Individual Differences Among Children in Sucrose Detection Thresholds: Relationship With Age, Gender, and Bitter Taste Genotype

Paule Valery Joseph, Danielle R Reed, Julie A Mennella, Paule Valery Joseph, Danielle R Reed, Julie A Mennella

Abstract

Background: Little research has focused on whether there are individual differences among children in their sensitivity to sweet taste and, if so, the biological correlates of such differences.

Objectives: Our goal was to understand how variations in children's sucrose detection thresholds relate to their age and gender, taste genotype, body composition, and dietary intake of added sugars.

Methods: Sucrose detection thresholds in 7- to 14-year-old children were tested individually using a validated, two-alternative, forced-choice, paired-comparison tracking method. Five genetic variants of taste genes were assayed: TAS1R3 and GNAT3 (sweet genes; one variant each) and the bitter receptor gene TAS2R38 (three variants). All children were measured for body weight and height. A subset of these children were measured for the percentage of body fat and waist circumference and provided added sugar intake by 24-hour dietary recall.

Results: Sucrose thresholds ranged from 0.23 to 153.8 mM with most of the children completing the threshold task (216/235; 92%). Some children were biologically related (i.e., siblings), and for the genetic analysis, one sibling from each family was studied. Variants in the bitter but not the sweet genes were related to sucrose threshold and sugar intake; children with two bitter-sensitive alleles could detect sucrose at lower concentrations (F(2,165) = 4.55, p = .01; rs1726866) and reported eating more added sugar (% kcal; F(2, 62) = 3.64, p = .03) than did children with less sensitive alleles. Age, gender, and indices of obesity also were related to child-to-child differences in sucrose threshold; girls were more sensitive than boys (t(214) = 2.0, p = .05), older children were more sensitive than younger children (r(214) = -.16, p = .02), and fatter (r(84) = -.22, p = .05) or more centrally obese children (r(84) = -.26, p = .02) were more sensitive relative to others.

Discussion: Inborn differences in bitter sensitivity may affect childhood dietary sugar intake with long-term health consequences. There may be a more complex interplay between the developing bitter and sweet taste systems than previously understood.

Conflict of interest statement

The authors have no conflicts of interest to report.

Figures

FIGURE 1
FIGURE 1
The tracking grid used in the paired comparison method to determine sucrose detection thresholds. The order of presentation of pairs of solutions was determined at random (presentation order 1 signifies water is presented first within that particular pair, whereas 2 signifies the solution with a tastant [sucrose] is presented first within that particular pair). Testing began at Step 10, which corresponded to a concentration of 3.2 mM sucrose. Participants were presented with a pair of solutions, asked to taste each solution following the test protocol, and to point to the solution that had a taste. The tracking grid was used to record whether a participant correctly (+) or incorrectly (−) identified the solution with a taste; the concentration of the tastant in the solution presented in the subsequent pair was increased after a single incorrect response and decreased after two consecutive correct responses. Testing continued until the participant attained four reversals in performance (circled and marked with arrows to indicate the direction of reversal); a participant’s threshold for a tastant was calculated as the mean of the log values of the last four reversals. In this example, the participant’s molar concentrations for each reversal were 10, 3.2, 5.6, and 1.8 mM. Thus, the calculation is [((−2.00) + (−2.49) + (−2.25) + (−2.74)/4)] = −2.37. We computed the antilog, which is ~4.2 mM.
FIGURE 2
FIGURE 2
Box plots of sucrose detection threshold by genotype group (median, upper and lower quartile, and minimum and maximum values). For each variant, groups that differ significantly by post hoc testing do not share a superscript.
Figure
Figure
No caption available.

References

    1. Bobowski N. K., Mennella J. A. ( 2015). Disruption in the relationship between blood pressure and salty taste thresholds among overweight and obese children. Journal of the Academy of Nutrition and Dietetics, 115, 1272– 1282. doi:10.1016/j.jand.2015.02.017
    1. Bufe B., Breslin P. A., Kuhn C., Reed D. R., Tharp C. D., Slack J. P., Meyerhof W. ( 2005). The molecular basis of individual differences in phenylthiocarbamide and propylthiouracil bitterness perception. Current Biology, 15, 322– 327. doi:10.1016/j.cub.2005.01.047
    1. Chang W. I., Chung J. W., Kim Y. K., Chung S. C., Kho H. S. ( 2006). The relationship between phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP) taster status and taste thresholds for sucrose and quinine. Archives of Oral Biology, 51, 427– 432. doi:10.1016/j.archoralbio.2005.10.002
    1. Chumlea W. C., Guo S. S., Kuczmarski R. J., Flegal K. M., Johnson C. L., Heymsfield S. B., Hubbard V. S. ( 2002). Body composition estimates from NHANES III bioelectrical impedance data. International Journal of Obesity and Related Metabolic Disorders, 26, 1596– 1609. doi:10.1038/sj.ijo.0802167
    1. Coldwell S. E., Oswald T. K., Reed D. R. ( 2009). A marker of growth differs between adolescents with high vs. low sugar preference. Physiology & Behavior, 96, 574– 580. doi:10.1016/j.physbeh.2008.12.010
    1. Cowart B. J., Beauchamp G. K. ( 1990). Early development of taste perception. In R. L. McBride, H. J. H. MacFie. (Eds.), Psychological basis of sensory evaluation (pp. 1– 17). London, UK: Elsevier.
    1. Demerath E. W., Schubert C. M., Maynard L. M., Sun S. S., Chumlea W. C., Pickfoff A., Sievogel R. M. ( 2006). Do changes in body mass index percentile reflect changes in body composition in children? Data from the Fels Longitudinal Study. Pediatrics, 117, e487– e495. doi:10.1542/peds.2005-0572
    1. Dietary Guidelines Advisory Committee ( 2015). Scientific report of the 2015 Dietary Guidelines Advisory Committee. Retrieved from
    1. Ervin R. B., Kit B. K., Carroll M. D., Ogden C. L. ( 2012). Consumption of added sugar among U.S. children and adolescents, 2005–2008. NCHS Data Brief. No. 87. Hyattsville, MD: National Center for Health Statistics; doi:10.3945/an.112.002279
    1. Fushan A. A., Simons C. T., Slack J. P., Drayna D. ( 2010). Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chemical Senses, 35, 579– 592. doi:10.1093/chemse/bjq063
    1. Fushan A. A., Simons C. T., Slack J. P., Manichaikul A., Drayna D. ( 2009). Allelic polymorphism within the TAS1R3 promoter is associated with human taste sensitivity to sucrose. Current Biology, 19, 1288– 1293. doi:10.1016/j.cub.2009.06.015
    1. Goldberg G. R., Black A. E., Jebb S. A., Cole T. J., Murgatroyd P. R., Coward W. A., Prentice A. M. ( 1991). Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. European Journal of Clinical Nutrition, 45, 569– 581.
    1. Guo S. W., Reed D. R. ( 2001). The genetics of phenylthiocarbamide perception. Annals of Human Biology, 28, 111– 142. doi:10.1080/03014460151056310
    1. Hong J. H., Chung J. W., Kim Y. K., Chung S. C., Lee S. W., Kho H. S. ( 2005). The relationship between PTC taster status and taste thresholds in young adults. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, 99, 711– 715. doi:10.1016/j.tripleo.2004.08.004
    1. Hoppu U., Laitinen K., Jaakkola J., Sandell M. ( 2015). The hTAS2R38 genotype is associated with sugar and candy consumption in preschool boys. Journal of Human Nutrition and Dietetics, 28, 45– 51. doi:10.1111/jhn.12249
    1. James C. E., Laing D. G., Oram N. ( 1997). A comparison of the ability of 8–9-year-old children and adults to detect taste stimuli. Physiology & Behavior, 62, 193– 197. doi:10.1016/S0031-9384(97)00030-9
    1. Keller K. L., Tepper B. J. ( 2004). Inherited taste sensitivity to 6-n-propylthiouracil in diet and body weight in children. Obesity Research, 12, 904– 912 doi:10.1038/oby.2004.110.
    1. Kim U. K., Jorgenson E., Coon H., Leppert M., Risch N., Drayna D. ( 2003). Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science, 299, 1221– 1225. doi:10.1126/science.1080190
    1. Kirkpatrick S. I., Subar A. F., Douglass D., Zimmerman T. P., Thompson F. E., Kahle L. L., Potischman N. ( 2014). Performance of the Automated Self-Administered 24-Hour Recall relative to a measure of true intakes and to an interviewer-administered 24-h recall. American Journal of Clinical Nutrition, 100, 233– 240. doi:10.3945/ajcn.114.083238
    1. Kuczmarski R. J., Ogden C. L., Guo S. S., Grummer-Strawn L. M., Flegal K. M., Mei Z., Johnson C. L. ( 2002). 2000 CDC growth charts for the United States: Methods and development. Vital and Health Statistics. Series 11, Data from the National Health Survey, 1– 190.
    1. Lipchock S. V., Mennella J. A., Spielman A. I., Reed D. R. ( 2013). Human bitter perception correlates with bitter receptor messenger RNA expression in taste cells. American Journal of Clinical Nutrition, 98, 1136– 1143. doi:10.3945/ajcn.113.066688
    1. McLaughlin S. K., McKinnon P. J., Margolskee R. F. ( 1992). Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature, 357, 563– 569. doi:10.1038/357563a0
    1. Mennella J. A. ( 2008). The sweet taste of childhood. In S. Firestein, G. K. Beauchamp. (Eds.), The senses: A comprehensive reference (Vol 4., Olfaction and Taste, pp. 183– 188). San Diego, CA: Academic Press.
    1. Mennella J. A., Finkbeiner S., Lipchock S. V., Hwang L. D., Reed D. R. ( 2014). Preferences for salty and sweet tastes are elevated and related to each other during childhood. PLOS ONE, 9, e92201. doi:10.1371/journal.pone.0092201
    1. Mennella J. A., Finkbeiner S., Reed D. R. ( 2012). The proof is in the pudding: Children prefer lower fat but higher sugar than do mothers. International Journal of Obesity, 36, 1285– 1291. doi:10.1038/ijo.2012.51
    1. Mennella J. A., Lukasewycz L. D., Griffith J. W., Beauchamp G. K. ( 2011). Evaluation of the Monell forced-choice, paired-comparison tracking procedure for determining sweet taste preferences across the lifespan. Chemical Senses, 36, 345– 355. doi:10.1093/chemse/bjq134
    1. Mennella J. A., Pepino M. Y., Duke F. F., Reed D. R. ( 2010a). Psychophysical dissection of genotype effects on human bitter perception. Chemical Senses, 36, 161– 167. doi:10.1093/chemse/bjq106
    1. Mennella J. A., Pepino M. Y., Duke F. F., Reed D. R. ( 2010b). Age modifies the genotype-phenotype relationship for the bitter receptor TAS2R38. BMC Genetics, 11, 60 doi:10.1186/1471-2156-11-60
    1. Mennella J. A., Pepino M. Y., Reed D. R. ( 2005). Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics, 115, e216– e222. doi:10.1542/peds.2004-1582
    1. Mennella J. A., Reed D. R., Mathew P. S., Roberts K. M., Mansfield C. J. ( 2015). “A spoonful of sugar helps the medicine go down”: Bitter masking by sucrose among children and adults. Chemical Senses, 40, 17– 25. doi:10.1093/chemse/bju053
    1. Mennella J. A., Reed D. R., Roberts K. M., Mathew P. S., Mansfield C. J. ( 2014). Age-related differences in bitter taste and efficacy of bitter blockers. PLOS ONE, 9, e103107 doi:10.1371/journal.pone.0103107
    1. Mennella J. A., Spector A. C., Reed D. R., Coldwell S. E. ( 2013). The bad taste of medicines: Overview of basic research on bitter taste. Clinical Therapeutics, 35, 1225– 1246. doi:10.1016/j.clinthera.2013.06.007
    1. Mokha J. S., Srinivasan S. R., Dasmahapatra P., Fernandez C., Chen W., Xu J., Berenson G. S. ( 2010). Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study. BMC Pediatrics, 10, 73 doi:10.1186/1471-2431-10-73
    1. National Cancer Institute ( 2014). ASA24™: ASA24 Automated Self-Administered 24-Hour Recall. Retrieved from
    1. Overberg J., Hummel T., Krude H., Wiegand S. ( 2012). Differences in taste sensitivity between obese and non-obese children and adolescents. Archives of Disease in Childhood, 97, 1048– 1052. doi:10.1136/archdischild-2011-301189
    1. Pasquet P., Frelut M. L., Simmen B., Hladik C. M., Monneuse M. O. ( 2007). Taste perception in massively obese and in non-obese adolescents. International Journal of Pediatric Obesity, 2, 242– 248. doi:10.1080/17477160701440521
    1. Pepino M. Y., Finkbeiner S., Beauchamp G. K., Mennella J. A. ( 2010). Obese women have lower monosodium glutamate taste sensitivity and prefer higher concentrations than do normal-weight women. Obesity, 18, 959– 965. 10.1038/oby.2009.493
    1. Pepino M. Y., Mennella J. A. ( 2007). Effects of cigarette smoking and family history of alcoholism on sweet taste perception and food cravings in women. Alcoholism, Clinical and Experimental Research, 31, 1891– 1899. doi:10.1111/j.1530-0277.2007.00519.x
    1. Pew Charitable Trust ( 2011). A city transformed: The racial and ethnic changes in Philadelphia over the last 20 years. Retrieved from
    1. Pew Charitable Trust ( 2014). Philadelphia: The state of the city, a 2014 update. Retrieved from
    1. Posner M. I., Rothbart M. K., Sheese B. E., Voelker P. ( 2012). Control networks and neuromodulators of early development. Developmental Psychology, 48, 827– 835. doi:10.1037/a0025530
    1. Pribitkin E., Rosenthal M. D., Cowart B. J. ( 2003). Prevalence and causes of severe taste loss in a chemosensory clinic population. Annals of Otology, Rhinology, and Laryngology, 112, 971– 978. doi:10.1177/000348940311201110
    1. Pronin A. N., Xu H., Tang H., Zhang L., Li Q., Li X. ( 2007). Specific alleles of bitter receptor genes influence human sensitivity to the bitterness of aloin and saccharin. Current Biology, 17, 1403– 1408. doi:10.1016/j.cub.2007.07.046
    1. Reed D. R., McDaniel A. H. ( 2006). The human sweet tooth. BMC Oral Health, 6, S17 doi:10.1186/1472-6831-6-S1-S17
    1. World Health Organization ( 2015). Guideline: Sugars intake for adults and children. Retrieved from

Source: PubMed

3
Subscribe