The Impact of Lifestyle, Diet and Physical Activity on Epigenetic Changes in the Offspring-A Systematic Review

Louise Rasmussen, Sine Knorr, Christian Skødt Antoniussen, Jens Meldgaard Bruun, Per Glud Ovesen, Jens Fuglsang, Ulla Kampmann, Louise Rasmussen, Sine Knorr, Christian Skødt Antoniussen, Jens Meldgaard Bruun, Per Glud Ovesen, Jens Fuglsang, Ulla Kampmann

Abstract

Aims: This systematic review examines the association between maternal lifestyle, diet and physical activity, and epigenetic changes in the offspring.

Methods: A literature search was conducted using multiple science databases: PubMed, Embase and Cochrane Library, on 10 March 2021. RCT and Cohort studies in English or Scandinavian languages were included. Exposure variables included diet, lifestyle, meal patterns or physical activity. Studies using dietary supplements as exposure variables were excluded. Outcome variables included were DNA methylation, microRNA or histone changes in placenta, cord blood or offspring. Two independent authors screened, read and extracted data from the included papers. The Cochrane risk-of-bias tool for randomized trials (RoB2) and The Critical Appraisal Skills Program (CASP) Cohort Study Checklist were used to assess risk of bias in the included studies. A qualitative approach was employed due to heterogeneity of exposures and results of the studies.

Results: 16 studies and 3617 participants were included in the final analysis. The exposure variables included physical activity, carbohydrate, low glycemic index diet, added sugar, fat, Mediterranean diet and pro-inflammatory diet. The outcome variables identified were differences in DNA methylation and microRNA. Most studies described epigenetic changes in either placenta or cord blood. Genes reported to be methylated were GR, HSD2, IGF-2, PLAG1, MEG-3, H19 and RXRA. However, not all studies found epigenetic changes strong enough to pass multiple testing, and the study quality varied.

Conclusion: Despite the variable quality of the included studies, the results in this review suggest that there may be an association between the mother's lifestyle, diet and level of physical activity during pregnancy and epigenetic changes in the offspring.

Keywords: DNA methylation; diet; epigenetics; healthy lifestyle; miRNA; physical activity; pregnancy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study flowchart.

References

    1. Marciniak A., Patro-Małysza J., Kimber-Trojnar Z., Marciniak B., Oleszczuk J., Leszczyńska-Gorzelak B. Fetal programming of the metabolic syndrome. Taiwan. J. Obstet. Gynecol. 2017;56:133–138. doi: 10.1016/j.tjog.2017.01.001.
    1. Dunford A.R., Sangster J.M. Maternal and paternal periconceptional nutrition as an indicator of offspring metabolic syndrome risk in later life through epigenetic imprinting: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2017;11:S655–S662. doi: 10.1016/j.dsx.2017.04.021.
    1. McCullough L.E., Miller E.E., Calderwood L.E., Shivappa N., Steck S.E., Forman M.R., Mendez M.A., Maguire R., Fuemmeler B.F., Kollins S.H., et al. Maternal inflammatory diet and adverse pregnancy outcomes: Circulating cytokines and ge-nomic imprinting as potential regulators? Epigenetics. 2017;12:688–697. doi: 10.1080/15592294.2017.1347241.
    1. Marshall M.R., Paneth N., Gerlach J.A., Mudd L.M., Biery L., Ferguson D., Pivarnik J.M. Differential methylation of insulin-like growth factor 2 in offspring of physically active pregnant women. J. Dev. Orig. Health Dis. 2018;9:299–306. doi: 10.1017/S2040174417001106.
    1. Hjort L., Novakovic B., Grunnet L.G., Maple-Brown L., Damm P., Desoye G., Saffery G. Diabetes in pregnancy and epigenetic mechanisms-how the first 9 months from conception might affect the child’s epigenome and later risk of disease. Lancet Diab. Endocrinol. 2019;7:796–806. doi: 10.1016/S2213-8587(19)30078-6.
    1. McCullough L.E., Mendez H.A., Miller E.E., Murtha P.A., Murphy S.K., Hoyo C. Associations between prenatal physical activity, birth weight, and DNA methylation at genomi-cally imprinted domains in a multiethnic newborn cohort. Epigenetics. 2015;10:597–606. doi: 10.1080/15592294.2015.1045181.
    1. Opsahl J.O., Moen G.-H., Qvigstad E., Bottcher Y., Birkeland K.I., Sommer C. Epigenetic signatures associated with maternal body mass index or gestational weight gain: A system-atic review. J. Dev. Orig. Health Dis. 2021;12:373–383. doi: 10.1017/S2040174420000811.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.
    1. Covidence Covidence—Better Systematic Review Management. [(accessed on 14 March 2021)];2019 Available online:
    1. Cochrane Collaboration RoB 2: A Revised Cochrane Risk-Of-Bias Tool for Randomized Trials. [(accessed on 4 April 2021)]; Available online: .
    1. CRITICAL APPRAISAL SKILLS PROGRAMME (CASP) CASP Checklists 2021. [(accessed on 4 April 2021)]; Available online:
    1. Daniels T.E., Sadovnikoff A.I., Ridout K.K., Lesseur C., Marsit C.J., Tyrka A.R. Associations of maternal diet and placenta leptin methylation. Mol. Cell. Endocrinol. 2020;505:110739. doi: 10.1016/j.mce.2020.110739.
    1. Drake A.J., McPherson R.C., Godfrey K.M., Cooper C., Lillycrop K.A., Hnason M.A., Meehan R.R., Seckl J.R., Reynolds R.M. An unbalanced maternal diet in pregnancy associates with offspring epigenetic changes in genes con-trolling glucocorticoid action and foetal growth. Clin. Endocrinol. 2012;77:808–815. doi: 10.1111/j.1365-2265.2012.04453.x.
    1. Godfrey K.M., Sheppard A., Gluckman P.D., Lollycrop K.A., Burdge G.A., McLean C., Rodfoard E., Slater-Jefferies S., Garratt E., Crozier S.R., et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60:1528–1534. doi: 10.2337/db10-0979.
    1. González C.R., González B. Exploring the Stress Impact in the Paternal Germ Cells Epigenome: Can Catecholamines Induce Epigenetic Reprogramming? Front. Endocrinol. 2020;11:630948. doi: 10.3389/fendo.2020.630948.
    1. Miyaso H., Sakurai K., Takase S., Eguchi A., Watanabe M., Fukuoka H., Mori C. The methylation levels of the H19 differentially methylated region in human umbilical cords reflect newborn parameters and changes by maternal environmental factors during early pregnancy. Environ. Res. 2017;157:1–8. doi: 10.1016/j.envres.2017.05.006.
    1. Antoun E., Kitaba N.T., Titcombe P., Dalrymple K.V., Garratt E.S., Barton S.J., Murray R., Seed P.T., Holbrook J.D., Kobor M.S., et al. Maternal dysglycaemia, changes in the infant’s epigenome modified with a diet and physical activity intervention in pregnancy: Secondary analysis of a randomised control trial. PLoS Med. 2020;17:e1003229. doi: 10.1371/journal.pmed.1003229.
    1. Geraghty A.A., Sexton-Oates A., O’Brien E.C., Saffery R., McAuliffe F.M. Epigenetic Patterns in Five-Year-Old Children Exposed to a Low Glycemic Index Dietary Intervention during Pregnancy: Results from the ROLO Kids Study. Nutrition. 2020;12:3602. doi: 10.3390/nu12123602.
    1. Geraghty A.A., Saxton-Oates A., O’Brien E.C., Alberdi G., Frasquet P., Saffery R., McAuliffe F.F. A low glycaemic index diet in pregnancy induces DNA methylation variation in blood of new-borns: Results from the ROLO randomised controlled trial. Nutrients. 2018;10:455. doi: 10.3390/nu10040455.
    1. Gomez Ribot D., Diaz G., Fazion M.V., Gomez H.L., Fornes D., Macchi S.B., Gresta C.A., Capobianco E., Jawerbaun A. An extra virgin olive oil-enriched diet improves maternal, placental, and cord blood parameters in GDM pregnancies. Diabetes Metabol. Res. Rev. 2020;36:10. doi: 10.1002/dmrr.3349.
    1. Jönsson J., Renault K.M., García-Calzón S., Perfilyev A., Estampador A.C., Nørgaard K., Lind M.V., Vaag A., Hjort L., Michaelsen K.F., et al. Lifestyle Intervention in Pregnant Women with Obesity Impacts Cord Blood DNA Methylation, Which Associates with Body Composition in the Offspring. Diabetes. 2021;70:854–866. doi: 10.2337/db20-0487.
    1. Thakali K.M., Zhong Y., Cleves M., Andres A., Shankar K. Associations between maternal body mass index and diet composition with placental DNA methyla-tion at term. Placenta. 2020;93:74–82. doi: 10.1016/j.placenta.2020.02.018.
    1. Trumpff C., Sturm G., Picard M., Foss S., Lee S., Feng T., Cardenas A., McCormack C., Champagne F.A., Monk C. Added sugar intake during pregnancy: Fetal behavior, birth outcomes, and placental DNA methylation. Dev. Psychobiol. 2021;63:12. doi: 10.1002/dev.22088.
    1. Yan W., Zhang Y., Wang L., Yang W., Li C., Gu P., Xia Y., Yan J., Shen Y., Zhao Q., et al. Maternal dietary glycaemic change during gestation influences insulin-related gene methylation in the placental tissue: A genome-wide methylation analysis. Genes Nutr. 2019;14:17. doi: 10.1186/s12263-019-0634-x.
    1. Gonzalez-Nahm S., Mendez M., Robinson W., Murphy S.K., Hoyo C., Hogan V., Rowley D. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. Environ. Epigenetics. 2017;3:dvx007. doi: 10.1093/eep/dvx007.
    1. Antoun E., Kitaba P., Titcombe P., Dalrymple K., Seed P.T., White S.L., Burdge G.C., Poston L., Godfrey K.M., Lillycrop K.A. Maternal gestational diabetes is associated with changes in the infant methylome. Diabet. Med. 2019;36:65–66.
    1. Godfrey K.M., Inskip H.M., Hanson M.A. The Long-Term Effects of Prenatal Development on Growth and Metabolism. Semin. Reprod. Med. 2011;29:257–265. doi: 10.1055/s-0031-1275518.
    1. Mackay D.J., Temple I.K. Transient neonatal diabetes mellitus type 1. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010;154C:335–342. doi: 10.1002/ajmg.c.30272.
    1. Bao D., Yuan R.X., Zhang Y. Effects of lncRNA MEG3 on proliferation and apoptosis of gallbladder cancer cells through regulating NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2020;24:6632–6638.
    1. Chang W.-W., Zhang L., Yao X.-M., Chen Y., Zhu L.-J., Fang Z.-M., Zhao Y., Yao Y.-S., Jin Y.-L. Upregulation of long non-coding RNA MEG3 in type 2 diabetes mellitus complicated with vascular disease: A case–control study. Mol. Cell. Biochem. 2020;473:93–99. doi: 10.1007/s11010-020-03810-x.
    1. Buccarelli M., Lulli V., Giuliani A., Signore M., Martini M., D’Alessandris Q.G., Giannetti S., Novelli A., Ilari R., Giurato G., et al. Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: Tumor suppressor role of lncRNA MEG3. Neuro Oncol. 2020;22:1771–1784. doi: 10.1093/neuonc/noaa127.
    1. Alipoor B., Parvar S.N., Sabati Z., Ghaedi H., Ghasemi H. An updated review of the H19 lncRNA in human cancer: Molecular mechanism and diagnostic and therapeutic importance. Mol. Biol. Rep. 2020;47:6357–6374. doi: 10.1007/s11033-020-05695-x.
    1. Yaghootkar H., Zhang Y., Spracklen C.N., Karaderi T., Huang L.O., Bradfield J., Schurmann C., Fine R.S., Preuss M.H., Kutalik Z., et al. Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity. Diabetes. 2020;69:2806–2818. doi: 10.2337/db20-0070.
    1. Li J., Gao Y., Yu T., Lange J.K., LeBoff M.S., Gorska A., Luu S., Zhou S., Glowacki J. Obesity and leptin influence vitamin D metabolism and action in human marrow stromal cells. J. Steroid Biochem. Mol. Biol. 2019;198:105564. doi: 10.1016/j.jsbmb.2019.105564.
    1. Chen L., Wu L., Zhu L., Zhao Y. Overview of the structure-based non-genomic effects of the nuclear receptor RXRα. Cell. Mol. Biol. Lett. 2018;23:36. doi: 10.1186/s11658-018-0103-3.
    1. Chen Y., Ma G., Hu Y., Yang Q., Deavila J.M., Zhu M.-J., Du M. Effects of Maternal Exercise During Pregnancy on Perinatal Growth and Childhood Obesity Outcomes: A Meta-analysis and Meta-regression. Sports Med. 2021:1–19. doi: 10.1007/s40279-021-01499-6.
    1. Patel Y.C. Somatostatin and Its Receptor Family. Front. Neuroendocr. 1999;20:157–198. doi: 10.1006/frne.1999.0183.
    1. Mansell T., Barwon Infant Study Investigator Team. Ponsonby A.-L., Collier F., Burgner D., Vuillermin P., Lange K., Ryan J., Saffery R. Genetic variation, intrauterine growth, and adverse pregnancy conditions predict leptin gene DNA methylation in blood at birth and 12 months of age. Int. J. Obes. 2019;44:45–56. doi: 10.1038/s41366-019-0472-3.

Source: PubMed

3
Subscribe