Do Antibiotics Cause Obesity Through Long-term Alterations in the Gut Microbiome? A Review of Current Evidence

Natalia Vallianou, Maria Dalamaga, Theodora Stratigou, Irene Karampela, Christina Tsigalou, Natalia Vallianou, Maria Dalamaga, Theodora Stratigou, Irene Karampela, Christina Tsigalou

Abstract

Purpose of review: In this review, we summarize current evidence on the association between antibiotics and the subsequent development of obesity through modulation of the gut microbiome. Particular emphasis is given on (i) animal and human studies and their limitations; (ii) the reservoir of antibiotics in animal feed, emerging antibiotic resistance, gut dysbiosis, and obesity; (iii) the role of infections, specifically viral infections, as a cause of obesity; and (iv) the potential therapeutic approaches other than antibiotics to modulate gut microbiome.

Recent findings: Overall, the majority of animal studies and meta-analyses of human studies on the association between antibiotics and subsequent development of obesity are suggestive of a link between exposure to antibiotics, particularly early exposure in life, and the development of subsequent obesity as a result of alterations in the diversity of gut microbiota. The evidence is strong in animal models whereas evidence in humans is inconclusive requiring well-designed, long-term longitudinal studies to examine this association. Based on recent meta-analyses and epidemiologic studies in healthy children, factors, such as the administration of antibiotics during the first 6 months of life, repeated exposure to antibiotics for ≥ 3 courses, treatment with broad-spectrum antibiotics, and male gender have been associated with increased odds of overweight/obesity. Early antibiotic exposure in animal models has shown that reductions in the population size of specific microbiota, such as Lactobacillus, Allobaculum, Rikenellaceae, and Candidatus Arthromitus, are related to subsequent adiposity. These data suggest that the loss of diversity of the gut microbiome, especially early in life, may have potential long-term detrimental effects on the adult host gut microbiome and metabolic health. Genetic, environmental, and age-related factors influence the gut microbiome throughout the lifetime. More large-scale, longer-term, longitudinal studies are needed to determine whether changes that occur in the microbiome after exposure to antibiotics, particularly early exposure, are causal of subsequent weight gain or consequent of weight gain in humans. Further well-designed, large-scale RCTs in humans are required to evaluate the effects of administration of antibiotics, particularly early administration, and the subsequent development of overweight/obesity. Therapeutic interventions, such as bacteriophage treatment or the use of probiotics, especially genetically engineered ones, need to be evaluated in terms of prevention and management of obesity.

Keywords: Antibiotic; Diet; Gut; Infection; Intestine; Metabolic syndrome; Microbiome; Microbiota; Obesity; Prebiotic; Probiotic; Virus.

Conflict of interest statement

Natalia Vallianou, Maria Dalamaga, Theodora Stratigou Irene Karampela. and Christina Tsigalou declare no conflict of interest.

© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Figures

Fig. 1
Fig. 1
Key gut microbiota, metabolite, and functional characteristics associated with obesity. Overall, there is lower microbial richness and diversity as well as lower microbial gene count in obesity compared to normal weight individuals. A plethora of studies has implicated certain microbial species, metabolic and functional characteristics in obesity; nevertheless, findings differ between studies. This list is not complete regarding the totality of altered taxonomic, metabolite, and functional characteristics but represents frequent patterns observed amid studies. Abbreviation list: BCAA: branched-chain amino acid; LPS: lipopolysaccharide; SCFA: short-chain fatty acid; TMAO: trimethyl-amine-N-oxide; ↓ or ↑: reduced or increased abundance in obesity compared to normal-weight individuals
Fig. 2
Fig. 2
Gut dysbiosis triggered by environmental exposures such as diet and antibiotics plays an important role in disrupting molecular metabolism and impacting on obesity outcomes. In obesity, the adipose tissue is infiltrated with inflammatory immune cells that produce high amounts of proinflammatory cytokines and chemokines. The gut barrier is disrupted causing gut antigens and PAMPs such as LPS to enter the tissue and stimulate inflammation. DC: dendritic cells, GABA: gamma aminobutyric acid, Mono: monocytes, PYY: peptide YY, PMNs: polymorphonuclear neutrophils, Th: T helper cells; 5HT: 5-hydroxytryptamine

References

    1. NCD Risk Factor Collaboration Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States . NCHS Data Brief, no 360. Hyattsville, MD: National Center for Health Statistics; 2017. p. 2020.
    1. . Accessed on December 20, 2020
    1. Nishtar S, Gluckman P, Armstrong T. Ending childhood obesity: a time for action. Lancet. 2016;387(10021):825–827. doi: 10.1016/S0140-6736(16)00140-9.4.
    1. Tsigalou C, Stavropoulou E, Bezirtzoglou E. Current insights in microbiome shifts in Sjogren's syndrome and possible therapeutic interventions. Front Immunol. 2018;9:1106. doi: 10.3389/fimmu.2018.01106.
    1. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi: 10.1042/BCJ20160510.
    1. Rinninella E, Cintoni M, Raoul P, Lopetuso LR, Scaldaferri F, Pulcini G, Miggiano GAD, Gasbarrini A, Mele MC. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients. 2019;11(10):2393. doi: 10.3390/nu11102393.
    1. Grivennikov S, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012;491(7423):254–258. doi: 10.1038/nature11465.
    1. Rea D, Coppola G, Palma G, Barbieri A, Luciano A, del Prete P, et al. Microbiota effects on cancer: from risks to therapies. Oncotarget. 2018;9(25):17915–17927. doi: 10.18632/oncotarget.24681.
    1. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13(11):800–812. doi: 10.1038/nrc3610.
    1. Abreu MT, Peek RM. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014, 146(6):1534–1546.e3. 10.1053/j.gastro.2014.01.001.
    1. Vallianou NG, Tzortzatou-Stathopoulou F. Microbiota and cancer: an update. J Chemother. 2019;31(2):59–63. doi: 10.1080/1120009X.2018.1541046.
    1. Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep. 2019;8(3):317–332. doi: 10.1007/s13679-019-00352-2.
    1. Rinninela E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasparrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14. doi: 10.3390/microorganisms7010014.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi: 10.1038/nature11053.
    1. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4578–4585. doi: 10.1073/pnas.1000081107.
    1. Dominguez-Bello MG, Costello EK, Contreras M, Makris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107.
    1. Dominguez-Bello MG, Blaser MJ, Ley RE, Knight R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology. 2011;140(6):1713–1719. doi: 10.1053/j.gastro.2011.02.011.
    1. Zeissig S, Blumberg RS. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat Immunol. 2014;15(4):307–310. doi: 10.1038/ni.2847.
    1. Agace WW, McCoy KD. Regionalized development and maintenance of the intestinal adaptive immune landscape. Immunity. 2017;46(4):532–548. doi: 10.1016/j.immuni.2017.04.004.
    1. Vallianou NG, Geladari E, Kounatidis D. Microbiome and hypertension: where are we now? J Cardiovasc Med. 2020;21(2):83–88. doi: 10.2459/JCM.0000000000000900.
    1. Vallianou N, Stratigou T, Christodoulatos GS, Tsigalou C, Dalamaga M. Probiotics, Prebiotics, synbiotics, postbiotics, and obesity: current evidence, controversies, and perspectives. Curr Obes Rep. 2020;9(3):179–192. doi: 10.1007/s13679-020-00379-w.
    1. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi: 10.2337/db06-1491.
    1. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22(7):713–722. doi: 10.1038/nm.4142.
    1. Charbonneau MR, Blanton LV, DiGiulio DB, Relman DA, Lebrilla CB, Mills DA, et al. A microbial perspective of human developmental biology. Nature. 2016;535(7610):48–55. doi: 10.1038/nature18845.
    1. Vallianou NG, Stratigou T, Tsagarakis S. Microbiome and diabetes: where are we now? Diabetes Res Clin Pract. 2018;146:111–118. doi: 10.1016/j.diabres.2018.10.008.
    1. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439. doi: 10.1126/science.1237439.
    1. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. doi: 10.1038/nature05414.
    1. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–223. doi: 10.1016/j.chom.2008.02.015.
    1. Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23:859–868. doi: 10.1038/nm.4358.
    1. Parnell JL, Reimer RA. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes. 2012;3(1):29–34. doi: 10.4161/gmic.19246.
    1. Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, Kleerebezel M, et al. Microbiota conservation and BMI signatures in adult monozygotic twins. ISME J. 2013;7:707–717. doi: 10.1038/ismej.2012.146.
    1. Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107:228–233. doi: 10.1073/pnas.0906112107.
    1. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–195. doi: 10.1038/oby.2009.167.
    1. Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. Febbs Lett. 2014;588(22):4223–4233. doi: 10.1016/j.febslet.2014.09.039.
    1. Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio. 2016;7(4):e01018–e01016. doi: 10.1128/mBio.01018-16.
    1. Fan Y, Pedersen O. Human gut microbiota in metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71. doi: 10.1038/s41579-020-0433-9.
    1. Klancic T, Reimer RA. Gut microbiota and obesity: Impact of antibiotics and prebiotics and potential for musculoskeletal health. J Sport Health Sci. 2020;9(2):110–118. doi: 10.1016/j.jshs.2019.04.004.
    1. Moran-Ramos S, Lopez-Contreras BE, Canizales-Quinteros S. Gut microbiota in obesity and metabolic abnormalities: a matter of composition or functionality? Arch Med Res. 2017;48(8):735–753. doi: 10.1016/j.arcmed.2017.11.003.
    1. Del Chierico F, Abbatini F, Russo A, Quagliariello A, Reddel S, Capoccia D, et al. Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns. Front Microbiol. 2018;9:1210. doi: 10.3389/fmicb.2018.01210.
    1. Joyce SA, Gahan C. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig Dis. 2017;35(3):169–177. doi: 10.1159/000450907.
    1. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC, Bayless AJ, Wilson KE, Glover LE, Kominsky DJ, Magnuson A, Weir TL, Ehrentraut SF, Pickel C, Kuhn KA, Lanis JM, Nguyen V, Taylor CT, Colgan SP. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–671. doi: 10.1016/j.chom.2015.03.005.
    1. Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut. 1980;21(9):793–798. doi: 10.1136/gut.21.9.793.
    1. Canfora EE, Meex R, Venema K, Blaak EE. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–273. doi: 10.1038/s41574-019-0156-z.
    1. Blaak E, Canfora E, Theis S, Frost G, Groen A, Mithieux G, et al. Short chain fatty acids in human gut and metabolic health. Benefic Microbes. 2020;11(5):411–455. doi: 10.3920/BM2020.0057.
    1. Chambers E, Viardot A, Psichas A, Morrison D, Murphy K. Zac-Varghese, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–1754. doi: 10.1136/gutjnl-2014-307913.
    1. de la Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):440–448. doi: 10.1152/ajpgi.00098.2010.
    1. Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes. 2012;3(4):279–288. doi: 10.4161/gmic.19625.
    1. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000;12(1):20–26. doi: 10.1016/s0952-7915(99)00046-1.
    1. Shi H, Kokoeva MV, Inoue K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116(11):3015–3025. doi: 10.1172/JCI28898.
    1. Belancic A. Gut microbiome dysbiosis and endotoxemia - additional pathophysiological explanation for increased COVID-19 severity in obesity. Obes Med. 2020;20:100302. doi: 10.1016/j.obmed.2020.100302.
    1. Shinde T, Hansbro PM, Sohal SS, Dingle P, Eri R, Stanley R. Microbiota modulating nutritional approaches to countering the effects of viral respiratory infections including SARS-CoV-2 through promoting metabolic and immune fitness with probiotics and plant bioactives. Microorganisms. 2020;8(6):921. doi: 10.3390/microorganisms8060921.
    1. Ribeiro C, Silveira G, Candido E, Cardoso M, Carvalho C, Franco O. Effects of antibiotic treatment on gut microbiota and how to overcome its negative impacts on human health. ACS Infect Dis. 2020;6(10):2544–2559. doi: 10.1021/acsinfecdis.0c00036.
    1. Hagiya H, Kokado R, Ueda A, Okuno H, Morii D, Hamaguchi S, Yamamoto N, Yoshida H, Tomono K. Association of adverse drug events with broad-spectrum antibiotic use in hospitalized patients: a single-center study. Intern Med. 2019;58(18):2621–2625. doi: 10.2169/internalmedicine.2603-18.
    1. Yoon MY, Yoon SS. Disruption of the gut ecosystem by antibiotics. Yonsei Med J. 2018;59(1):4–12. doi: 10.3349/ymj.2018.59.1.4.
    1. Caprio J, Rantz LA. Effects of terramycin on the bacterial flora of the bowel in man. AMA Arch Intern Med. 1950;86(5):649–657. doi: 10.1001/archinte.1950.00230170002001.
    1. Konstantinidis T, Tsigalou C, Karvelas A, Stavropoulou E, Voidarou C, Berirtzoglou E. Effects of antibiotics upon the gut microbiome: a review of the literature. Biomedicines. 2020;8(11):502. doi: 10.3390/biomedicines8110502.
    1. Johanesen PA, Mackin KE, Hutton ML, Awad MM, Larcombe S, Amy JM, Lyras D. Disruption of the gut microbiome: clostridium difficile infection and the threat of antibiotic resistance. Genes. 2015;6(4):1347–1360. doi: 10.3390/genes6041347.
    1. Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med. 2015;373(3):287–288. doi: 10.1056/NEJMc1506004.
    1. Iizumi T, Battaglia T, Ruiz V, Perez G. Gut microbiome and antibiotics. Arch Med Res. 2017;48(8):727–734. doi: 10.1016/j.arcmed.2017.11.004.
    1. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141. doi: 10.1016/j.cell.2014.03.011.
    1. Cox LM, Blaser MA. Antibiotics in early life and obesity. Nat Rev Endocrinol. 2015;11(3):182–190. doi: 10.1038/nrendo.2014.210.
    1. Tsigalou C, Konstantinidis T, Stavropoulou E, Bezirtzoglou EE, Tsakris A. Potential elimination of human gut resistome by exploiting the benefits of functional foods. Front Microbiol. 2020;11:50. doi: 10.3389/fmicb.2020.00050.
    1. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–4561. doi: 10.1073/pnas.1000087107.
    1. Leong K, Derraik J, Hofman P, Cutfield W. Antibiotics, gut microbiome and obesity. Clin Endocrinol. 2018;88(2):185–200. doi: 10.1111/cen.13495.
    1. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA. PLoS Biol. 2008;6(11):e280. doi: 10.1371/journal.pbio.0060280.
    1. Jakobsson HE, Jernberg C, Andersson AF, Sjolund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5(3):e9836. doi: 10.1371/journal.pone.0009836.
    1. Perez-Cobas AE, Artacho A, Knecht H, Ferrus ML, Friedrichs A, Ott SJ, et al. Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One. 2013;8(11):e80201. doi: 10.1371/journal.pone.0080201.
    1. Greenwood C, Morrow AL, Lagomarcino AJ, Altaye M, Taft DH, Yu Z, Newburg DS, Ward DV, Schibler KR. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014;165(1):23–29. doi: 10.1016/j.jpeds.2014.01.010.
    1. Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, van Nood E, Holleman F, Knaapen M, Romijn JA, Soeters MR, Blaak EE, Dallinga-Thie GM, Reijnders D, Ackermans MT, Serlie MJ, Knop FK, Holst JJ, van der Ley C, Kema IP, Zoetendal EG, de Vos WM, Hoekstra JBL, Stroes ES, Groen AK, Nieuwdorp M. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014;60(4):824–831. doi: 10.1016/j.jhep.2013.11.034.
    1. Panda S, El Khader I, Casellas F, Vivancos JL, Cors MG, Santiago A, et al. Short-term effect of antibiotics on human gut microbiota. PLoS One. 2014;9(4):e95476. doi: 10.1371/journal.pone.0095476.
    1. Stewardson AJ, Gaia N, Francois P, Malhotra-Kumar S, Delemont C, De Tejada BM, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. Clin Microbiol Infect. 2015;21(4):344.e1–344.11. doi: 10.1016/j.cmi.2014.11.016.
    1. Mikkelsen KH, Frost M, Bahl MI, Licht TR, Jensen US, Rosenberg J, Pedersen O, Hansen T, Rehfeld JF, Holst JJ, Vilsbøll T, Knop FK. Effect of antibiotics on gut microbiota, gut hormones and glucose metabolism. PLoS One. 2015;10(11):e0142352. doi: 10.1371/journal.pone.0142352.
    1. Rashid MU, Zaura E, Buijs MJ, Keijser BJ, Crielaard W, Nord CE, et al. Determining the long-term effect of antibiotic administration on the human normal intestinal microbiota using culture and pyrosequencing methods. Clin Microbiol Infect. 2015;60(Suppl 2):S77–S84. doi: 10.1093/cid/civ137.
    1. Lichtman JS, Ferreyra JA, Ng KM, Smits SA, Sonnenburg JL, Elias JE. Host-microbiota interactions in the pathogenesis of antibiotic-associated diseases. Cell Rep. 2016;4(5):1049–1061. doi: 10.1016/j.celrep.2016.01.009.
    1. Korpela K, Mutanen A, Salonen A, Savilahti E, De Vos W, Pakarinen MP. Intestinal microbiota signatures associated with histological liver steatosis in pediatric-onset intestinal failure. JPEN J Parenter Enteral Nutr. 2017;41(2):238–248. doi: 10.1177/0148607115584388.
    1. Lankelma JM, Cranendonk DR, Belzer C, De Vos A, De Vos W, Der Poll T, et al. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study. Gut. 2017;66(9):1623–1630. doi: 10.1136/gutjnl-2016-312132.
    1. Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Aline KH, Nielsen T, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018;3(11):1255–1265. doi: 10.1038/s41564-018-0257-9.
    1. Willmann M, Vehreschild M, Biehl LM, Vogel W, Dorfel D, Hamprecht A, et al. Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC Biol. 2019;17(1):76. doi: 10.1186/s12915-019-0692-y.
    1. Xu L, Surathu A, Raplee I, Chockalingam A, Stewart S, Walker L, Sacks L, Patel V, Li Z, Rouse R. The effect of antibiotics on the gut microbiome: a metagenomics analysis of microbial shift and gut antibiotic resistance in antibiotic treated mice. BMC Genomics. 2020;21(1):263. doi: 10.1186/s12864-020-6665-2.
    1. Zimmermann P, Curtis N. The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. J Inf Secur. 2019;79(6):471–489. doi: 10.1016/j.jinf.2019.10.008.
    1. Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(Pt 11):3216–3223. doi: 10.1099/mic.0.040618-0.
    1. Isaac S, Scher JU, Djukovic A, Jimenez N, Littman DR, Abramson SB, et al. Short- and long-term effects of oral vancomycin on the human intestinal microbiota. J Antimicrob Chemother. 2017;72(1):128–136. doi: 10.1093/jac/dkw383.
    1. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–626. doi: 10.1038/nature11400.
    1. Cox L, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–721. doi: 10.1016/j.cell.2014.05.052.
    1. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104:979–984. doi: 10.1073/pnas.0605374104.
    1. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–1481. doi: 10.2337/db07-1403.
    1. Murphy EF, Cotter PD, Hogan A, O'Sullivan O, Joyce A, Fouhy F, Clarke SF, Marques TM, O'Toole PW, Stanton C, Quigley EMM, Daly C, Ross PR, O'Doherty RM, Shanahan F. Divergent metabolic outcomes arising from targeted manipulations of the gut microbiota in diet-induced obesity. Gut. 2013;62(2):220–226. doi: 10.1136/gutjnl-2011-300705.
    1. Mahana D, Trend C, Kurtz Z, Boculich N, Battaglia T, Chung J, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med. 2016;8(1):48. doi: 10.1186/s13073-016-0297-9.
    1. Rodrigues R, Greer R, Dong X, Dsouza K, Gurung M, Wu J, et al. Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front Microbiol. 2017;8:2306. doi: 10.3389/fmicb.2017.02306.
    1. Li R, Wang H, Shi Q, Wang N, Zhang Z, Xiong C, Liu J, Chen Y, Jiang L, Jiang Q. Effects of oral florfenicol and azithromycin on gut microbiota and adipogenesis in mice. PLoS One. 2017;12(7):e0181690. doi: 10.1371/journal.pone.0181690.
    1. Zarrinpar A, Chaix A, Xu Z, Chang M, Marotz C, Saghatelian A, et al. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun. 2018;9(1):2872. doi: 10.1038/s41467-018-05336-9.
    1. Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci. 2005;84(4):634–643. doi: 10.1093/ps/84.4.634.
    1. Gaskins HR, Collier CT, Anderson DB. Antibiotics as growth promotants: mode of action. Anim Biotechnol. 2002;13(1):29–42. doi: 10.1081/ABIO-120005768.
    1. Mohammadkhah A, Simpson E, Patterson S, Ferguson J. Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. Children (Basel) 2018;5(12):160. doi: 10.3390/children5120160.
    1. Bliss E, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity. Front Physiol. 2018;19:900. doi: 10.3389/fphys.201800900.
    1. Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. 2003;16(2):175–188. doi: 10.1128/cmr.16.2.175-188.2003.
    1. Gough E, Moodie E, Prendergast A, Johnson S, Humphrey J, Stoltzfus R, et al. The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials. BMJ. 2014;348:g2267. doi: 10.1136/bmj.g2267.
    1. Shao X, Ding X, Wang B, Li L, An X, Yao Q, Song R, Zhang JA. Antibiotic exposure in early life increases risk of childhood obesity: a systematic review and meta-analysis. Front Endocrinol. 2017;8:170. doi: 10.3389/fendo.2017.00170.
    1. Wan S, Guo M, Zhang T, Chen Q, Wu M, Teng F, Long Y, Jiang Z, Xu Y. Impact of exposure to antibiotics during pregnancy and infancy on childhood obesity: a systematic review and meta-analysis. Obesity. 2020;28(4):793–802. doi: 10.1002/oby.22747.
    1. Thuny F, Richet H, Casalta JP, Angelakis P, Habib G, Raoult D. Vancomycin treatment of infective endocarditis is linked with recently acquired obesity. PLoS One. 2010;5(2):e9074. doi: 10.1371/journal.pone.0009074.
    1. Saiman L, Anstead M, Mayer-Hamblett N, Lands L, Kloster M, Hosevar-Trnka J, et al. Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2010;303(17):1707–1715. doi: 10.1001/jama.2010.563.
    1. Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. 2011;35(4):522–529. doi: 10.1038/ijo.2011.27.
    1. Francois F, Roper J, Joseph N, Pei Z, Chhada A, Shak JR, et al. The effect of H. pylori eradication on meal-associated changes in plasma ghrelin and leptin. BMC Gastroenterol. 2011;11:37. doi: 10.1186/1471-230X-11-37.
    1. Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37(1):16–23. doi: 10.1038/ijo.2012.132.
    1. Murphy R, Stewart AW, Braithwaite I, Beasly R, Hancox RJ, Mitchell EA, et al. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes. 2014;38(8):1115–1119. doi: 10.1038/ijo.2013.218.
    1. Bailey LC, Forrest CB, Zhang P, Richards TM, Livshits A, DeRusso PA. Association of antibiotics in infancy with early childhood obesity. JAMA Pediatr. 2014;68(11):1063–1069. doi: 10.1001/jamapediatrics.2014.1539.
    1. Azad MB, Bridgman SL, Becker AB, Kojurskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes. 2014;38(10):1290–1298. doi: 10.1038/ijo.2014.119.
    1. Angelakis E, Million M, Kankoe S, Lagier JC, Armougom F, Giorgi R. Abnormal weight gain and gut microbiota modifications are side effects of long-term doxycycline and hydroxychloroquine treatment. Antimicrob Agents Chemother. 2014;58(6):3342–3347. doi: 10.1128/AAC.02437-14.
    1. Saari A, Virta LJ, Sankilampi U, Denkel L, Saxen H. Antibiotic exposure in infancy and risk of being overweight in the first 24 months of life. Pediatrics. 2015;135(4):617–626. doi: 10.1542/peds.2014-3407.
    1. Edmonson MB, Eikhoff JC. Weight gain and obesity in infants and young children exposed to prolonged antibiotic prophylaxis. JAMA Pediatr. 2017;171(2):150–156. doi: 10.1001/jamapediatrics.2016.3349.
    1. Scott FI, Horton DB, Mamtani R, Haynes K, Goldberg DS, Lee DY, et al. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology. 2016;151(1):120–129.e5. doi: 10.1053/j.gastro.2016.03.006.
    1. Li DK, Chen H, Ferber J, Odouli R. Infection and antibiotic use in infancy and risk of childhood obesity: a longitudinal birth cohort study. Lancet Diabetes Endocrinol. 2017;5(1):18–25. doi: 10.1016/S2213-8587(16)30281-9.
    1. Stark CM, Susi A, Emerick J, Nylund CD. Antibiotic and acid-suppression medications during early childhood are associated with obesity. Gut. 2019;68(1):62–69. doi: 10.1136/gutjnl-2017-314971.
    1. Kelly D, Kelly A, O’Dowd T, Hays CB. Antibiotic use in early childhood and risk of obesity: longitudinal analysis of a national cohort. World J Pediatr. 2019;15(4):390–397. doi: 10.1007/s12519-018-00223-1.
    1. Park YJ, Chang J, Lee G, Son JS, Park SM. Association of class number, cumulative exposure, and earlier initiation of antibiotics during the first two-years of life with subsequent childhood obesity. Metabolism. 2020;112:1543–1548. doi: 10.1016/j.metabol.2020.154348.
    1. Chelimo C, Camargo CA, Morton S, Grant CC. Association of repeated antibiotic exposure up to age 4 years with body mass at age 4.5 years. JAMA Netw Open. 2020;3(1):e1917577. doi: 10.1001/jamanetworkopen.2019.17577.
    1. Gerber JS, Bryan M, Ross RK, Daymont C, Parks EP, Locialo AR, et al. Antibiotic exposure during the first 6 months of life and weight gain during childhood. JAMA. 2016;315(12):1258–1265. doi: 10.1001/jama.2016.2395.
    1. Cromwell GL. Why and how antibiotics are used in swine production. Anim Biotechnol. 2002;13(1):7–27. doi: 10.1081/ABIO-120005767.
    1. Castanon J. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007;86(11):2466–2471. doi: 10.3382/ps.2007-00249.
    1. Taleghani AH, Lim TT, Lin CH, Ericsson AC, Vo PH. Degradation of veterinary antibiotics in swine manure via anaerobic digestion. Bioengineering. 2020;7(4):123. doi: 10.3390/bioengineering7040123.
    1. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi: 10.1016/S1473-3099(15)00424-7.
    1. Jess T, Morgen CS, Harpsoe MC, Sorensen T, Ajslev TA, Antvorskov JC, et al. Antibiotic use during pregnancy and childhood overweight: a population-based nationwide cohort study. Sci Rep. 2019;9(1):11528. doi: 10.1038/s41598-019-48065-9.
    1. Dhuradhar NV. Infectobesity: obesity of infectious origin. J Nutr. 2001;131(10):2794S–2797S. doi: 10.1093/jn/131.10.2794S.
    1. Atkinson RL. Viruses as an etiology of obesity. Mayo Clin Proc. 2007;82(10):1192–1198. doi: 10.4065/82.10.1192.
    1. Schwartz DJ, Langdon AE, Dantas G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 2020;12(1):82. doi: 10.1186/s13073-020-00782-x.
    1. Geldart K, Borrero J, Kaznessis Y. Chloride-inducible expression vector for delivery of antimicrobial peptides targeting antibiotic-resistant Enterococcus faecium. Appl Environ Microbiol. 2015;81(11):3889–3897. doi: 10.1128/AEM.00227-15.
    1. Sulakvelitze A, Alavidze Z, Morris JG. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–659. doi: 10.1128/AAC.45.3.649-659.2001.
    1. Citorik RJ, Mimee M, Lu TK. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr Opin Microbiol. 2014;19:59–69. doi: 10.1016/j.mib.2014.05.022.
    1. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32(11):1146–1150. doi: 10.1038/nbt.3043.
    1. Langdom A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39. doi: 10.1186/s13073-016-0294-z.
    1. Jumpertz R, Son Le D, Turnbauch B, Trinidad C, Bogardus C, Gordon J, Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94(1):58–65. doi: 10.3945/ajcn.110.010132.

Source: PubMed

3
Subscribe