The TROLLEY Study: assessing travel, health, and equity impacts of a new light rail transit investment during the COVID-19 pandemic

Katie Crist, Tarik Benmarhnia, Lawrence D Frank, Dana Song, Elizabeth Zunshine, James F Sallis, Katie Crist, Tarik Benmarhnia, Lawrence D Frank, Dana Song, Elizabeth Zunshine, James F Sallis

Abstract

Background: The COVID-19 pandemic disrupted life in extraordinary ways impacting health and daily mobility. Public transit provides a strategy to improve individual and population health through increased active travel and reduced vehicle dependency, while ensuring equitable access to jobs, healthcare, education, and mitigating climate change. However, health safety concerns during the COVID-19 pandemic eroded ridership, which could have longstanding negative consequences. Research is needed to understand how mobility and health change as the pandemic recedes and how transit investments impact health and equity outcomes.

Methods: The TROLLEY (TRansit Opportunities for HeaLth, Livability, Exercise and EquitY) study will prospectively investigate a diverse cohort of university employees after the opening of a new light rail transit (LRT) line and the easing of campus COVID-19 restrictions. Participants are current staff who live either < 1 mile, 1-2 miles, or > 2 miles from LRT, with equal distribution across economic and racial/ethnic strata. The primary aim is to assess change in physical activity, travel mode, and vehicle miles travelled using accelerometer and GPS devices. Equity outcomes include household transportation and health-related expenditures. Change in health outcomes, including depressive symptoms, stress, quality of life, body mass index and behavior change constructs related to transit use will be assessed via self-report. Pre-pandemic variables will be retrospectively collected. Participants will be measured at 3 times over 2 years of follow up. Longitudinal changes in outcomes will be assessed using multilevel mixed effects models. Analyses will evaluate whether proximity to LRT, sociodemographic, and environmental factors modify change in outcomes over time.

Discussion: The TROLLEY study will utilize rigorous methods to advance our understanding of health, well-being, and equity-oriented outcomes of new LRT infrastructure through the COVID-19 recovery period, in a sample of demographically diverse adult workers whose employment location is accessed by new transit. Results will inform land use, transportation and health investments, and workplace interventions. Findings have the potential to elevate LRT as a public health priority and provide insight on how to ensure public transit meets the needs of vulnerable users and is more resilient in the face of future health pandemics.

Trial registration: The TROLLEY study was registered at ClinicalTrials.gov ( NCT04940481 ) June 17, 2021, and OSF Registries ( https://doi.org/10.17605/OSF.IO/PGEHU ) June 24, 2021, prior to participant enrollment.

Keywords: Accelerometer; Active transportation; Active travel; Built environment; GPS; Light rail transit; Physical activity; Transportation; Workplace.

Conflict of interest statement

The authors declare they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
TROLLEY Study Conceptual Model
Fig. 2
Fig. 2
LRT stations with recruitment catchment areas MTS LRT stations (red), census block groups within one mile with at least 25% area overlap with station areas (green), block groups between one and two miles (white), block groups greater than 2 miles (no-LRT-group) with at least 25% area overlap with two-mile catchment areas (beige). Figure created by authors

References

    1. THE 17 GOALS | Sustainable Development [Internet]. THE 17 GOALS | Sustainable Development. [cited 2021 Feb 24]. Available from:
    1. WHO World Health Organization. Time to deliver: report of the WHO Independent high-level commission on noncommunicable diseases. Geneva: World Health Organization; ‎2018. . License: CC BY-NC-SA 3.0 IGO.
    1. Transit Is Essential: 2.8 Million U.S. Essential Workers Ride Transit to Their Jobs - TransitCenter [Internet]. [cited 2020 Jul 16]. Available from:
    1. Bureau UC. Working-Age Population Not Keeping Pace With Growth in Older Americans. [cited 2020 Jul 16]; Available from:
    1. Who are essential workers?: A comprehensive look at their wages, demographics, and unionization rates | Economic Policy Institute [Internet]. [cited 2020 Jul 16]. Available from:
    1. Nations U, of Economic D, Affairs S, Division P . World Urbanization Prospects The 2018 Revision. 2018.
    1. Bureau UC. New Census Data Show Differences Between Urban and Rural Populations. [cited 2020 Jul 12]; Available from:
    1. Warburton DE, Charlesworth S, Ivey A, Nettlefold L, Bredin SS. A systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults. Int J Behav Nutr Phys Act [Internet]. 2010 May 11 [cited 2018 Sep 10];7(1):39. Available from:
    1. U.S. Department of Health & Human Services. Physical Activity Guidelines Advisory Committee Report [Internet]. 2008 [cited 2018 Sep 10]. Available from:
    1. Lee I, Shiroma E, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet [Internet]. 2012 Jul 21 [cited 2017 May 19];380(9838):219–29. Available from:
    1. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The Physical Activity Guidelines for Americans. JAMA [Internet]. 2018 Nov 20 [cited 2019 Jan 14];320(19):2020. Available from:
    1. Mammen G, Faulkner G. Physical Activity and the Prevention of Depression A Systematic Review of Prospective Studies. Am J Prev Med [Internet]. 2013 [cited 2020 Jul 9];45(5):649–57. Available from:
    1. Schultchen D, Reichenberger J, Mittl T, Weh TRM, Smyth JM, Blechert J, et al. Bidirectional relationship of stress and affect with physical activity and healthy eating. Br J Health Psychol [Internet]. 2019;24(2):315–33. doi: 10.1111/bjhp.12355.
    1. Penedo FJ, Dahn JR. Exercise and well-being: A review of mental and physical health benefits associated with physical activity [Internet]. Vol. 18, Current Opinion in Psychiatry. Lippincott Williams and Wilkins; 2005 [cited 2020 Jul 9]. p. 189–93. Available from:
    1. Aldana SG, Sutton LD, Jacobson BH, Quirk MG. Relationships between leisure time physical activity and perceived stress. Percept Mot Skills [Internet]. 1996 [cited 2020 Jul 9];82(1):315–21. Available from: /record/1996–03333–055
    1. Mendoza-Vasconez AS, Marquez B, Linke S, Arredondo EM, Marcus BH. Effect of physical activity on depression symptoms and perceived stress in Latinas: A mediation analysis. Ment Health Phys Act [Internet]. 2019 Mar 1 [cited 2020 Jun 22];16:31–7. Available from:
    1. Anokye NK, Trueman P, Green C, Pavey TG, Taylor RS. Physical activity and health related quality of life. BMC Public Health [Internet]. 2012 Dec 7 [cited 2020 Jun 22];12(1):624. Available from:
    1. Pucci GCMF, Rech CR, Fermino RC, Reis RS. Association between physical activity and quality of life in adults. Rev Saude Publica [Internet]. 2012 Feb [cited 2020 Jun 22];46(1):166–79. Available from:
    1. Schuch FB, Vancampfort D, Richards J, Rosenbaum S, Ward PB, Stubbs B. Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. J Psychiatr Res [Internet]. 2016 Jun 1 [cited 2020 Jun 22];77:42–51. Available from:
    1. Troiano RP, Berrigan D, Dodd KW, Masse L, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc [Internet]. 2008 [cited 2017 Jun 2];40(1):181–8. Available from:
    1. Zenko Z, Willis EA, White DA. Proportion of adults meeting the 2018 physical activity guidelines for americans according to accelerometers. Front Public Heal [Internet]. 2019 [cited 2020 Dec 7];7(135). Available from: /pmc/articles/PMC6566056/?report=abstract
    1. Hawes A, Smith G, McGinty E, Bell C, Bower K, LaVeist T, et al. Disentangling Race, Poverty, and Place in Disparities in Physical Activity. Int J Environ Res Public Health [Internet]. 2019 Apr 3 [cited 2020 Jun 26];16(7):1193. Available from:
    1. Armstrong S, Wong CA, Perrin E, Page S, Sibley L, Skinner A. Association of physical activity with income, race/ethnicity, and sex among adolescents and young adults in the United States findings from the national health and nutrition examination survey, 2007–2016 [Internet]. Vol. 172, JAMA Pediatrics. American Medical Association; 2018 [cited 2020 Jun 26]. p. 732–40. Available from:
    1. Redmond N, Baer HJ, Hicks LS. Health behaviors and racial disparity in blood pressure control in the national health and nutrition examination survey. Hypertension [Internet]. 2011 Mar [cited 2020 Jun 26];57(3):383–9. Available from:
    1. Diabetes prevalence and glycemic control among adults aged 20 and over, by sex, age, and race and Hispanic origin: United States, selected years 1988–1994 through 2011–2014 [Internet]. 2017 [cited 2020 Jun 26]. Available from:
    1. Balfour PC, Ruiz JM, Talavera GA, Allison MA, Rodriguez CJ. Cardiovascular disease in Hispanics/Latinos in the United States. J Lat Psychol [Internet]. 2016;4(2):98–113.
    1. Kanjilal S, Gregg EW, Cheng YJ, Zhang P, Nelson DE, Mensah G, et al. Socioeconomic status and trends in disparities in 4 major risk factors for cardiovascular disease among US adults, 1971–2002 [Internet]. Vol. 166, Archives of Internal Medicine. Arch Intern Med; 2006 [cited 2020 Jun 29]. p. 2348–55. Available from:
    1. Saffer H, Dave D, Grossman M, Leung LA. Racial, ethnic, and gender differences in physical activity. J Hum Cap [Internet]. 2013;7(4):378–410. doi: 10.1086/671200.
    1. Knuth A, Hallal P. Temporal Trends in Physical Activity: A Systematic Review. J Phys Act Heal [Internet]. 2009 [cited 2018 Sep 10];6:548–59. Available from:
    1. Gu JK, Charles LE, Ma CC, Andrew ME, Fekedulegn D, Hartley TA, et al. Prevalence and trends of leisure-time physical activity by occupation and industry in U.S. workers: the National Health Interview Survey 2004–2014. Ann Epidemiol [Internet]. 2016 [cited 2018 Sep 10];26(10):685–92. Available from:
    1. Xiao C, Goryakin Y, Cecchini M. Physical Activity Levels and New Public Transit: A Systematic Review and Meta-analysis. Am J Prev Med. 2019;56:464–73. doi: 10.1016/j.amepre.2018.10.022.
    1. Sallis JF, Floyd MF, Rodríguez DA, Saelens BE. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation [Internet]. 2012;125(5):729–37. doi: 10.1161/CIRCULATIONAHA.110.969022.
    1. Lachapelle U, Pinto DG. Longer or more frequent walks: Examining the relationship between transit use and active transportation in Canada. J Transp Heal. 2016;3(2):173–180. doi: 10.1016/j.jth.2016.02.005.
    1. Besser LM, Dannenberg AL. Walking to public transit: Steps to help meet physical activity recommendations. Am J Prev Med. 2005;29(4):273–280. doi: 10.1016/j.amepre.2005.06.010.
    1. Greenberg M, Renne J, Lane R, Zupan J. Physical Activity and Use of Suburban Train Stations: An Exploratory Analysis. J Public Transp [Internet]. 2005 Jul [cited 2020 Jul 2];8(3):89–116. Available from:
    1. Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, et al. Systematic literature review of built environment effects on physical activity and active transport - an update and new findings on health equity. Int J Behav Nutr Phys Act [Internet]. 2017 Nov 16 [cited 2020 Mar 1];14(1):158. Available from:
    1. Lachapelle U, Frank L, Saelens BE, Sallis JF, Conway TL. Commuting by public transit and physical activity: where you live, where you work, and how you get there. J Phys Act Health. 2011;8 Suppl 1(Suppl 1 ):S72–82. doi: 10.1123/jpah.8.s1.s72.
    1. Rissel C, Curac N, Greenaway M, Bauman A. Physical activity associated with public transport use-a review and modelling of potential benefits. Int J Environ Res Public Health [Internet]. 2012;9(7):2454–78. doi: 10.3390/ijerph9072454.
    1. Giles-Corti B, Vernez-Moudon A, Reis R, Turrell G, Dannenberg AL, Badland H, et al. City planning and population health: a global challenge. Lancet [Internet]. 2016 Dec [cited 2017 Jan 27];388(10062):2912–24. Available from:
    1. World Health Organization (WHO). Global Action Plan on Physical Activity 2018–2030 [Internet]. Geneva; 2018 [cited 2018 Jun 27]. Available from:
    1. Global Advocacy for Physical Activity (GAPA) the Advocacy Council of the International Society for Physical Activity and Health (ISPAH). NCD Prevention: Investments that Work for Physical Activity [Internet]. 2011 [cited 2018 Sep 11]. Available from:
    1. Shaw C, Hales S, Howden-Chapman P, Edwards R. Health co-benefits of climate change mitigation policies in the transport sector. Nat Clim Chang. 2014;4(6):427–433. doi: 10.1038/nclimate2247.
    1. The High Cost of Transportation in the United States - Institute for Transportation and Development Policy [Internet]. [cited 2020 Jul 2]. Available from:
    1. Turrell G, Kavanagh AM. Socio-economic pathways to diet: modelling the association between socio-economic position and food purchasing behaviour. Public Health Nutr. 2005;9(3):375–383. doi: 10.1079/PHN2006850.
    1. Pechey R, Monsivais P. Socioeconomic inequalities in the healthiness of food choices: Exploring the contributions of food expenditures. Prev Med (Baltim) [Internet]. 2016;88:203–9. doi: 10.1016/j.ypmed.2016.04.012.
    1. Devaux M. Income-related inequalities and inequities in health care services utilisation in 18 selected OECD countries. Eur J Heal Econ [Internet]. 2013 [cited 2020 Jun 29];16(1):21–33. Available from:
    1. Rachele JN, Sugiyama T, Turrell G, Healy AM, Sallis JF. Automobile dependence: A contributing factor to poorer health among lower-income households. J Transp Heal. 2018;1(8):123–128. doi: 10.1016/j.jth.2017.11.149.
    1. Sanchez TW. Poverty, policy, and public transportation. [cited 2020 Jul 2]; Available from:
    1. Fan Y, Guthrie A, Levinson D. Impact of light-rail implementation on labor market accessibility: A transportation equity perspective. J Transp Land Use [Internet]. 2012 Dec 26 [cited 2020 Jul 1];5(3):28–39. Available from:
    1. Blumenberg E, Pierce G. A Driving Factor in Mobility? Transportation’s Role in Connecting Subsidized Housing and Employment Outcomes in the Moving to Opportunity (MTO) Program. J Am Plan Assoc [Internet]. 2014 Jan 2 [cited 2020 Jun 29];80(1):52–66. Available from:
    1. Tomer A, Kneebone E, Puentes R, Berube A. METROPOLITAN INFRASTRUCTURE INITIATIVE SERIES ANd METROPOLITAN OPPORTUNITy SERIES Missed Opportunity: Transit and Jobs in Metropolitan America. 2011.
    1. Zhang J, Hayashi Y, Frank LD. COVID-19 and transport: Findings from a world-wide expert survey. Transp Policy. 2021;1(103):68–85. doi: 10.1016/j.tranpol.2021.01.011.
    1. Abdullah M, Dias C, Muley D, Shahin M. Exploring the impacts of COVID-19 on travel behavior and mode preferences. Transp Res Interdiscip Perspect. 2020;1(8):100255.
    1. Liu L, Miller HJ, Scheff J. The impacts of COVID-19 pandemic on public transit demand in the United States. Yang C, editor. PLoS One [Internet]. 2020 Nov 18 [cited 2021 Mar 4];15(11):e0242476. Available from:
    1. Hu S, Chen P. Who left riding transit? Examining socioeconomic disparities in the impact of COVID-19 on ridership. Transp Res Part D Transp Environ. 2021;1(90):102654. doi: 10.1016/j.trd.2020.102654.
    1. Want transportation equity? Be an accomplice, not an ally | The Kinder Institute for Urban Research [Internet]. [cited 2021 Mar 9]. Available from:
    1. Delgado-Ron JA, Iroz-Elardo N, Frank L. Health effects of fixed-guideway transit: A systematic review of practice-based evidence. J Transp Heal [Internet]. 2022 Sep 1 [cited 2022 Jul 8];26:101476. Available from:
    1. UC employee headcount | University of California [Internet]. [cited 2020 Jul 16]. Available from:
    1. Brown Barbara, Werner Carol, Tribby Calvin, Miller Harvey, Smith Ken. Transit Use, Physical Activity, and Body Mass Index Changes: Objective Measures Associated With Complete Street Light-Rail Construction. Am J Public Heal. 2015;105:1468–74. doi: 10.2105/AJPH.2015.302561.
    1. Brown BB, Werner CM. Before and After a New Light Rail Stop: Resident Attitudes, Travel Behavior, and Obesity. J Am Plan Assoc [Internet]. 2008 Dec 31 [cited 2016 Dec 13];75(1):5–12. Available from:
    1. Hong A, Boarnet MG, Houston D. New light rail transit and active travel : A longitudinal study. Transp Res Part A [Internet]. 2016;92:131–44. Available from:
    1. Miller HJ, Tribby CP, Brown BB, Smith KR, Werner CM, Wolf J, et al. Public transit generates new physical activity: Evidence from individual GPS and accelerometer data before and after light rail construction in a neighborhood of Salt Lake City, Utah, USA. Health Place [Internet]. 2015 Nov [cited 2017 Mar 7];36:8–17. Available from:
    1. Frank LD, Kuntz JL, Chapman JE, Fox EH, Dickerson JF, Meenan RT, et al. The Health and economic effects of light rail lines: Design, methods, and protocol for a natural experiment. BMC Public Health. 2019;19(1):200. doi: 10.1186/s12889-019-6518-6.
    1. Saelens BE, Vernez Moudon A, Kang B, Hurvitz PM, Zhou C. Relation between higher physical activity and public transit use. Am J Public Health [Internet]. 2014 May [cited 2018 Oct 15];104(5):854–9. Available from:
    1. Durand CP, Oluyomi AO, Gabriel KP, Salvo D, Sener IN, Hoelscher DM, et al. The Effect of Light Rail Transit on Physical Activity: Design and Methods of the Travel-Related Activity in Neighborhoods Study. Front public Heal [Internet]. 2016 [cited 2016 Oct 31];4:103. Available from:
    1. MacDonald JM, Stokes RJ, Cohen DA, Kofner A, Ridgeway GK. The Effect of Light Rail Transit on Body Mass Index and Physical Activity. Am J Prev Med [Internet]. 2010;39(2):105. doi: 10.1016/j.amepre.2010.03.016.
    1. Frank L, Pivo G. Impacts of Mixed Use and Density on Utilization of Three Modes of Travel: Single-Occupant Vehicle, Transit, and Walking |. Transp Res Rec [Internet]. 1994 [cited 2022 Jul 8];1466:44–52. Available from:
    1. Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An Ecological Approach to Creating Active Living Communities. Annu Rev Public Health [Internet]. 2006 Apr [cited 2018 Aug 21];27(1):297–322. Available from:
    1. Adhikari B, Delgado-Ron JA, Van den Bosch M, Dummer T, Hong A, Sandhu J, et al. Community design and hypertension: Walkability and park access relationships with cardiovascular health. Int J Hyg Environ Health [Internet]. 2021 Aug 1 [cited 2022 Jul 8];237. Available from:
    1. Frank LD, Adhikari B, White KR, Dummer T, Sandhu J, Demlow E, et al. Chronic disease and where you live: Built and natural environment relationships with physical activity, obesity, and diabetes. Environ Int. 2022;1(158):106959. doi: 10.1016/j.envint.2021.106959.
    1. Kain JF. Cost-Effective Alternatives to Atlanta’s Rail Rapid Transit System. J Transp Econ Policy. 1997;31(1):25–49.
    1. Baum-Snow N, Kahn ME. The effects of new public projects to expand urban rail transit. J Public Econ. 2000;77(2):241–263. doi: 10.1016/S0047-2727(99)00085-7.
    1. Werner C, Brown B, Tribby C, Tharp D, Flick K, Miller H, et al. Evaluating the attractiveness of a new light rail extension: Testing simple change and displacement change hypotheses. Transp Policy. 2016;45:15–23. doi: 10.1016/j.tranpol.2015.09.003.
    1. Crist K, Brondeel R, Tuz-Zahra F, Reuter C, Sallis JF, Pratt M, et al. Correlates of active commuting, transport physical activity, and light rail use in a university setting. J Transp Heal. 2021;1(20):100978. doi: 10.1016/j.jth.2020.100978.
    1. Watson KB, Carlson SA, Humbert-Rico T, Carroll DD, Fulton JE. Walking for Transportation: What do U.S. Adults Think is a Reasonable Distance and Time? J Phys Act Health [Internet]. 2015 Jun 16 [cited 2018 Oct 22];12 Suppl 1(0 1):S53–61. Available from:
    1. Appleyard BS. New Methods to Measure Urban Environments for Consumer Behavior Research: Individual Access Corridor Analysis of Environmentally Sustainable Travel to Rapid Transit. Berkeley: University of California; 2010.
    1. Lee J, Choi K, Leem Y. Bicycle-based transit-oriented development as an alternative to overcome the criticisms of the conventional transit-oriented development. Int J Sustain Transp [Internet]. 2016 Nov 25 [cited 2020 Jul 16];10(10):975–84. Available from:
    1. Hirsch JA, DeVries DN, Brauer M, Frank LD, Winters M. Impact of new rapid transit on physical activity: A meta-analysis. Prev Med Reports [Internet]. 2018 Jun [cited 2018 Oct 15];10:184–90. Available from:
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Matthews C, Ainsworth B, Thompson R, Bassett D. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sport Exerc. 2002;34(8):1376–1381. doi: 10.1097/00005768-200208000-00021.
    1. Hart TL, Swartz AM, Cashin SE, Strath SJ. How many days of monitoring predict physical activity and sedentary behaviour in older adults? Int J Behav Nutr Phys Act [Internet]. 2011;8:62. doi: 10.1186/1479-5868-8-62.
    1. Trost SG, Mciver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc [Internet]. 2005 Nov [cited 2022 Jul 13];37(11 SUPPL.). Available from:
    1. Freedson P, Melanson E, Sirard J. Calibration of the Computer Science and Applications. Inc accelerometer Med Sci Sport Exerc. 1998;30(5):777–781. doi: 10.1097/00005768-199805000-00021.
    1. Schipperijn J, Kerr J, Duncan S, Madsen T, Klinker CD, Troelsen J. Dynamic Accuracy of GPS Receivers for Use in Health Research: A Novel Method to Assess GPS Accuracy in Real-World Settings. Front Public Heal [Internet]. 2014 Mar 10 [cited 2018 Jan 28];2:21. Available from:
    1. Meseck K, Jankowska MM, Schipperijn J, Natarajan L, Godbole S, Carlson JA, et al. Is missing geographic position system (GPS) data in accelerometry studies a problem, and is imputation the solution? Geospat Health. 2016;11(2):157–163. doi: 10.4081/gh.2016.403.
    1. UCloud User Guide — UCloud [Internet]. [cited 2020 Jun 22]. Available from:
    1. Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JW, Weir DR. Cohort Profile: the Health and Retirement Study (HRS). Int J Epidemiol [Internet]. 2014 [cited 2020 Jul 9];576–85. Available from:
    1. Radloff LS. The CES-D scale: A self report depression scale for research in the general population. Psychol Meas. 1977;1:385–401. doi: 10.1177/014662167700100306.
    1. Vilagut G, Forero CG, Barbaglia G, Alonso J. Screening for depression in the general population with the center for epidemiologic studies depression (ces-d): A systematic review with meta-analysis [Internet] PLoS ONE. 2016;11:e0155431. doi: 10.1371/journal.pone.0155431.
    1. Andresen EM, Malmgren JA, Carter WB, Patrick DL. Screening for depression in well older adults: Evaluation of a short form of the CES-D. Am J Prev Med. 1994;10(2):77–84. doi: 10.1016/S0749-3797(18)30622-6.
    1. Patrick DL, Kinne S, Engelberg RA, Pearlman RA. Functional status and perceived quality of life in adults with and without chronic conditions. J Clin Epidemiol [Internet]. 2000 Aug [cited 2020 Jun 22];53(8):779–85. Available from:
    1. Ware J, Jr, Kosinkski M, Keller SD. A 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–233. doi: 10.1097/00005650-199603000-00003.
    1. Gandek B, Ware JE, Aaronson NK, Apolone G, Bjorner JB, Brazier JE, et al. Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International Quality of Life Assessment. J Clin Epidemiol [Internet]. 1998 [cited 2022 May 18];51(11):1171–8. Available from:
    1. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24(4):385–396. doi: 10.2307/2136404.
    1. Williams DR, Yu Y, Jackson JS, Anderson NB. Racial Differences in Physical and Mental Health: Socioeconomic Status Stress, and Discrimination. J Health Psychol. 1997;2(3):335–51. doi: 10.1177/135910539700200305.
    1. Krieger N, Smith K, Naishadham D, Hartman C, Barbeau EM. Experiences of discrimination: Validity and reliability of a self-report measure for population health research on racism and health. In: Social Science and Medicine [Internet]. Soc Sci Med; 2005 [cited 2020 Jul 9]. p. 1576–96. Available from:
    1. Taylor TR, Kamarck TW, Shiffman S. Validation of the detroit area study discrimination scale in a community sample of older African American adults: The Pittsburgh healthy heart project. Int J Behav Med [Internet]. 2004 [cited 2020 Jul 9];11(2):88–94. Available from:
    1. Buysse DJ, Yu L, Moul DE, Germain A, Stover A, Dodds NE, et al. Development and validation of patient-reported outcome measures for sleep disturbance and sleep-related impairments. Sleep [Internet]. 2010 Jun 1 [cited 2022 May 18];33(6):781–92. Available from:
    1. Armstrong T, Bull F. Development of the World Health Organisation Global Physical Activity Questionnaire (GPAQ) J Public Heal. 2006;14:66–70. doi: 10.1007/s10389-006-0024-x.
    1. Cleland C, Hunter R, Kee F, Cupples M, Sallis J, Tully M. Validity of the Global Physical Activity Questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour. BMC Public Health. 2014;14:1255. doi: 10.1186/1471-2458-14-1255.
    1. Must A, Dallal G, Dietz W. Reference data for obesity: 85th and 95th percentiles of body mass index (wt/ht2) and triceps skinfold thickness | The American Journal of Clinical Nutrition | Oxford Academic. Am J Clin Nutr [Internet]. 1991 [cited 2020 Jun 22];53(4):839–46. Available from:
    1. Bandura A. Social Cognitive Theory: An Agentic Perspective. Annu Rev Psychol [Internet]. 2001 Feb 28 [cited 2021 Mar 31];52(1):1–26. Available from:
    1. Prochaska J, Redding C, Evers K. The transtheoretical model and stages of change. In: Glanz K, Rimer B, Viswanath K, editors. Health Behavior: Theory, Research, and Practice [Internet]. 5th ed. San Francisco, CA: Jossey-Bass; 2015 [cited 2021 Mar 31]. p. 125–48. Available from:
    1. NHANES - National Health and Nutrition Examination Survey Homepage [Internet]. [cited 2020 Jul 9]. Available from:
    1. Sallis JF, Saelens BE, Frank LD, Conway TL, Slymen DJ, Cain KL, et al. Neighborhood built environment and income: Examining multiple health outcomes. Soc Sci Med [Internet]. 2009;68(7):1285–93. doi: 10.1016/j.socscimed.2009.01.017.
    1. Smart Location Mapping | US EPA [Internet]. [cited 2022 Jul 13]. Available from:
    1. Frank LD, Wali B. Treating two pandemics for the price of one: Chronic and infectious disease impacts of the built and natural environment. Sustain Cities Soc. 2021;1(73):103089. doi: 10.1016/j.scs.2021.103089.
    1. Cerin E, Conway TL, Saelens BE, Frank LD, Sallis JF. Cross-validation of the factorial structure of the Neighborhood Environment Walkability Scale (NEWS) and its abbreviated form (NEWS-A) Int J Behav Nutr Phys Act. 2009;6(1):32. doi: 10.1186/1479-5868-6-32.
    1. Saelens BE, Sallis JF, Black JB, Chen D. Neighborhood-Based Differences in Physical Activity: An Environment Scale Evaluation. Am J Public Health [Internet]. 2003;93(9):1552–8. doi: 10.2105/AJPH.93.9.1552.
    1. Cerin E, Saelens BE, Sallis JF, Frank LD. Neighborhood Environment Walkability Scale: Validity and Development of a Short Form. Med Sci Sport Exerc [Internet]. 2006 [cited 2020 Jul 9];38(9):1682–91. Available from: .
    1. Dyck D Van, Cerin E, Conway TL, De Bourdeaudhuij I, Owen N, Kerr J, et al. Perceived neighborhood environmental attributes associated with adults’ transport-related walking and cycling: Findings from the USA, Australia and Belgium. Int J Behav Nutr Phys Act [Internet]. 2012 [cited 2018 Jun 25];9. Available from:
    1. Kaufman JS, MacLehose RF. Which of these things is not like the others? [Internet]. Vol. 119, Cancer. John Wiley and Sons Inc.; 2013 [cited 2020 Jul 16]. p. 4216–22. Available from:
    1. Benmarhnia T, Hajat A, Kaufman JS. Inferential challenges when assessing racial/ethnic health disparities in environmental research. Environ Heal A Glob Access Sci Source [Internet]. 2021 Dec 1 [cited 2022 Jul 11];20(1):1–10. Available from:
    1. Leyrat C, Caille A, Donner A, Giraudeau B. Propensity scores used for analysis of cluster randomized trials with selection bias: a simulation study. Stat Med [Internet]. 2013 Aug 30 [cited 2020 Dec 27];32(19):3357–72. Available from:
    1. Leveille SG, Penninx BWJH, Melzer D, Izmirlian G, Guralnik’ JM. Sex Differences in the Prevalence of Mobility Disability in Old Age: The Dynamics of Incidence, Recovery, and Mortality. J Gerontol Soc Sci [Internet]. 2000 [cited 2020 Jun 9];55B(1):S41–50. Available from:
    1. Amaducci L, Maggi S, Langlois J, Minicuci N, Baldereschi M, Di Carlo A, et al. Education and the Risk of Physical Disability and Mortality Among Men and Women Aged 65 to 84: The Italian Longitudinal Study on Aging | The Journals of Gerontology: Series A | Oxford Academic. Journals Gerontol Ser A [Internet]. 1998 [cited 2020 Jun 9];53A(6):M484–90. Available from:
    1. Matthews RJ, Smith LK, Hancock RM, Jagger C, Spiers NA. Socioeconomic factors associated with the onset of disability in older age: A longitudinal study of people aged 75 years and over. Soc Sci Med. 2005;61(7):1567–75. doi: 10.1016/j.socscimed.2005.02.007.
    1. Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96–106. doi: 10.1016/j.jclinepi.2010.03.002.
    1. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med [Internet]. 2016 Jun 1 [cited 2022 Jul 13];15(2):155–63. Available from:
    1. Kärmeniemi M, Lankila T, Ikäheimo T, Koivumaa-Honkanen H, Korpelainen R. The Built Environment as a Determinant of Physical Activity: A Systematic Review of Longitudinal Studies and Natural Experiments. Ann Behav Med [Internet]. 2018 Feb 17 [cited 2019 Jul 16];52(3):239–51. Available from:
    1. Hirsch JA, DeVries DN, Brauer M, Frank LD, Winters M. Impact of new rapid transit on physical activity: A meta-analysis. Prev Med Reports. 2018;10:184–190. doi: 10.1016/j.pmedr.2018.03.008.
    1. Wali B, Frank LD, Young DR, Saelens BE, Meenan RT, Dickerson JF, et al. Pathways from Built Environment to Health Care Costs: Linking Objectively Measured Built Environment with Physical Activity and Health Care Expenditures: 10.1177/00139165221083291 [Internet]. 2022 Apr 1 [cited 2022 Jul 13];54(4):747–82
    1. Woodcock J, Franco O, Orsini N, Roberts I. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int J Epidemiol. 2011;40(1):121–138. doi: 10.1093/ije/dyq104.
    1. As San Diego Gas Prices Soar, Residents Turn to Transit for Relief | San Diego Metropolitan Transit System [Internet]. [cited 2022 Jul 12]. Available from:
    1. Association AP. STRESS IN AMERICA 2021: ONE YEAR LATER, A NEW WAVE OF PANDEMIC HEALTH CONCERNS Essential workers more likely to be diagnosed with a mental health disorder during pandemic [Internet]. 2022. Available from:

Source: PubMed

3
Subscribe