Comparison of biannual ultrasonography and annual non-contrast liver magnetic resonance imaging as surveillance tools for hepatocellular carcinoma in patients with liver cirrhosis (MAGNUS-HCC): a study protocol

Hyun A Kim, Kyung Ah Kim, Joon-Il Choi, Jeong Min Lee, Chang Hee Lee, Tae Wook Kang, Young-Mi Ku, Su Lim Lee, Yang Shin Park, Jeong Hee Yoon, Seong Hyun Kim, Moon Hyung Choi, Hyun A Kim, Kyung Ah Kim, Joon-Il Choi, Jeong Min Lee, Chang Hee Lee, Tae Wook Kang, Young-Mi Ku, Su Lim Lee, Yang Shin Park, Jeong Hee Yoon, Seong Hyun Kim, Moon Hyung Choi

Abstract

Background: Ultrasonography (US) is recommended as a standard surveillance tool for patients with a high risk of developing hepatocellular carcinoma (HCC). However, the low sensitivity of US for small HCC can lead to surveillance failure, resulting in advanced stage tumor presentations. For the early detection of HCC in high-risk patients and to improve survival and prognosis, a new efficient imaging tool with a high sensitivity for HCC detection is needed. The purpose of this study is to evaluate and compare the feasibility and efficacy of non-contrast magnetic resonance imaging (MRI) with US as a surveillance tool for HCC in patients with liver cirrhosis.

Methods: MAGNUS-HCC is a prospective, multicenter clinical trial with a crossover design for a single arm of patients. This study was approved by six Institutional Review Boards, and informed consent was obtained from all participants. All patients will undergo liver US every 6 months and non-contrast liver MRI every 12 months during a follow-up period of 3 years. If a focal liver lesion suspected of harboring HCC is detected, dynamic liver computed tomography (CT) will be performed to confirm the diagnosis. After the last surveillance round, patients without suspicion of HCC or who are not diagnosed with HCC will be evaluated with a dynamic liver CT to exclude false-negative findings. The primary endpoint is to compare the rate of detection of HCC by US examinations performed at 6-month intervals with that of yearly non-contrast liver MRI studies during a 3-year follow-up. The secondary endpoint is the survival of the patients who developed HCC within the 3-year follow-up period.

Discussion: MAGNUS-HCC is the first study to compare the feasibility of non-contrast MRI with US as a surveillance tool for the detection of HCC in high-risk patients. We anticipate that the evidence presented in this study will establish the efficacy of non-contrast MRI as a surveillance tool for HCC in high-risk patients.

Trial registration: The date of trial registration ( NCT02551250 ) in this study was September 15, 2015, and follow-up is still ongoing.

Keywords: Hepatocellular carcinoma; Liver cirrhosis; Magnetic resonance imaging; Surveillance; Ultrasonography.

Conflict of interest statement

Ethics approval and consent to participate

The study will include 211 patients under surveillance for HCC in six medical institutions (Seoul St. Mary’s Hospital, St. Vincent’s Hospital, Uijeongbu St. Mary’s Hospital, Seoul National University Hospital, Samsung Medical Center, and Korea University Guro Hospital) in Republic of Korea. This study was approved by six Institutional Review Boards of the ethical committee of Seoul St. Mary’s Hospital, The Catholic University of Korea, the ethical committee of St. Vincent’s Hospital, The Catholic University of Korea, the ethical committee of Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, the ethical committee of Seoul National University Hospital, the ethical committee of Samsung Medical Center and the ethical committee of Korea University Guro Hospital), and written informed consent was obtained from all human participants.

Consent for publication

We obtained consent for publication of these data (US images, non-contrast MRI, laboratory findings, age, gender) from all participating patients.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow chart providing an overview of the study design. US, ultrasonography; MRI, magnetic resonance imaging; AFP, α fetoprotein; PIVKA-II, protein induced by vitamin K absence/antagonist II; CT, computed tomography
Fig. 2
Fig. 2
Timeline for follow-up tests. US, ultrasonography; MRI, magnetic resonance imaging; CT, computed tomography; AFP, α fetoprotein; PIVKA-II, protein induced by vitamin K absence/antagonist II

References

    1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386. doi: 10.1002/ijc.29210.
    1. Bruix J, Reig M, Sherman M. Evidence-based diagnosis, staging, and treatment of patients with Hepatocellular carcinoma. Gastroenterology. 2016;150(4):835–853. doi: 10.1053/j.gastro.2015.12.041.
    1. Dulku G, Dhillon R, Goodwin M, Cheng W, Kontorinis N, Mendelson R. The role of imaging in the surveillance and diagnosis of hepatocellular cancer. J Med Imaging radiat Oncol. 2017;61(2):171–179. doi: 10.1111/1754-9485.12568.
    1. Izzo F, Piccirillo M, Albino V, Palaia R, Belli A, Granata V, Setola S, Fusco R, Petrillo A, Orlando R, et al. Prospective screening increases the detection of potentially curable hepatocellular carcinoma: results in 8,900 high-risk patients. HPB Official J Int Hepato Pancreato Biliary Assoc. 2013;15(12):985–990. doi: 10.1111/hpb.12080.
    1. Tseng PL, Wang JH, Tung HD, Hung CH, Kee KM, Chen CH, Chang KC, Lee CM, Changchien CS, Chen PF, et al. Optimal treatment increased survival of hepatocellular carcinoma patients detected with community-based screening. J Gastroenterol Hepatol. 2010;25(8):1426–1434. doi: 10.1111/j.1440-1746.2010.06285.x.
    1. Zhang BH, Yang BH, Tang ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol. 2004;130(7):417–422. doi: 10.1007/s00432-004-0552-0.
    1. Trevisani F, Santi V, Gramenzi A, Di Nolfo MA, Del Poggio P, Benvegnu L, Rapaccini G, Farinati F, Zoli M, Borzio F, et al. Surveillance for early diagnosis of hepatocellular carcinoma: is it effective in intermediate/advanced cirrhosis? Am J Gastroenterol. 2007;102(11):2448–2457. doi: 10.1111/j.1572-0241.2007.01395.x.
    1. Oeda S, Iwane S, Takasaki M, Furukawa NE, Otsuka T, Eguchi Y, Anzai K. Optimal follow-up of patients with viral hepatitis improves the detection of early-stage Hepatocellular carcinoma and the prognosis of survival. Intern Med. 2016;55(19):2749–2758. doi: 10.2169/internalmedicine.55.6730.
    1. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–1022. doi: 10.1002/hep.24199.
    1. European Association for the Study of the L. European Organisation for R, Treatment of C EASL–EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–943. doi: 10.1016/j.jhep.2011.12.001.
    1. Kudo M, Matsui O, Izumi N, Iijima H, Kadoya M, Imai Y. Surveillance and diagnostic algorithm for hepatocellular carcinoma proposed by the liver cancer study Group of Japan: 2014 update. Oncology. 2014;87(Suppl 1):7–21. doi: 10.1159/000368141.
    1. Danila M, Sporea I. Ultrasound screening for hepatocellular carcinoma in patients with advanced liver fibrosis. An overview. Med Ultrason. 2014;16(2):139–144. doi: 10.11152/mu.201.3.2066.162.md1is2.
    1. Atiq O, Tiro J, Yopp AC, Muffler A, Marrero JA, Parikh ND, Murphy C, McCallister K, Singal AG. An assessment of benefits and harms of hepatocellular carcinoma surveillance in patients with cirrhosis. Hepatology. 2017;65(4):1196–1205. doi: 10.1002/hep.28895.
    1. Sinn DH, Yi J, Choi MS, Choi D, Gwak GY, Paik YH, Lee JH, Koh KC, Paik SW, Yoo BC. Incidence and risk factors for surveillance failure in patients with regular hepatocellular carcinoma surveillance. Hepatol Int. 2013;7(4):1010–1018. doi: 10.1007/s12072-013-9462-z.
    1. Snowberger N, Chinnakotla S, Lepe RM, Peattie J, Goldstein R, Klintmalm GB, Davis GL. Alpha fetoprotein, ultrasound, computerized tomography and magnetic resonance imaging for detection of hepatocellular carcinoma in patients with advanced cirrhosis. Aliment Pharmacol Ther. 2007;26(9):1187–94. doi: 10.1111/j.1365-2036.2007.03498.x.
    1. Rode A, Bancel B, Douek P, Chevallier M, Vilgrain V, Picaud G, Henry L, Berger F, Bizollon T, Gaudin JL, et al. Small nodule detection in cirrhotic livers: evaluation with US, spiral CT, and MRI and correlation with pathologic examination of explanted liver. J Comput Assist Tomogr. 2001;25(3):327–336. doi: 10.1097/00004728-200105000-00001.
    1. Power S, Moloney F, Twomey M, James K, O'Connor O, Maher M. Computed tomography and patient risk: facts, perceptions and uncertainties. World J Radiol. 2016;8(12):902–915. doi: 10.4329/wjr.v8.i12.902.
    1. Renzulli M, Golfieri R. Proposal of a new diagnostic algorithm for hepatocellular carcinoma based on the Japanese guidelines but adapted to the western world for patients under surveillance for chronic liver disease. J Gastroenterol Hepatol. 2016;31(1):69–80. doi: 10.1111/jgh.13150.
    1. Golfieri R, Garzillo G, Ascanio S, Renzulli M. Focal lesions in the cirrhotic liver: their pivotal role in gadoxetic acid-enhanced MRI and recognition by the western guidelines. Dig Dis. 2014;32(6):696–704. doi: 10.1159/000368002.
    1. Pocha C, Dieperink E, McMaken KA, Knott A, Thuras P, Ho SB. Surveillance for hepatocellular cancer with ultrasonography vs. computed tomography -- a randomised study. Aliment Pharmacol Ther. 2013;38(3):303–312. doi: 10.1111/apt.12370.
    1. Lee YJ, Lee JM, Lee JS, Lee HY, Park BH, Kim YH, Han JK, Choi BI. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology. 2015;275(1):97–109. doi: 10.1148/radiol.14140690.
    1. Inoue T, Kudo M, Komuta M, Hayaishi S, Ueda T, Takita M, Kitai S, Hatanaka K, Yada N, Hagiwara S, et al. Assessment of Gd-EOB-DTPA-enhanced MRI for HCC and dysplastic nodules and comparison of detection sensitivity versus MDCT. J Gastroenterol. 2012;47(9):1036–1047. doi: 10.1007/s00535-012-0571-6.
    1. Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology. 2014;273(1):30–50. doi: 10.1148/radiol.14132362.
    1. Kim SJ, Kim KA. Safety issues and updates under MR environments. Eur J Radiol. 2017;89:7–13. doi: 10.1016/j.ejrad.2017.01.010.
    1. Kim SY, An J, Lim YS, Han S, Lee JY, Byun JH, Won HJ, Lee SJ, Lee HC, Lee YS. MRI With Liver-Specific Contrast for Surveillance of Patients With Cirrhosis at High Risk of Hepatocellular Carcinoma. JAMA Oncol. 2017;3(4):456–463. doi: 10.1001/jamaoncol.2016.3147.
    1. Kwon GH, Kim KA, Hwang SS, Park SY, Kim HA, Choi SY, Kim JW. Efficiency of non-contrast-enhanced liver imaging sequences added to initial rectal MRI in rectal cancer patients. PLoS One. 2015;10(9):e0137320. doi: 10.1371/journal.pone.0137320.
    1. Kim YK, Kim YK, Park HJ, Park MJ, Lee WJ, Choi D. Noncontrast MRI with diffusion-weighted imaging as the sole imaging modality for detecting liver malignancy in patients with high risk for hepatocellular carcinoma. Magn Reson Imaging. 2014;32(6):610–618. doi: 10.1016/j.mri.2013.12.021.
    1. Velazquez RF, Rodriguez M, Navascues CA, Linares A, Perez R, Sotorrios NG, Martinez I, Rodrigo L. Prospective analysis of risk factors for hepatocellular carcinoma in patients with liver cirrhosis. Hepatology. 2003;37(3):520–527. doi: 10.1053/jhep.2003.50093.
    1. Singal A, Volk ML, Waljee A, Salgia R, Higgins P, Rogers MA, Marrero JA. Meta-analysis: surveillance with ultrasound for early-stage hepatocellular carcinoma in patients with cirrhosis. Aliment Pharmacol Ther. 2009;30(1):37–47. doi: 10.1111/j.1365-2036.2009.04014.x.
    1. Korean Liver Cancer Study Group and National Cancer Center, Korea: Quality control of liver ultrasonography. In: Quality guidelines for liver cancer screening, 4 edn. Korea: Minister of Health and Welfare; 2014. p. 41–51. .
    1. Kim KA, Kim MJ, Choi JY, Chung YE. Development of hepatocellular carcinomas in patients with absence of tumors on a prior ultrasound examination. Eur J Radiol. 2012;81(7):1450–1454. doi: 10.1016/j.ejrad.2011.03.053.
    1. Chen JG, Parkin DM, Chen QG, Lu JH, Shen QJ, Zhang BC, Zhu YR. Screening for liver cancer: results of a randomised controlled trial in Qidong, China. J Med Screen. 2003;10(4):204–209. doi: 10.1258/096914103771773320.
    1. Poustchi H, Farrell GC, Strasser SI, Lee AU, McCaughan GW, George J. Feasibility of conducting a randomized control trial for liver cancer screening: is a randomized controlled trial for liver cancer screening feasible or still needed? Hepatology. 2011;54(6):1998–2004. doi: 10.1002/hep.24581.
    1. Hicks RM, Yee J, Ohliger MA, Weinstein S, Kao J, Ikram NS, Hope TA. Comparison of diffusion-weighted imaging and T2-weighted single shot fast spin-echo: implications for LI-RADS characterization of hepatocellular carcinoma. Magn Reson Imaging. 2016;34(7):915–921. doi: 10.1016/j.mri.2016.04.007.
    1. Xu PJ, Yan FH, Wang JH, Shan Y, Ji Y, Chen CZ. Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr. 2010;34(4):506–512. doi: 10.1097/RCT.0b013e3181da3671.
    1. Xu PJ, Yan FH, Wang JH, Lin J, Ji Y. Added value of breathhold diffusion-weighted MRI in detection of small hepatocellular carcinoma lesions compared with dynamic contrast-enhanced MRI alone using receiver operating characteristic curve analysis. J Magn Reson Imaging. 2009;29(2):341–349. doi: 10.1002/jmri.21650.
    1. Lim KS. Diffusion-weighted MRI of hepatocellular carcinoma in cirrhosis. Clin Radiol. 2014;69(1):1–10. doi: 10.1016/j.crad.2013.07.022.

Source: PubMed

3
Subscribe