup B outer membrane vesicle vaccines. Clin. Vaccine Immunol. 2007;14:830–838.
    1. Youssef A. R., van der Flier M., Estevao S., Hartwig N. G., van der Ley P., Virji M. Both Opa+ and Opa- pathogenic Neisseria induce sustained proliferative response in human CD4+ T cells. Infect. Immun. 2009;77:5170–5180.
    1. Chen T., Bolland S., Chen I., Parker J., Pantelic M., Grunert F., Zimmermann W. The CGM1a (CEACAM3/CD66d)-mediated phagocytic pathway of Neisseria gonorrhoeae expressing opacity proteins is also the pathway to cell death. J. Biol. Chem. 2001;276:17413–17419.
    1. Franzoso S., Mazzon C., Sztukowska M., Cecchini P., Kasic T., Capecchi B., Tavano R., Papini E. Human monocytes/macrophages are a target of Neisseria meningitidis adhesin A (NadA) J. Leukocyte Biol. 2008;83:1100–1110.
    1. Tavano R., Franzoso S., Cecchini P., Cartocci E., Oriente F., Arico B., Papini E. The membrane expression of Neisseria meningitidis adhesin A (NadA) increases the proimmune effects of MenB OMVs on human macrophages, compared with NadA-OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J. Leukocyte Biol. 2009;86:143–153.
    1. Steven N., Wood M. Chichester: Wiley; 1995. The Clinical Spectrum of Meningococcal Disease.
    1. Mairey E., Genovesio A., Donnadieu E., Bernard C., Jaubert F., Pinard E., Seylaz J., Olivo-Marin J. C., Nassif X., Dumenil G. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood-brain barrier. J. Exp. Med. 2006;203:1939–1950.
    1. Dunn K. L., Virji M., Moxon E. R. Investigations into the molecular basis of meningococcal toxicity for human endothelial and epithelial cells: the synergistic effect of LPS and pili. Microb. Pathog. 1995;18:81–96.
    1. Hardy S. J., Christodoulides M., Weller R. O., Heckels J. E. Interactions of Neisseria meningitidis with cells of the human meninges. Mol. Microbiol. 2000;36:817–829.
    1. Fowler M. I., Yin K. Y., Humphries H. E., Heckels J. E., Christodoulides M. Comparison of the inflammatory responses of human meningeal cells following challenge with Neisseria lactamica and with Neisseria meningitidis. Infect. Immun. 2006;74:6467–6478.
    1. Wright J. C., Hood D. W., Randle G. A., Makepeace K., Cox A. D., Li J., Chalmers R., Richards J. C., Moxon E. R. lpt6, a gene required for addition of phosphoethanolamine to inner-core lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae. J. Bacteriol. 2004;186:6970–6982.
    1. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A. Structure of the fibre-forming protein pilin at 2.6 Å resolution. Nature. 1995;378:32–38.
    1. Mikaty G., Soyer M., Mairey E., Henry N., Dyer D., Forest K. T., Morand P., Guadagnini S., Prevost M. C., Nassif X., Dumenil G. Extracellular bacterial pathogen induces host cell surface reorganization to resist shear stress. PLoS Pathog. 2009;5:e1000314.

Source: PubMed

3
Subscribe