The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential

M C Sorgato, S J Ferguson, D B Kell, P John, M C Sorgato, S J Ferguson, D B Kell, P John

Abstract

1. The magnitude of the protonmotive force in respiring bovine heart submitochondrial particles was estimated. The membrane-potential component was determined from the uptake of S14CN-ions, and the pH-gradient component from the uptake of [14C]methylamine. In each case a flow-dialysis technique was used to monitor uptake. 2. With NADH as substrate the membrane potential was approx. 145mV and the pH gradient was between 0 and 0.5 unit when the particles were suspended in a Pi/Tris reaction medium. The addition of the permeant NO3-ion decreased the membrane potential with a corresponding increase in the pH gradient. In a medium containing 200mM-sucrose, 50mM-KCl and Hepes as buffer, the total protonmotive force was 185mV, comprising a membrane potential of 90mV and a pH gradient of 1.6 units. Thus the protonmotive force was slightly larger in the high-osmolarity medium. 3. The phosphorylation potential (= deltaG0' + RT ln[ATP]/[ADP][Pi]) was approx. 43.1 kJ/mol (10.3kcal/mol) in all the reaction media tested. Comparison of this value with the protonmotive force indicates that more than 2 and up to 3 protons must be moved across the membrane for each molecule of ATP synthesized by a chemiosmotic mechanism. 4. Succinate generated both a protonmotive force and a phosphorylation potential that were of similar magnitude to those observed with NADH as substrate. 5. Although oxidation of NADH supports a rate of ATP synthesis that is approximately twice that observed with succinate, respiration with either of these substrates generated a very similar protonmotive force. Thus there seemed to be no strict relation between the size of the protonmotive force and the phosphorylation rate. 6. In the presence of antimycin and/or 2-n-heptyl-4-hydroxyquinoline N-oxide, ascorbate oxidation with either NNN'N'-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethyl-p-phenylenediamine as electron mediator generated a membrane potential of approx. 90mV, but no pH gradient was detected, even in the presence of NO3-. These data are discussed with reference to the proposal that cytochrome oxidase contains a proton pump.

References

    1. J Bioenerg Biomembr. 1977 Feb;9(1):17-29
    1. Biochemistry. 1977 Mar 8;16(5):972-7
    1. Biochem Soc Trans. 1977;5(1):200-3
    1. Eur J Biochem. 1977 Jul 15;77(2):349-56
    1. FEBS Lett. 1977 Feb 1;73(2):257-62
    1. FEBS Lett. 1977 Jan 15;73(1):51-4
    1. Proc Natl Acad Sci U S A. 1977 May;74(5):1955-9
    1. Eur J Biochem. 1977 Feb 15;73(1):125-30
    1. Nature. 1977 Mar 17;266(5599):271-3
    1. Biochim Biophys Acta. 1977 Sep 14;461(3):413-25
    1. Biochemistry. 1977 Sep 20;16(19):4270-5
    1. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1273-9
    1. Annu Rev Biochem. 1977;46:996-1005
    1. Biochem Soc Trans. 1977;5(5):1615-20
    1. Biochem Soc Trans. 1977;5(1):29-32
    1. Biochemistry. 1976 Nov 16;15(23):5110-4
    1. J Biol Chem. 1976 Dec 10;251(23):7442-51
    1. Biochem J. 1978 Jul 15;174(1):257-66
    1. Biochem J. 1977 Nov 15;168(2):299-303
    1. FEBS Lett. 1978 Jun 1;90(1):178-82
    1. Biochim Biophys Acta. 1977 Nov 17;462(2):347-61
    1. Biochemistry. 1977 Jul 12;16(14):3220-7
    1. J Theor Biol. 1976 Oct 21;62(2):327-67
    1. Biochem J. 1977 Feb 15;162(2):351-7
    1. Biochem Soc Trans. 1977;5(2):582-8
    1. Biochem Soc Trans. 1976;4(3):399-430
    1. Biochim Biophys Acta. 1978 Apr 11;502(1):111-26
    1. Biochim Biophys Acta. 1977 Jan 6;459(1):119-27
    1. J Mol Biol. 1970 May 14;49(3):547-56
    1. Biochim Biophys Acta. 1972 Sep 20;275(3):485-90
    1. Biochim Biophys Acta. 1974 Dec 19;368(3):432-45
    1. J Biol Chem. 1973 Oct 25;248(20):6966-72
    1. Eur J Biochem. 1973 Dec 17;40(2):431-7
    1. Biochim Biophys Acta. 1972 May 25;267(2):275-90
    1. Biochim Biophys Acta. 1970 Aug 4;216(1):1-12
    1. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1520-4
    1. J Biol Chem. 1973 Aug 10;248(15):5395-402
    1. Biochemistry. 1972 Mar 28;11(7):1150-4
    1. J Biol Chem. 1971 Oct 10;246(19):6024-8
    1. Biochim Biophys Acta. 1973 Feb 22;292(2):338-49
    1. FEBS Lett. 1973 Mar 15;30(3):317-20
    1. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1395-402
    1. J Biol Chem. 1976 Mar 25;251(6):1610-7
    1. J Bioenerg. 1975 May;7(2):61-74
    1. J Biol Chem. 1976 Feb 25;251(4):968-74
    1. Biochim Biophys Acta. 1976 Feb 16;423(2):141-63
    1. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1892-6
    1. Biochemistry. 1975 Jun 17;14(12):2675-80
    1. Biochim Biophys Acta. 1975 May 15;387(2):320-4
    1. Eur J Biochem. 1974 Dec 16;50(1):305-15
    1. J Biol Chem. 1975 Jul 25;250(14):5336
    1. J Biol Chem. 1974 Oct 10;249(19):6250-4
    1. Biochim Biophys Acta. 1973 Jan 18;292(1):20-38
    1. FEBS Lett. 1973 May 15;32(1):91-4
    1. Arch Biochem Biophys. 1973 Jun;156(2):621-5
    1. Biochim Biophys Acta. 1972 Aug 9;274(2):323-35
    1. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445-502
    1. Proc Natl Acad Sci U S A. 1976 Feb;73(2):437-41
    1. Eur J Biochem. 1975 Nov 1;59(1):223-30
    1. Biochim Biophys Acta. 1971 Apr 6;234(1):177-81
    1. Essays Biochem. 1970;6:1-22
    1. Eur J Biochem. 1969 Jun;9(2):149-55
    1. J Biol Chem. 1969 Feb 25;244(4):774-7

Source: PubMed

3
Subscribe