The 10-Year Study of the Impact of Particulate Matters on Mortality in Two Transit Cities in North-Eastern Poland (PL-PARTICLES)

Łukasz Kuźma, Emil Julian Dąbrowski, Anna Kurasz, Hanna Bachórzewska-Gajewska, Sławomir Dobrzycki, Łukasz Kuźma, Emil Julian Dąbrowski, Anna Kurasz, Hanna Bachórzewska-Gajewska, Sławomir Dobrzycki

Abstract

The detrimental influence of air pollution on mortality has been established in a series of studies. The majority of them were conducted in large, highly polluted cities-there is a lack of studies from small, relatively clean regions. The aim was to analyze the short-term impact of particulate matters (PMs) on mortality in north-eastern Poland. Time-stratified case-crossover design was performed for mortality in years 2008-2017. Daily concentrations of PM2.5 (28.4 µg/m3, interquartile range (IQR) = 25.2) vs. (12.6 µg/m3, IQR = 9.0) and PM10 (29.0 µg/m3, IQR = 18.0) vs. (21.7 µg/m3, IQR = 14.5) were higher in Łomża than Suwałki (p < 0.001). Impact of PM2.5 on mortality was recorded in Łomża (odds ratio (OR) for IQR increase 1.061, 1.017-1.105, p = 0.06, lag 0) and Suwałki (OR for IQR increase 1.044, 1.001-1.089, p = 0.004, lag 0). PM10 had an impact on mortality in Łomża (OR for IQR increase 1.028, 1.000-1.058, p = 0.049, lag 1). Cardiovascular mortality was affected by increase of PM2.5 in Łomża (1.086, 1.020-1.156, p = 0.01) and Suwałki (1.085, 1.005-1.171, p = 0.04). PM2.5 had an influence on respiratory mortality in Łomża (1.163, 1.021-1.380, p = 0.03, lag 1). In the whole studied region, despite differences in the air quality, the influence of PMs on mortality was observed.

Keywords: air pollution; mortality; particulate matter.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Characteristics of the studied cites.
Figure 2
Figure 2
Panel chart. Changes in the concentrations of air pollutants and temperature in studied cities for analyzed period (the red line represents changes in the quartile of the year).

References

    1. Bae S., Kwon H.J. Current State of Research on the Risk of Morbidity and Mortality Associated with Air Pollution in Korea. Yonsei Med. J. 2019;60:243–256. doi: 10.3349/ymj.2019.60.3.243.
    1. Mokoena K.K., Ethan C.J., Yu Y., Shale K., Liu F. Ambient air pollution and respiratory mortality in Xi’an, China: A time-series analysis. Respir. Res. 2019;20:139. doi: 10.1186/s12931-019-1117-8.
    1. Carugno M., Consonni D., Randi G., Catelan D., Grisotto L., Bertazzi P.A., Biggeri A., Baccini M. Air pollution exposure, cause-specific deaths and hospitalizations in a highly polluted Italian region. Environ. Res. 2016;147:415–424. doi: 10.1016/j.envres.2016.03.003.
    1. Sanyal S., Rochereau T., Maesano C.N., Com-Ruelle L., Annesi-Maesano I. Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France. Int. J. Environ. Res. Public Health. 2018;15:2487. doi: 10.3390/ijerph15112487.
    1. Anderson J.O., Thundiyil J.G., Stolbach A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012;8:166–175. doi: 10.1007/s13181-011-0203-1.
    1. Jiang X.Q., Mei X.D., Feng D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016;8:E31–E40. doi: 10.3978/j.issn.2072-1439.2015.11.50.
    1. Chin M.T. Basic mechanisms for adverse cardiovascular events associated with air pollution. Heart. 2015;101:253–256. doi: 10.1136/heartjnl-2014-306379.
    1. Stanaway J.D., Afshin A., Gakidou E., Lim S.S., Abate D., Abate K.H., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1923–1994. doi: 10.1016/S0140-6736(18)32225-6.
    1. Mills N.L., Donaldson K., Hadoke P.W., A Boon N., MacNee W., Cassee F.R., Sandström T., Blomberg A., E Newby D. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovasc. Med. 2009;6:36–44. doi: 10.1038/ncpcardio1399.
    1. World Health Organization Revision of the European Standard Population Report of Eurostat’s Task Force. [(accessed on 1 July 2020)]; Available online: .
    1. World Health Organization Ambient (Outdoor) Air Quality and Health (Updated 2 May 2018) [(accessed on 1 July 2020)]; Available online: .
    1. Maclure M. The case-crossover design: A method for studying transient effects on the risk of acute events. Am. J. Epidemiol. 1991;133:144–153. doi: 10.1093/oxfordjournals.aje.a115853.
    1. Janes H., Sheppard L., Lumley T. Case-crossover analyses of air pollution exposure data: Referent selection strategies and their implications for bias. Epidemiology. 2005;16:717–726. doi: 10.1097/01.ede.0000181315.18836.9d.
    1. Altman D.G., Bland J.M. Statistics Notes Interaction revisited: The difference between two estimates. BMJ. 2003;326:219. doi: 10.1136/bmj.326.7382.219.
    1. Von Elm E., Altman D.G., Egger M., Pocock S.J., Gøtzsche P.C., Vandenbroucke J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008;61:344–349. doi: 10.1016/j.jclinepi.2007.11.008.
    1. Eurostat: Causes and Occurrence of Deaths in the EU. [(accessed on 5 September 2020)]; Available online: .
    1. Feng B., Li L., Xu H. PM 2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Beijing: Seasonal variations, sources, and risk assessment. J. Environ. Sci. 2019;77:11–19. doi: 10.1016/j.jes.2017.12.025.
    1. Al-Naiema I.M., Yoon S., Wang Y.Q. Source apportionment of fine particulate matter organic carbon in Shenzhen, China by chemical mass balance and radiocarbon methods. Environ. Pollut. 2018;240:34–43. doi: 10.1016/j.envpol.2018.04.071.
    1. Park C.G., Cho H.K., Shin H.J. Comparison of Mutagenic Activities of Various Ultra-Fine Particles. Toxicol. Res. 2018;34:163–172. doi: 10.5487/TR.2018.34.2.163.
    1. Cho H.K., Park C.G., Shin H.J. Comparison of the in vitro toxicological activity of various particulate matter. Toxicol. Ind. Health. 2018;34:99–109. doi: 10.1177/0748233717749694.
    1. Campen M.J., Lund A.K., Doyle-Eisele M.L. A comparison of vascular effects from complex and individual air pollutants indicates a role for monoxide gases and volatile hydrocarbons. Environ. Health Perspect. 2010;118:921–927. doi: 10.1289/ehp.0901207.
    1. Yorifuji T., Kashima S., Doi H. Fine-particulate Air Pollution from Diesel Emission Control and Mortality Rates in Tokyo: A Quasi-experimental Study. Epidemiology. 2016;27:769–778. doi: 10.1097/EDE.0000000000000546.
    1. Wilker E.H., Preis S.R., Beiser A.S. Long-term exposure to fine particulate matter, residential proximity to major roads and measures of brain structure. Stroke. 2015;46:1161–1166. doi: 10.1161/STROKEAHA.114.008348.
    1. Zeng W., Zhang Y., Wang L. Ambient fine particulate pollution and daily morbidity of stroke in Chengdu, China. PLoS ONE. 2018;13:e0206836. doi: 10.1371/journal.pone.0206836.
    1. Zhang R., Liu G., Jiang Y. Acute Effects of Particulate Air Pollution on Ischemic Stroke and Hemorrhagic Stroke Mortality. Front. Neurol. 2018;9:827. doi: 10.3389/fneur.2018.00827.
    1. Shi Y., Matsunaga T., Yamaguchi Y. Long-term trends and spatial patterns of PM 2.5-induced premature mortality in South and Southeast Asia from 1999 to 2014. Sci. Total. Environ. 2018;631–632:1504–1514. doi: 10.1016/j.scitotenv.2018.03.146.
    1. Kowalska M., Kocot K. Short-term exposure to ambient fine particulate matter (PM2.5 and PM10) and the risk of heart rhythm abnormalities and stroke. Postepy Hig. Med. Dosw. 2016;70:1017–1025. doi: 10.5604/17322693.1220389.
    1. Shah A.S., Lee K.K., McAllister D.A. Short term exposure to air pollution and stroke: Systematic review and meta-analysis. BMJ. 2015;350:h1295. doi: 10.1136/bmj.h1295.
    1. Li W., Cao Y., Li R. The spatial variation in the effects of air pollution on cardiovascular mortality in Beijing, China. J. Expo. Sci. Environ. Epidemiol. 2018;28:297–304. doi: 10.1038/jes.2016.21.
    1. Pun V.C., Kazemiparkouhi F., Manjourides J. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults. Am. J. Epidemiol. 2017;186:961–969. doi: 10.1093/aje/kwx166.
    1. Liu C., Chen R., Sera F. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019;381:705–715. doi: 10.1056/NEJMoa1817364.
    1. Li M.H., Fan L.C., Mao B. Short-term Exposure to Ambient Fine Particulate Matter Increases Hospitalizations and Mortality in COPD: A Systematic Review and Meta-analysis. Chest. 2016;149:447–458. doi: 10.1378/chest.15-0513.
    1. Xing Y.F., Xu Y.H., Shi M.H. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016;8:E69–E74. doi: 10.3978/j.issn.2072-1439.2016.01.19.
    1. Wang L., Cheng H., Wang D. Airway Microbiome Is Associated with Respiratory Functions and Responses to Ambient Particulate Matter Exposure. Ecotoxicol. Environ. Saf. 2019;167:269–277. doi: 10.1016/j.ecoenv.2018.09.079.
    1. Atkinson R.W., Kang S., Anderson H.R. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: A systematic review and meta-analysis. Thorax. 2014;69:660–665. doi: 10.1136/thoraxjnl-2013-204492.
    1. Kim S.Y., Peel J.L., Hannigan M.P. The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. Environ. Health Perspect. 2012;120:1094–1099. doi: 10.1289/ehp.1104721.
    1. Guaita R., Pichiule M., Maté T. Short-term impact of particulate matter (PM(2.5)) on respiratory mortality in Madrid. Int. J. Environ. Health Res. 2011;21:260–274. doi: 10.1080/09603123.2010.544033.
    1. Meister K., Johansson C., Forsberg B. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 2012;120:431–436. doi: 10.1289/ehp.1103995.
    1. Janssen N.A., Fischer P., Marra M. Short-term effects of PM2.5, PM10 and PM2.5-10 on daily mortality in The Netherlands. Sci. Total. Environ. 2013;463–464:20–26. doi: 10.1016/j.scitotenv.2013.05.062.
    1. Atkinson R.W., Fuller G.W., Anderson H.R. Urban ambient particle metrics and health: A time-series analysis. Epidemiology. 2010;21:501–511. doi: 10.1097/EDE.0b013e3181debc88.
    1. Choi Y., Kim H., Lee J.T. Temporal variability of short term effects of PM 10 on mortality in Seoul, Korea. Sci. Total. Environ. 2018;644:122–128. doi: 10.1016/j.scitotenv.2018.06.275.
    1. Renzi M., Forastiere F., Calzolari R. Short-term effects of desert and non-desert PM 10 on mortality in Sicily, Italy. Environ. Int. 2018;120:472–479. doi: 10.1016/j.envint.2018.08.016.
    1. Yoo S.E., Park J.S., Lee S.H. Comparison of Short-Term Associations between PM 2.5 Components and Mortality across Six Major Cities in South Korea. Int. J. Environ. Res. Public Health. 2019;16:2872. doi: 10.3390/ijerph16162872.
    1. Wang Y., Shi Z., Shen F. Associations of daily mortality with short-term exposure to PM2.5 and its constituents in Shanghai, China. Chemosphere. 2019;233:879–887. doi: 10.1016/j.chemosphere.2019.05.249.
    1. Liu M., Xue X., Zhou B. Population susceptibility differences and effects of air pollution on cardiovascular mortality: Epidemiological evidence from a time-series study. Environ. Sci. Pollut. Res. Int. 2019;26:15943–15952. doi: 10.1007/s11356-019-04960-2.
    1. Yu H., Russell A., Mulholland J. Using cell phone location to assess misclassification errors in air pollution exposure estimation. Environ. Pollut. 2018;233:261–266. doi: 10.1016/j.envpol.2017.10.077.

Source: PubMed

3
Subscribe