A randomized phase II clinical trial of dendritic cell vaccination following complete resection of colon cancer liver metastasis

Javier Rodriguez, Eduardo Castañón, Jose Luis Perez-Gracia, Inmaculada Rodriguez, Antonio Viudez, Carlos Alfaro, Carmen Oñate, Guiomar Perez, Fernando Rotellar, Susana Inogés, Ascensión López-Diaz de Cerio, Leyre Resano, Mariano Ponz-Sarvise, Maria E Rodriguez-Ruiz, Ana Chopitea, Ruth Vera, Ignacio Melero, Javier Rodriguez, Eduardo Castañón, Jose Luis Perez-Gracia, Inmaculada Rodriguez, Antonio Viudez, Carlos Alfaro, Carmen Oñate, Guiomar Perez, Fernando Rotellar, Susana Inogés, Ascensión López-Diaz de Cerio, Leyre Resano, Mariano Ponz-Sarvise, Maria E Rodriguez-Ruiz, Ana Chopitea, Ruth Vera, Ignacio Melero

Abstract

Surgically resectable synchronic and metachronic liver metastases of colon cancer have high risk of relapse in spite of standard-of-care neoadjuvant and adjuvant chemotherapy regimens. Dendritic cell vaccines loaded with autologous tumor lysates were tested for their potential to avoid or delay disease relapses (NCT01348256). Patients with surgically amenable liver metastasis of colon adenocarcinoma (n = 19) were included and underwent neoadjuvant chemotherapy, surgery and adjuvant chemotherapy. Fifteen patients with disease-free resection margins were randomized 1:1 to receive two courses of four daily doses of dendritic cell intradermal vaccinations versus observation. The trial had been originally designed to include 56 patients but was curtailed due to budgetary restrictions. Follow-up of the patients indicates a clear tendency to fewer and later relapses in the vaccine arm (median disease free survival -DFS-) 25.26 months, 95% CI 8.74-n.r) versus observation arm (median DFS 9.53 months, 95% CI 5.32-18.88).

Keywords: Colon cancer; Dendritic cell; Randomized clinical trial; Relapse prevention; Vaccine.

Conflict of interest statement

Ethics approval and consent to participate

All patients provided informed consent approved as the clinical trial protocol by the CEIC of the local Government of Navarra (CEIC). The IMPD dossier and the clinical trial protocol were approved by Agencia Española del Medicamento y productos sanitarios (AEMPS). This was an investigator initiated clinical trial sponsored by UNAV and fulfills requirements by spanish law (Real Decreto 1090/2015).

Consent for publication

Informed consent included consent for publication and patients are coded and made anonym according to good clinical practices.

Competing interests

IM served as an advisor to BMS, Roche, AstraZeneca, Genmab, Alligator, Tusk, Bioncotech, Merck-Serono.

IM receives research grants from BMS, Roche and Alligator.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Clinical trial design and treatment generation scheme. a Graphical summary of patient accrual, randomization and treatment. b Schematic representation of production of dendritic-cell vaccines loaded with autologous tumor lysate in patients undergoing complete surgical resection of colon cancer liver metastasis
Fig. 2
Fig. 2
Disease-Free survival curves. Kaplan-Meier curves represent disease-free survival of vaccination versus observation arms. Ticks in the curve represent censored data. Recurrences were documented by CT-Scan and number of subjects at risk are in the table below the graphs. Probability of the difference calculated by log-rank test is given together with the estimation of median DFS of both arms

References

    1. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol. 2014;11(9):509–524. doi: 10.1038/nrclinonc.2014.111.
    1. Van Der Burg SH, Arens R, Ossendorp F, Van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219–233. doi: 10.1038/nrc.2016.16.
    1. Bol KF, Schreibelt G, Gerritsen WR, IJM DV, Figdor CG. Dendritic cell-based immunotherapy: state of the art and beyond. Clin Cancer Res. 2016;22(8):1897–1906. doi: 10.1158/1078-0432.CCR-15-1399.
    1. Antonarakis ES, Kibel AS, Yu EY, Karsh LI, Elfiky A, Shore ND, et al. Sequencing of sipuleucel-T and androgen deprivation therapy in men with hormone-sensitive biochemically recurrent prostate cancer: a phase II randomized trial. Clin Cancer Res. 2017;23(10):2451–2459. doi: 10.1158/1078-0432.CCR-16-1780.
    1. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate Cancer. N Engl J Med. 2010;363(5):411–422. doi: 10.1056/NEJMoa1001294.
    1. Türeci Ö, Vormehr M, Diken M, Kreiter S, Huber C, Sahin U. Targeting the heterogeneity of cancer with individualized neoepitope vaccines. Clin Cancer Res. 2016;22(8):1885–1896. doi: 10.1158/1078-0432.CCR-15-1509.
    1. Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science. 2015;348(6236):803–808. doi: 10.1126/science.aaa3828.
    1. Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 2003;63(9):2127–2133.
    1. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4(3):328–332. doi: 10.1038/nm0398-328.
    1. Kandalaft LE, Chiang CL, Tanyi J, Motz G, Balint K, Mick R, et al. A phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancer. J Transl Med. 2013;11:149. doi: 10.1186/1479-5876-11-149.
    1. Alfaro C, Perez-Gracia JL, Suarez N, Rodriguez J, Fernandez de Sanmamed M, Sangro B, et al. Pilot clinical trial of type 1 dendritic cells loaded with autologous tumor lysates combined with GM-CSF, Pegylated IFN, and cyclophosphamide for metastatic Cancer patients. J Immunol. 2011;187(11):6130–6142. doi: 10.4049/jimmunol.1102209.
    1. Rodríguez-Ruiz ME, Perez-Gracia JL, Rodríguez I, Alfaro C, Oñate C, Pérez G, et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol. 2018;29(5):1312–19.
    1. Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018;10(436):11. doi: 10.1126/scitranslmed.aao5931.
    1. Inogés S, Tejada S, Cerio AL-D, Pérez-Larraya JG, Espinós J, Idoate MA, et al. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J Transl Med. 2017;15(1):104. doi: 10.1186/s12967-017-1202-z.
    1. Brenner H, Kloor M, Pox CP. The Lancet. 2014. Colorectal cancer; pp. 1490–1502.
    1. de Jong MC, Pulitano C, Ribero D, Strub J, Mentha G, Schulick RD, et al. Rates and patterns of recurrence following curative intent surgery for colorectal liver metastasis: an international multi-institutional analysis of 1669 patients. Ann Surg. 2009;250(3):440–448.
    1. Goldberg RM, Fleming TR, Tangen CM, Moertel CG, Macdonald JS, Haller DG, et al. Surgery for recurrent colon cancer: strategies for identifying resectable recurrence and success rates after resection. Ann Intern Med. 1998;129(1):27–35. doi: 10.7326/0003-4819-129-1-199807010-00007.
    1. Spolverato G, Pawlik TM. Liver-directed therapies: surgical approaches, alone and in combination with other interventions. Am Soc Clin Oncol Educ B. 2014;34:101–110. doi: 10.14694/EdBook_AM.2014.34.101.
    1. Kusano M, Honda M, Okabayashi K, Akimaru K, Kino S, Tsuji Y, et al. Randomized controlled phase III study comparing hepatic arterial infusion with systemic chemotherapy after curative resection for liver metastasis of colorectal carcinoma: JFMC 29–0003. J Cancer Res Ther. 2017;13(1):84. doi: 10.4103/0973-1482.184524.
    1. Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet. 1999;353(9150):345–350. doi: 10.1016/S0140-6736(98)07186-4.
    1. Nagashima I, Takada T, Okinaga K, Nagawa H. A scoring system for the assessment of the risk of mortality after partial hepatectomy in patients with chronic liver dysfunction. J Hepato-Biliary-Pancreat Surg. 2005;12(1):44–48. doi: 10.1007/s00534-004-0953-0.
    1. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999;230(3):309–318-321. doi: 10.1097/00000658-199909000-00004.
    1. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53(282):457–481. doi: 10.1080/01621459.1958.10501452.
    1. Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials. 1996;17:343–346. doi: 10.1016/0197-2456(96)00075-X.
    1. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestles FO, Enk A, Bröcker EB, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17(4):563–570. doi: 10.1093/annonc/mdj138.
    1. Bol KF, van den Bosch T, Schreibelt G, Mensink HW, Keunen JEE, Kiliç E, et al. Adjuvant dendritic cell vaccination in high-risk Uveal melanoma. Ophthalmology. 2016;123(10):2265–2267. doi: 10.1016/j.ophtha.2016.06.027.
    1. Mlecnik B, Bindea G, Angell HK, Maby P, Angelova M, Tougeron D, et al. Integrative analyses of colorectal Cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016;44:698–711. doi: 10.1016/j.immuni.2016.02.025.
    1. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–2520. doi: 10.1056/NEJMoa1500596.
    1. Kim JE, Hong YS, Ryu MH, Lee JL, Chang HM, Lim SB, et al. Association between deficient mismatch repair system and efficacy to irinotecan-containing chemotherapy in metastatic colon cancer. Cancer Sci. 2011;102:1706–1711. doi: 10.1111/j.1349-7006.2011.02009.x.
    1. Versteven M, Van den Bergh JMJ, Marcq E, Smits ELJ, Van Tendeloo VFI, Hobo W, et al. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol. 2018;9:394. doi: 10.3389/fimmu.2018.00394.
    1. Forde PM, Chaft JE, Smith KN, Anagnostou V, Cottrell TR, Hellmann MD, et al. Neoadjuvant PD-1 blockade in Resectable lung Cancer. N Engl J Med. 2018;24;378(21):1976–86.
    1. Melero I, Berraondo P, Rodríguez-Ruiz ME, Pérez-Gracia JL. Making the most of cancer surgery with neoadjuvant immunotherapy. Cancer Discov. 2016;6(12):1312–1314. doi: 10.1158/-16-1109.
    1. Liu J, Blake SJ, Yong MCR, Harjunpää H, Ngiow SF, Takeda K, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016;6(12):1382–1399. doi: 10.1158/-16-0577.

Source: PubMed

3
Subscribe