Randomized comparative study of left versus right radial approach in the setting of primary percutaneous coronary intervention for ST-elevation myocardial infarction

Qiang Fu, Hongyu Hu, Dezhao Wang, Wei Chen, Zhixu Tan, Qun Li, Buxing Chen, Qiang Fu, Hongyu Hu, Dezhao Wang, Wei Chen, Zhixu Tan, Qun Li, Buxing Chen

Abstract

Background: Growing evidence suggests that the left radial approach (LRA) is related to decreased coronary procedure duration and fewer cerebrovascular complications as compared to the right radial approach (RRA) in elective percutaneous coronary intervention (PCI). However, the feasibility of LRA in primary PCI has yet to be studied further. Therefore, the aim of this study was to investigate the efficacy of LRA compared with RRA for primary PCI in ST-elevation myocardial infarction (STEMI) patients.

Materials and methods: A total of 200 consecutive patients with STEMI who received primary PCI were randomized to LRA (number [n]=100) or RRA (n=100). The study endpoint was needle-to-balloon time, defined as the time from local anesthesia infiltration to the first balloon inflation. Radiation dose by measuring cumulative air kerma (CAK) and CAK dose area product, as well as fluoroscopy time and contrast volume were also investigated.

Results: There were no significant differences in the baseline characteristics between the two groups. The coronary procedural success rate was similar between both radial approaches (98% for left versus 94% for right; P=0.28). Compared with RRA, LRA had significantly shorter needle-to-balloon time (16.0±4.8 minutes versus 18.0±6.5 minutes, respectively; P=0.02). Additionally, fluoroscopy time (7.4±3.4 minutes versus 8.8±3.5 minutes, respectively; P=0.01) and CAK dose area product (51.9±30.4 Gy cm(2) versus 65.3±49.1 Gy cm(2), respectively; P=0.04) were significantly lower with LRA than with RRA.

Conclusion: Primary PCI can be performed via LRA with earlier blood flow restoration in the infarct-related artery and lower radiation exposure when compared with RRA; therefore, the LRA may become a feasible and attractive alternative to perform primary PCI for STEMI patients.

Keywords: ST-segment elevation myocardial infarction; primary percutaneous coronary intervention; transradial approach.

Figures

Figure 1
Figure 1
Flow diagram of the study. Notes: Comparison between the left and right radial approach for primary coronary intervention in patients with ST-elevation myocardial infarction. Abbreviation: n, number.

References

    1. Archbold RA, Robinson NM, Schilling RJ. Radial artery access for coronary angiography and percutaneous coronary intervention. BMJ. 2004;329(7463):443–446.
    1. Agostoni P, Biondi-Zoccai GG, de Benedictis ML, et al. Radial versus femoral approach for percutaneous coronary diagnostic and interventional procedures Systematic overview and meta-analysis of randomized trials. J Am Coll Cardiol. 2004;44(2):349–356.
    1. Rao SV, Ou FS, Wang TY, et al. Trends in the prevalence and outcomes of radial and femoral approaches to percutaneous coronary intervention: a report from the National Cardiovascular Data Registry. JACC Cardiovasc Interv. 2008;1(4):379–386.
    1. Jolly SS, Amlani S, Hamon M, Yusuf S, Mehta SR. Radial versus femoral access for coronary angiography or intervention and the impact on major bleeding and ischemic events: a systematic review and meta-analysis of randomized trials. Am Heart J. 2009;157(1):132–140.
    1. Burzotta F, Trani C, Mazzari MA, et al. Vascular complications and access crossover in 10,676 transradial percutaneous coronary procedures. Am Heart J. 2012;163(2):230–238.
    1. Arzamendi D, Ly HQ, Tanguay JF, et al. Effect on bleeding, time to revascularization, and one-year clinical outcomes of the radial approach during primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Am J Cardiol. 2010;106(2):148–154.
    1. Dominici M, Diletti R, Milici C, et al. Left radial versus right radial approach for coronary artery catheterization: a prospective comparison. J Interv Cardiol. 2012;25(2):203–209.
    1. Sciahbasi A, Romagnoli E, Burzotta F, et al. Transradial approach (left vs right) and procedural times during percutaneous coronary procedures: TALENT study. Am Heart J. 2011;161(1):172–179.
    1. Pellica F, Trani C, Biondi-Zoccai GG, et al. Prospective Registry of Vascular Access in Interventions in Lazio Region (PREVAIL) Study Group Comparison of the feasibility and effectiveness of transradial coronary angiography via right versus left radial artery approaches (from the PREVAIL Study) Am J Cardiol. 2012;110(6):771–775.
    1. Hu H, Fu Q, Chen W, Wang D, Hua X, Chen B. A prospective randomized comparison of left and right radial approach for percutaneous coronary angiography in Asian populations. Clin Interv Aging. 2014;9:963–968.
    1. Navarese EP, De Luca G, Castriota F, et al. Low-molecular-weight heparins vs. unfractionated heparin in the setting of percutaneous coronary intervention for ST-elevation myocardial infarction: a meta-analysis. J Thromb Haemost. 2011;9(10):1902–1915.
    1. Ochiai M, Isshiki T, Toyoizumi H, et al. Efficacy of transradial primary stenting in patients with acute myocardial infarction. Am J Cardiol. 1999;83(6):966–968. A10.
    1. Weaver AN, Henderson RA, Gilchrist IC, Ettinger SM. Arterial access and door-to-balloon times for primary percutaneous coronary intervention in patients presenting with acute ST-elevation myocardial infarction. Catheter Cardiovasc Interv. 2010;75(5):695–699.
    1. Louvard Y, Ludwig J, Lefèvre T, et al. Transradial approach for coronary angioplasty in the setting of acute myocardial infarction: a dual-center registry. Catheter Cardiovasc Interv. 2002;55(2):206–211.
    1. Valsecchi O, Musumeci G, Vassileva A, et al. Safety, feasibility and efficacy of transradial primary angioplasty in patients with acute myocardial infarction. Ital Heart J. 2003;4(5):329–334.
    1. Vorobcsuk A, Kónyi A, Aradi D, et al. Transradial versus transfemoral percutaneous coronary intervention in acute myocardial infarction: systematic overview and meta-analysis. Am Heart J. 2009;158(5):814–821.
    1. Wu CJ, Fang HY, Cheng CI, et al. The safety and feasibility of bilateral radial approach in chronic total occlusion percutaneous coronary intervention. Int Heart J. 2011;52(3):131–138.
    1. Burzotta F, De Vita M, Lefevre T, Tommasino A, Louvard Y, Trani C. Radial approach for percutaneous coronary interventions on chronic total occlusions: technical issues and data review. Catheter Cardiovasc Interv. 2014;83(1):47–57.
    1. Norgaz T, Gorgulu S, Dagdelen S. A randomized study comparing the effectiveness of right and left radial approach for coronary angiography. Catheter Cardiovasc Interv. 2012;80(2):260–264.
    1. Cannon CP, Gibson CM, Lambrew CT, et al. Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA. 2000;283(22):2941–2947.
    1. De Luca G, Suryapranata H, Ottervanger JP, Antman EM. Time delay to treatment and mortality in primary angioplasty for acute myocardial infarction: every minute of delay counts. Circulation. 2004;109(10):1223–1225.
    1. Larsen P, Shah S, Waxman S, et al. Comparison of procedural times, success rates, and safety between left versus right radial arterial access in primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Catheter Cardiovasc Interv. 2011;78(1):38–44.
    1. Sciahbasi A, Romagnoli E, Trani C, et al. Evaluation of the “learning curve” for left and right radial approach during percutaneous coronary procedures. Am J Cardiol. 2011;108(2):185–188.

Source: PubMed

3
Subscribe