Mitochondrial Signatures in Circulating Extracellular Vesicles of Older Adults with Parkinson's Disease: Results from the EXosomes in PArkiNson's Disease (EXPAND) Study

Anna Picca, Flora Guerra, Riccardo Calvani, Federico Marini, Alessandra Biancolillo, Giovanni Landi, Raffaella Beli, Francesco Landi, Roberto Bernabei, Anna Rita Bentivoglio, Maria Rita Lo Monaco, Cecilia Bucci, Emanuele Marzetti, Anna Picca, Flora Guerra, Riccardo Calvani, Federico Marini, Alessandra Biancolillo, Giovanni Landi, Raffaella Beli, Francesco Landi, Roberto Bernabei, Anna Rita Bentivoglio, Maria Rita Lo Monaco, Cecilia Bucci, Emanuele Marzetti

Abstract

Systemic inflammation and mitochondrial dysfunction are involved in neurodegeneration in Parkinson's disease (PD). Extracellular vesicle (EV) trafficking may link inflammation and mitochondrial dysfunction. In the present study, circulating small EVs (sEVs) from 16 older adults with PD and 12 non-PD controls were purified and characterized. A panel of serum inflammatory biomolecules was measured by multiplex immunoassay. Protein levels of three tetraspanins (CD9, CD63, and CD81) and selected mitochondrial markers (adenosine triphosphate 5A (ATP5A), mitochondrial cytochrome C oxidase subunit I (MTCOI), nicotinamide adenine dinucleotide reduced form (NADH):ubiquinone oxidoreductase subunit B8 (NDUFB8), NADH:ubiquinone oxidoreductase subunit S3 (NDUFS3), succinate dehydrogenase complex iron sulfur subunit B (SDHB), and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2)) were quantified in purified sEVs by immunoblotting. Relative to controls, PD participants showed a greater amount of circulating sEVs. Levels of CD9 and CD63 were lower in the sEV fraction of PD participants, whereas those of CD81 were similar between groups. Lower levels of ATP5A, NDUFS3, and SDHB were detected in sEVs from PD participants. No signal was retrieved for UQCRC2, MTCOI, or NDUFB8 in either participant group. To identify a molecular signature in circulating sEVs in relationship to systemic inflammation, a low level-fused (multi-platform) partial least squares discriminant analysis was applied. The model correctly classified 94.2% ± 6.1% PD participants and 66.7% ± 5.4% controls, and identified seven biomolecules as relevant (CD9, NDUFS3, C-reactive protein, fibroblast growth factor 21, interleukin 9, macrophage inflammatory protein 1β, and tumor necrosis factor alpha). In conclusion, a mitochondrial signature was identified in circulating sEVs from older adults with PD, in association with a specific inflammatory profile. In-depth characterization of sEV trafficking may allow identifying new biomarkers for PD and possible targets for personalized interventions.

Keywords: aging; biomarkers; exosomes; mitochondrial dynamics; mitochondrial quality control; mitochondrial-derived vesicles; mitochondrial-lysosomal axis; mitophagy.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Representative blots of preliminary characterization of small extracellular vesicles (sEVs). (A) Blots of the cytosolic protein flotilin and ribonucleoprotein (HNRNPA1) as positive and negative markers, respectively, in purified sEVs obtained by ultracentrifugation from controls and participants with Parkinson’s disease (PD). MCF-7 cell extract was used as the positive control for the anti-HNRNPA1 antibody. (B) Blots of tetraspanins CD9 and CD63, flotilin, and HNRNPA1 in purified sEVs obtained from one control and one PD participant using a commercial precipitation kit.
Figure 2
Figure 2
Levels of purified small extracellular vesicles (sEVs) in serum of controls (n = 12) and participants with Parkinson’s disease (PD; n = 16). Data were normalized for the amount of total serum protein and are shown as percentage of the control group set at 100%. Bars represent mean values (± standard deviation of the mean). * p < 0.0001 vs. controls.
Figure 3
Figure 3
Protein expression of (A) CD9, (B) CD63, and (C) CD81 in purified small extracellular vesicles (sEVs) from controls (n = 12) and participants with Parkinson’s disease (PD; n = 16). Data were normalized for the amount of sEV total proteins and are shown as percentage of the control group set at 100%. Bars represent mean values (± standard deviation of the mean). Representative blots are shown in Figure S1. * p = 0.0001 vs. controls.
Figure 4
Figure 4
Protein expression of adenosine triphosphate 5A (ATP5A), succinate dehydrogenase complex iron sulfur subunit (SDHB), and nicotinamide adenine dinucleotide reduced form (NADH):ubiquinone oxidoreductase subunit S3 (NDUFS3) in purified small extracellular vesicles (sEVs) from controls (n = 12) and participants with Parkinson’s disease (PD; n = 16). Data were normalized for the amount of sEV total proteins and are shown as percentage of the control group set at 100%. Bars represent mean values (± standard deviation of the mean). Representative blots are shown in Figure S1. * p < 0.0001 vs. controls.
Figure 5
Figure 5
Soft independent modeling of class analogies modeling of Parkinson’s disease (PD) showing the projection of samples onto the spaces described by the statistical variables Tred2 and Qred. The dashed line indicates the threshold for acceptance d=2.

References

    1. Brooks D.J. The early diagnosis of Parkinson’s disease. Ann. Neurol. 1998;44:S10–S18. doi: 10.1002/ana.410440704.
    1. GBD 2016 Parkinson’s Disease Collaborators Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17:939–953. doi: 10.1016/S1474-4422(18)30295-3.
    1. Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S.G., Croteau D.L., Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019;15:565–581. doi: 10.1038/s41582-019-0244-7.
    1. Alexander G.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004;6:259–280.
    1. Maiti P., Manna J., Dunbar G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 2017;6:28. doi: 10.1186/s40035-017-0099-z.
    1. Park J.-S., Davis R.L., Sue C.M. Mitochondrial dysfunction in Parkinson’s disease: New mechanistic insights and therapeutic perspectives. Curr. Neurol. Neurosci. Rep. 2018;18:21. doi: 10.1007/s11910-018-0829-3.
    1. Melo T.Q., Copray S.J.C.V.M., Ferrari M.F.R. Alpha-synuclein toxicity on protein quality control, mitochondria and endoplasmic reticulum. Neurochem. Res. 2018;43:2212–2223. doi: 10.1007/s11064-018-2673-x.
    1. Cho B., Kim T., Huh Y.-J., Lee J., Lee Y.-I. Amelioration of mitochondrial quality control and proteostasis by natural compounds in parkinson’s disease models. Int. J. Mol. Sci. 2019;20:5208. doi: 10.3390/ijms20205208.
    1. White A.J., Wijeyekoon R.S., Scott K.M., Gunawardana N.P., Hayat S., Solim I.H., McMahon H.T., Barker R.A., Williams-Gray C.H. The peripheral inflammatory response to alpha-synuclein and endotoxin in parkinson’s disease. Front. Neurol. 2018;9:946. doi: 10.3389/fneur.2018.00946.
    1. Picca A., Calvani R., Landi G., Marini F., Biancolillo A., Gervasoni J., Persichilli S., Primiano A., Urbani A., Bossola M., et al. Circulating amino acid signature in older people with Parkinson’s disease: A metabolic complement to the EXosomes in PArkiNson Disease (EXPAND) study. Exp. Gerontol. 2019;128:110766. doi: 10.1016/j.exger.2019.110766.
    1. Picca A., Lezza A.M.S., Leeuwenburgh C., Pesce V., Calvani R., Landi F., Bernabei R., Marzetti E. Fueling inflamm-aging through mitochondrial dysfunction: Mechanisms and molecular targets. Int. J. Mol. Sci. 2017;18:933. doi: 10.3390/ijms18050933.
    1. Franco-Iborra S., Vila M., Perier C. Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson’s disease and Huntington’s disease. Front. Neurosci. 2018;12:342. doi: 10.3389/fnins.2018.00342.
    1. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr. Biol. 2018;28:R435–R444. doi: 10.1016/j.cub.2018.01.059.
    1. Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138.
    1. Cocucci E., Meldolesi J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–372. doi: 10.1016/j.tcb.2015.01.004.
    1. Casella G., Colombo F., Finardi A., Descamps H., Ill-Raga G., Spinelli A., Podini P., Bastoni M., Martino G., Muzio L., et al. Extracellular vesicles containing IL-4 modulate neuroinflammation in a mouse model of multiple sclerosis. Mol. Ther. 2018;26:2107–2118. doi: 10.1016/j.ymthe.2018.06.024.
    1. Picca A., Guerra F., Calvani R., Bucci C., Lo Monaco M.R., Bentivoglio A.R., Coelho-Júnior H.J., Landi F., Bernabei R., Marzetti E. Mitochondrial dysfunction and aging: Insights from the analysis of extracellular vesicles. Int. J. Mol. Sci. 2019;20:805. doi: 10.3390/ijms20040805.
    1. Picca A., Lezza A.M.S., Leeuwenburgh C., Pesce V., Calvani R., Bossola M., Manes-Gravina E., Landi F., Bernabei R., Marzetti E. Circulating mitochondrial DNA at the crossroads of mitochondrial dysfunction and inflammation during aging and muscle wasting disorders. Rejuvenat. Res. 2018;21:350–359. doi: 10.1089/rej.2017.1989.
    1. Schifferli J.A. Microvesicles are messengers. Semin. Immunopathol. 2011;33:393–394. doi: 10.1007/s00281-011-0276-6.
    1. Yoon Y.J., Kim O.Y., Gho Y.S. Extracellular vesicles as emerging intercellular communicasomes. BMB Rep. 2014;47:531–539. doi: 10.5483/BMBRep.2014.47.10.164.
    1. Picca A., Guerra F., Calvani R., Bucci C., Lo Monaco M.R., Bentivoglio A.R., Landi F., Bernabei R., Marzetti E. Mitochondrial-derived vesicles as candidate biomarkers in Parkinson’s disease: Rationale, design and methods of the EXosomes in PArkiNson Disease (EXPAND) study. Int. J. Mol. Sci. 2019;20:2373. doi: 10.3390/ijms20102373.
    1. Hughes A.J., Daniel S.E., Kilford L., Lees A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry. 1992;55:181–184. doi: 10.1136/jnnp.55.3.181.
    1. Théry C., Amigorena S., Raposo G., Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006;30:3.22.1–3.22.29. doi: 10.1002/0471143030.cb0322s30.
    1. Guerra F., Paiano A., Migoni D., Girolimetti G., Perrone A.M., De Iaco P., Fanizzi F.P., Gasparre G., Bucci C. Modulation of RAB7A protein expression determines resistance to cisplatin through late endocytic pathway impairment and extracellular vesicular secretion. Cancers. 2019;11:52. doi: 10.3390/cancers11010052.
    1. Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M., Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. USA. 2016;113:E968–E977. doi: 10.1073/pnas.1521230113.
    1. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750.
    1. Marzetti E., Picca A., Marini F., Biancolillo A., Coelho-Junior H.J., Gervasoni J., Bossola M., Cesari M., Onder G., Landi F., et al. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “cytokinome” at its core. Exp. Gerontol. 2019;122:129–138. doi: 10.1016/j.exger.2019.04.019.
    1. Picca A., Ponziani F.R., Calvani R., Marini F., Biancolillo A., Coelho-Junior H.J., Gervasoni J., Primiano A., Putignani L., Del Chierico F., et al. Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients. 2019;12:65. doi: 10.3390/nu12010065.
    1. Ståhle L., Wold S. Partial least squares analysis with cross-validation for the two-class problem: A Monte Carlo study. J. Chemom. 1987;1:185–196. doi: 10.1002/cem.1180010306.
    1. Westerhuis J.A., Hoefsloot H.C.J., Smit S., Vis D.J., Smilde A.K., van Velzen E.J.J., van Duijnhoven J.P.M., van Dorsten F.A. Assessment of PLSDA cross validation. Metabolomics. 2008;4:81–89. doi: 10.1007/s11306-007-0099-6.
    1. Smit S., van Breemen M.J., Hoefsloot H.C.J., Smilde A.K., Aerts J.M.F.G., de Koster C.G. Assessing the statistical validity of proteomics based biomarkers. Anal. Chim. Acta. 2007;592:210–217. doi: 10.1016/j.aca.2007.04.043.
    1. Marzetti E., Landi F., Marini F., Cesari M., Buford T.W., Manini T.M., Onder G., Pahor M., Bernabei R., Leeuwenburgh C., et al. Patterns of circulating inflammatory biomarkers in older persons with varying levels of physical performance: A partial least squares-discriminant analysis approach. Front. Med. 2014;1:27. doi: 10.3389/fmed.2014.00027.
    1. Wold S., Martens H., Wold H. The multivariate calibration problem in chemistry solved by the PLS method. In: Kågström B., Ruhe A., editors. Lecture Notes in Mathematics. Volume 973. Springer; Berlin, Germany: 1983. pp. 286–293.
    1. Calvani R., Picca A., Marini F., Biancolillo A., Gervasoni J., Persichilli S., Primiano A., Coelho-Junior H.J., Bossola M., Urbani A., et al. A Distinct Pattern of Circulating Amino Acids Characterizes Older Persons with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients. 2018;10:1691. doi: 10.3390/nu10111691.
    1. Wold S. Pattern recognition by means of disjoint principal components models. Pattern Recognit. 1976;8:127–139. doi: 10.1016/0031-3203(76)90014-5.
    1. Wold S., Sjöström M. SIMCA: A method for analyzing chemical data in terms of similarity and analogy. Chemom. Theory Appl. 1977:243–282. doi: 10.1021/bk-1977-0052.ch012.
    1. Larsen S.B., Hanss Z., Krüger R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res. 2018;373:21–37. doi: 10.1007/s00441-017-2768-8.
    1. Guerra F., Girolimetti G., Beli R., Mitruccio M., Pacelli C., Ferretta A., Gasparre G., Cocco T., Bucci C. Synergistic effect of mitochondrial and lysosomal dysfunction in Parkinson’s disease. Cells. 2019;8:452. doi: 10.3390/cells8050452.
    1. Deleidi M., Gasser T. The role of inflammation in sporadic and familial Parkinson’s disease. Cell. Mol. Life Sci. 2013;70:4259–4273. doi: 10.1007/s00018-013-1352-y.
    1. Collins L.M., Toulouse A., Connor T.J., Nolan Y.M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology. 2012;62:2154–2168. doi: 10.1016/j.neuropharm.2012.01.028.
    1. Sugiura A., McLelland G.-L., Fon E.A., McBride H.M. A new pathway for mitochondrial quality control: Mitochondrial-derived vesicles. EMBO J. 2014;33:2142–2156. doi: 10.15252/embj.201488104.
    1. Verstraeten A., Theuns J., Van Broeckhoven C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era. Trends Genet. 2015;31:140–149. doi: 10.1016/j.tig.2015.01.004.
    1. Kirby D.M., Salemi R., Sugiana C., Ohtake A., Parry L., Bell K.M., Kirk E.P., Boneh A., Taylor R.W., Dahl H.H.M., et al. NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J. Clin. Investig. 2004;114:837–845. doi: 10.1172/JCI20683.
    1. McFarland R., Kirby D.M., Fowler K.J., Ohtake A., Ryan M.T., Amor D.J., Fletcher J.M., Dixon J.W., Collins F.A., Turnbull D.M., et al. De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann. Neurol. 2004;55:58–64. doi: 10.1002/ana.10787.
    1. Parker W.D., Parks J.K., Swerdlow R.H. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res. 2008;1189:215–218. doi: 10.1016/j.brainres.2007.10.061.
    1. Amo T., Saiki S., Sawayama T., Sato S., Hattori N. Detailed analysis of mitochondrial respiratory chain defects caused by loss of PINK1. Neurosci. Lett. 2014;580:37–40. doi: 10.1016/j.neulet.2014.07.045.
    1. Bouvier-Müller A., Ducongé F. Nucleic acid aptamers for neurodegenerative diseases. Biochimie. 2018;145:73–83. doi: 10.1016/j.biochi.2017.10.026.
    1. Kharitonenkov A., DiMarchi R. Fibroblast growth factor 21 night watch: Advances and uncertainties in the field. J. Intern. Med. 2017;281:233–246. doi: 10.1111/joim.12580.
    1. Restelli L.M., Oettinghaus B., Halliday M., Agca C., Licci M., Sironi L., Savoia C., Hench J., Tolnay M., Neutzner A., et al. Neuronal Mitochondrial Dysfunction activates the integrated stress response to induce fibroblast growth factor 21. Cell Rep. 2018;24:1407–1414. doi: 10.1016/j.celrep.2018.07.023.
    1. Kustrimovic N., Comi C., Magistrelli L., Rasini E., Legnaro M., Bombelli R., Aleksic I., Blandini F., Minafra B., Riboldazzi G., et al. Parkinson’s disease patients have a complex phenotypic and functional Th1 bias: Cross-sectional studies of CD4+ Th1/Th2/T17 and Treg in drug-naïve and drug-treated patients. J. Neuroinflammat. 2018;15:205. doi: 10.1186/s12974-018-1248-8.
    1. Elyaman W., Khoury S.J. Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin. Immunopathol. 2017;39:79–87. doi: 10.1007/s00281-016-0604-y.
    1. Elyaman W., Bradshaw E.M., Uyttenhove C., Dardalhon V., Awasthi A., Imitola J., Bettelli E., Oukka M., van Snick J., Renauld J.-C., et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA. 2009;106:12885–12890. doi: 10.1073/pnas.0812530106.
    1. Schröder J.B., Pawlowski M., Meyer Zu Hörste G., Gross C.C., Wiendl H., Meuth S.G., Ruck T., Warnecke T. Immune cell activation in the cerebrospinal fluid of patients with Parkinson’s disease. Front. Neurol. 2018;9:1081. doi: 10.3389/fneur.2018.01081.
    1. Chung H.Y., Cesari M., Anton S., Marzetti E., Giovannini S., Seo A.Y., Carter C., Yu B.P., Leeuwenburgh C. Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res. Rev. 2009;8:18–30. doi: 10.1016/j.arr.2008.07.002.
    1. Justice J.N., Ferrucci L., Newman A.B., Aroda V.R., Bahnson J.L., Divers J., Espeland M.A., Marcovina S., Pollak M.N., Kritchevsky S.B., et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: Report from the TAME Biomarkers Workgroup. GeroScience. 2018;40:419–436. doi: 10.1007/s11357-018-0042-y.
    1. Qiu X., Xiao Y., Wu J., Gan L., Huang Y., Wang J. C-reactive orotein and risk of Parkinson’s disease: A systematic review and meta-analysis. Front. Neurol. 2019;10:384. doi: 10.3389/fneur.2019.00384.
    1. Perrin F.E., Lacroix S., Avilés-Trigueros M., David S. Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain. 2005;128:854–866. doi: 10.1093/brain/awh407.
    1. Ahmadi Rastegar D., Ho N., Halliday G.M., Dzamko N. Parkinson’s progression prediction using machine learning and serum cytokines. NPJ Park. Dis. 2019;5:14. doi: 10.1038/s41531-019-0086-4.
    1. Probert L. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience. 2015;302:2–22. doi: 10.1016/j.neuroscience.2015.06.038.
    1. Montgomery S.L., Bowers W.J. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. J. Neuroimmune Pharmacol. 2012;7:42–59. doi: 10.1007/s11481-011-9287-2.
    1. Ferger B., Leng A., Mura A., Hengerer B., Feldon J. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum. J. Neurochem. 2004;89:822–833. doi: 10.1111/j.1471-4159.2004.02399.x.
    1. Nishimura M., Mizuta I., Mizuta E., Yamasaki S., Ohta M., Kaji R., Kuno S. Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson’s disease. Neurosci. Lett. 2001;311:1–4. doi: 10.1016/S0304-3940(01)02111-5.
    1. Peter I., Dubinsky M., Bressman S., Park A., Lu C., Chen N., Wang A. Anti-tumor necrosis factor therapy and incidence of Parkinson disease among patients with inflammatory bowel disease. JAMA Neurol. 2018;75:939–946. doi: 10.1001/jamaneurol.2018.0605.

Source: PubMed

3
Subscribe