Echocardiographic and Biochemical Factors Predicting Arrhythmia Recurrence After Catheter Ablation of Atrial Fibrillation-An Observational Study

Emmanouil Charitakis, Lars O Karlsson, Joanna-Maria Papageorgiou, Ulla Walfridsson, Carl-Johan Carlhäll, Emmanouil Charitakis, Lars O Karlsson, Joanna-Maria Papageorgiou, Ulla Walfridsson, Carl-Johan Carlhäll

Abstract

Background: RFA is a well-established treatment for symptomatic patients with AF. However, the success rate of a single procedure is low. We aimed to investigate the association between the risk of recurrence of atrial fibrillation (AF) after a single radiofrequency ablation (RFA) procedure and cardiac neurohormonal function, left atrial (LA) mechanical function as well as proteins related to inflammation, fibrosis, and apoptosis. Methods and Results: We studied 189 patients undergoing RFA between January 2012 and April 2014, with a follow-up period of 12 months. A logistic regression analysis was performed to investigate the association between pre-ablation LA emptying fraction (LAEF), MR-proANP, Caspase-8 (CASP8), Neurotrophin-3 (NT3), and the risk for recurrence of AF after a single RFA procedure. 119 (63.0%) patients had a recurrence during a mean follow-up of 402 ± 73 days. An increased risk of recurrence was associated with: Elevated MR-proANP (fourth quartile vs. first quartile: HR, 2.80 (95% CI, 1.14-6.90]; P = 0.025); Low LAEF (fourth quartile vs. first quartile: hazard ratio [HR], 2.41 [95% CI, 1.01-5.79]; P = 0.045); Elevated CASP8 (fourth quartile vs. first quartile: HR 12.198 95% CI 2.216-67.129; P = 0.004); Elevated NT-3 (fourth quartile vs. first quartile: HR 7.485 95% CI 1.353-41.402; P = 0.021). In a receiver operating characteristic curve analysis, the combination of MR-proANP, CASP8, and NT3 produced an area under the curve of 0.819; CI 95% (0.710-0.928). Conclusions: Patients with better LA mechanical function and lower levels of atrial neurohormones as well as of proteins related to fibrosis and apoptosis, have a better outcome after an RFA procedure. Unique identifier: No. NCT01553045 (https://ichgcp.net/clinical-trials-registry/NCT01553045?term=NCT01553045&rank=1).

Keywords: apoptosis; atrial fibrillation; fibrosis; left atrial emptying fraction; natriuretic peptides; radiofrequency ablation.

Copyright © 2019 Charitakis, Karlsson, Papageorgiou, Walfridsson and Carlhäll.

Figures

Figure 1
Figure 1
Flow chart of the study participation inclusion. AF, atrial fibrillation; CASP8, caspase 8EF: ejection fraction; pats, patients; hsCRP, high sensitive C-reactive protein; RFA, radiofrequency ablation; NP, natriuretic peptides; NT3, neurotrophin-3.
Figure 2
Figure 2
ROC analysis of the prognostic value of the combination of MR-proANP, CASP8 and NT3 on identifying patients with high recurrence risk. AUC 0.819; CI 95% (0.710–0.928) p < 0.001. AUC, area under the receiver operating characteristic curve; CASP8, caspase 8; CI, confidence interval; MR-proANP, mid-regional fragment of the N-terminal precursor of atrial natriuretic peptide; NT3. neurotrophin-3.
Figure 3
Figure 3
ROC analysis of the prognostic value of the combination of LA EF, CASP8, and NT3 on identifying patients with high recurrence risk. AUC 0.814; CI 95% (0.698–0.931) p < 0.001. AUC, area under the receiver operating characteristic curve; CASP8, caspase 8; CI, confidence interval; LA EF, left atrial emptying fraction; NT3, neurotrophin-3.

References

    1. Assarsson E., Lundberg M., Holmquist G., Bjorkesten J., Thorsen S. B., Ekman D., et al. . (2014). Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability. PLoS ONE 9:e95192. 10.1371/journal.pone.0095192
    1. Balk E. M., Garlitski A. C., Alsheikh-Ali A. A., Terasawa T., Chung M., Ip S. (2010). Predictors of atrial fibrillation recurrence after radiofrequency catheter ablation: a systematic review. J. Cardiovasc. Electrophysiol. 21, 1208–1216. 10.1111/j.1540-8167.2010.01798.x
    1. Barmano N., Charitakis E., Karlsson J. E., Nystrom F. H., Walfridsson H., Walfridsson U. (2019a). Predictors of improvement in arrhythmia-specific symptoms and health-related quality of life after catheter ablation of atrial fibrillation. Clin. Cardiol. 42, 247–255. 10.1002/clc.23134
    1. Barmano N., Charitakis E., Kronstrand R., Walfridsson U., Karlsson J. E., Walfridsson H., et al. . (2019b). The association between alcohol consumption, cardiac biomarkers, left atrial size and re-ablation in patients with atrial fibrillation referred for catheter ablation. PLoS ONE 14:e0215121. 10.1371/journal.pone.0215121
    1. Burstein B., Nattel S. (2008). Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 51, 802–809. 10.1016/j.jacc.2007.09.064
    1. Calkins H., Kuck K. H., Cappato R., Brugada J., Camm A. J., Chen S. A., et al. . (2012). 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. Europace 14, 528–606. 10.1093/europace/eus027
    1. Charitakis E., Barmano N., Walfridsson U., Walfridsson H. (2017). Factors predicting arrhythmia-related symptoms and health-related quality of life in patients referred for radiofrequency ablation of atrial fibrillation: an observational study (the SMURF Study). JACC Clin Electrophysiol 3, 494–502. 10.1016/j.jacep.2016.12.004
    1. Charitakis E., Walfridsson H., Alehagen U. (2016). Short-term influence of radiofrequency ablation on NT-proBNP, MR-proANP, copeptin, and MR-proADM in patients with atrial fibrillation: data from the observational SMURF study. J. Am. Heart. Assoc. 5:e003557. 10.1161/JAHA.116.003557
    1. Charitakis E., Walfridsson U., Nystrom F., Nylander E., Stromberg A., Alehagen U., et al. . (2015). Symptom burden, Metabolic profile, Ultrasound findings, Rhythm, neurohormonal activation, haemodynamics and health-related quality of life in patients with atrial Fibrillation (SMURF): a protocol for an observational study with a randomised interventional component. BMJ Open 5:e008723. 10.1136/bmjopen-2015-008723
    1. Cheema A., Vasamreddy C. R., Dalal D., Marine J. E., Dong J., Henrikson C. A., et al. . (2006). Long-term single procedure efficacy of catheter ablation of atrial fibrillation. J. Interv. Card. Electrophysiol. 15, 145–155. 10.1007/s10840-006-9005-9
    1. Chou C. C., Lee H. L., Chang P. C., Wo H. T., Wen M. S., Yeh S. J., et al. . (2018). Left atrial emptying fraction predicts recurrence of atrial fibrillation after radiofrequency catheter ablation. PLoS ONE 13:e0191196. 10.1371/journal.pone.0191196
    1. Cristofaro B., Stone O. A., Caporali A., Dawbarn D., Ieronimakis N., Reyes M., et al. . (2010). Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia. Arterioscler. Thromb. Vasc. Biol. 30, 1143–1150. 10.1161/ATVBAHA.109.205468
    1. DeLong E. R., DeLong D. M., Clarke-Pearson D. L. (1988). Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845. 10.2307/2531595
    1. Dodson J. A., Neilan T. G., Shah R. V., Farhad H., Blankstein R., Steigner M., et al. . (2014). Left atrial passive emptying function determined by cardiac magnetic resonance predicts atrial fibrillation recurrence after pulmonary vein isolation. Circ. Cardiovasc. Imaging 7, 586–592. 10.1161/CIRCIMAGING.113.001472
    1. Fan J., Cao H., Su L., Ling Z., Liu Z., Lan X., et al. (2012). NT-proBNP, but not ANP and C-reactive protein, is predictive of paroxysmal atrial fibrillation in patients undergoing pulmonary vein isolation. J. Interv. Card. Electrophysiol. 33, 93–100. 10.1007/s10840-011-9606-9
    1. Goetze J. P., Friis-Hansen L., Rehfeld J. F., Nilsson B., Svendsen J. H. (2006). Atrial secretion of B-type natriuretic peptide. Eur. Heart J. 27, 1648–1650. 10.1093/eurheartj/ehl109
    1. Grubb A., Nyman U., Bjork J., Lindstrom V., Rippe B., Sterner G., et al. . (2005). Simple cystatin C-based prediction equations for glomerular filtration rate compared with the modification of diet in renal disease prediction equation for adults and the Schwartz and the Counahan-Barratt prediction equations for children. Clin. Chem. 51, 1420–1431. 10.1373/clinchem.2005.051557
    1. Haissaguerre M., Jais P., Shah D. C., Takahashi A., Hocini M., Quiniou G., et al. . (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666. 10.1056/NEJM199809033391003
    1. Kirchhof P., Benussi S., Kotecha D., Ahlsson A., Atar D., Casadei B., et al. . (2016). 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Heart J. 37, 2893–2962. 10.1093/eurheartj/ehw210
    1. Kruidering M., Evan G. I. (2000). Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50, 85–90. 10.1080/15216540050212088
    1. Letsas K. P., Weber R., Burkle G., Mihas C. C., Minners J., Kalusche D., et al. . (2009). Pre-ablative predictors of atrial fibrillation recurrence following pulmonary vein isolation: the potential role of inflammation. Europace 11, 158–163. 10.1093/europace/eun309
    1. Liu Z., Fitzgerald M., Meisinger T., Batra R., Suh M., Greene H., et al. . (2018). CD95-Ligand contributes to abdominal aortic aneurysm progression by modulating inflammation. Cardiovasc. Res. 115, 807–818. 10.1093/cvr/cvy264
    1. Luong C. L., Thompson D. J., Gin K. G., Jue J., Nair P., Lee P. K., et al. . (2016). Usefulness of the atrial emptying fraction to predict maintenance of sinus rhythm after direct current cardioversion for atrial fibrillation. Am. J. Cardiol. 118, 1345–1349. 10.1016/j.amjcard.2016.07.066
    1. Luscher T. F. (2017). Atrial fibrillation beyond the arrhythmia: hypercoagulability, adipose tissue, and fibrotic remodelling. Eur. Heart J. 38, 1–3. 10.1093/eurheartj/ehw674
    1. Mehrzad R., Rajab M., Spodick D. H. (2014). The three integrated phases of left atrial macrophysiology and their interactions. Int. J. Mol. Sci. 15, 15146–15160. 10.3390/ijms150915146
    1. Mukoyama M., Nakao K., Hosoda K., Suga S., Saito Y., Ogawa Y., et al. . (1991). Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J. Clin. Invest. 87, 1402–1412. 10.1172/JCI115146
    1. Nakanishi K., Fukuda S., Yamashita H., Kosaka M., Shirai N., Tanaka A., et al. . (2016). Pre-procedural serum atrial natriuretic peptide levels predict left atrial reverse remodeling after catheter ablation in patients with atrial fibrillation. JACC Clin. Electrophysiol. 2, 151–158. 10.1016/j.jacep.2015.12.010
    1. Rickham P. P. (1964). Human experimentation. code of ethics of the world medical association. declaration of Helsinki. Br. Med. J. 2:177.
    1. Sacher F., Corcuff J. B., Schraub P., Le Bouffos V., Georges A., Jones S. O., et al. . (2008). Chronic atrial fibrillation ablation impact on endocrine and mechanical cardiac functions. Eur. Heart J. 29, 1290–1295. 10.1093/eurheartj/ehm577
    1. Sultan A., Luker J., Andresen D., Kuck K. H., Hoffmann E., Brachmann J., et al. . (2017). Predictors of atrial fibrillation recurrence after catheter ablation: data from the german ablation registry. Sci. Rep. 7:16678. 10.1038/s41598-017-16938-6
    1. Suzuki E., Hirata Y., Kohmoto O., Sugimoto T., Hayakawa H., Matsuoka H., et al. . (1992). Cellular mechanisms for synthesis and secretion of atrial natriuretic peptide and brain natriuretic peptide in cultured rat atrial cells. Circ. Res. 71, 1039–1048. 10.1161/01.RES.71.5.1039
    1. Vizzardi E., D'Aloia A., Rocco E., Lupi L., Rovetta R., Quinzani F., et al. . (2012). How should we measure left atrium size and function? J. Clin. Ultrasound 40, 155–166. 10.1002/jcu.21871
    1. Yao Q., Song R., Ao L., Cleveland J. C., Jr., Fullerton D. A., Meng X. (2017). Neurotrophin 3 upregulates proliferation and collagen production in human aortic valve interstitial cells: a potential role in aortic valve sclerosis. Am. J. Physiol. Cell Physiol. 312, C697–C706. 10.1152/ajpcell.00292.2016
    1. Zhang Y., Chen A., Song L., Li M., Chen Y., He B. (2016). Association between baseline natriuretic peptides and atrial fibrillation recurrence after catheter ablation. Int. Heart J. 57, 183–189. 10.1536/ihj.15-355
    1. Zheng L., Jia X., Zhang C., Wang D., Cao Z., Wang J., et al. . (2015). Angiotensin II in atrial structural remodeling: the role of Ang II/JAK/STAT3 signaling pathway. Am. J. Transl. Res. 7, 1021–1031. Available online at:
    1. Zhuang Y., Yong Y. H., Chen M. L. (2014). Updating the evidence for the effect of radiofrequency catheter ablation on left atrial volume and function in patients with atrial fibrillation: a meta-analysis. JRSM Open 5:2054270414521185. 10.1177/2054270414521185

Source: PubMed

3
Subscribe