Performance of BioFire array or QuickVue influenza A + B test versus a validation qPCR assay for detection of influenza A during a volunteer A/California/2009/H1N1 challenge study

David R McIlwain, Han Chen, Maria Apkarian, Melton Affrime, Bonnie Bock, Kenneth Kim, Nilanjan Mukherjee, Garry P Nolan, Monica M McNeal, David R McIlwain, Han Chen, Maria Apkarian, Melton Affrime, Bonnie Bock, Kenneth Kim, Nilanjan Mukherjee, Garry P Nolan, Monica M McNeal

Abstract

Background: Influenza places a significant burden on global health and economics. Individual case management and public health efforts to mitigate the spread of influenza are both strongly impacted by our ability to accurately and efficiently detect influenza viruses in clinical samples. Therefore, it is important to understand the performance characteristics of available assays to detect influenza in a variety of settings. We provide the first report of relative performance between two products marketed to streamline detection of influenza virus in the context of a highly controlled volunteer influenza challenge study.

Methods: Nasopharyngeal swab samples were collected during a controlled A/California/2009/H1N1 influenza challenge study and analyzed for detection of virus shedding using a validated qRT-PCR (qPCR) assay, a sample-to-answer qRT-PCR device (BioMerieux BioFire FilmArray RP), and an immunoassay based rapid test kit (Quidel QuickVue Influenza A + B Test).

Results: Relative to qPCR, the sensitivity and specificity of the BioFire assay was 72.1% [63.7-79.5%, 95% confidence interval (CI)] and 93.5% (89.3-96.4%, 95% CI) respectively. For the QuickVue rapid test the sensitivity was 8.5% (4.8-13.7%, 95% CI) and specificity was 99.2% (95.6-100%, 95% CI).

Conclusion: Relative to qPCR, the BioFire assay had superior performance compared to rapid test in the context of a controlled influenza challenge study.

Trial registration: ClinicalTrials.gov NCT02918006.

Keywords: Biofire film array; H1N1; Influenza; QPCR; RIDT; Rapid influenza diagnostic test; Volunteer influenza challenge study.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Venn diagram of BioFire performance versus qPCR. Number of samples positive by qPCR (blue), positive by BioFire (green), or positive by both qPCR and BioFire (yellow). Samples negative for both qPCR and BioFire (grey). Size of circles is proportional to n
Fig. 2
Fig. 2
Venn diagram of rapid test performance versus qPCR. Number of samples positive by qPCR (blue), positive by rapid test (green), or positive by both qPCR and rapid test (yellow). Samples negative for both qPCR and rapid test (grey). Size of circles is proportional to n

References

    1. Webster RG, Govorkova EA. Continuing challenges in influenza. Ann NY Acad Sci. 2017;1323(1):115–139. doi: 10.1111/nyas.12462.
    1. Putri WCWS, Muscatello DJ, Stockwell MS, Newall AT. Economic burden of seasonal influenza in the United States. Vaccine. 2018;36(27):3960–3966. doi: 10.1016/j.vaccine.2018.05.057.
    1. van Elden LJ, van Essen GA, Boucher CA, van Loon AM, Njhuis M, Schipper P, et al. Clinical diagnosis of influenza virus infection: evaluation of diagnostic tools in general practice E. Br J Gen Pract. 2001;469(51):630–634.
    1. Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002;30(6):1292–1305. doi: 10.1093/nar/30.6.1292.
    1. Templeton KE, Scheltinga SA, Beersma MFC, Kroes ACM, Claas ECJ. Rapid and sensitive method using multiplex real-time pcr for diagnosis of infections by influenza A and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J Clin Microbiol. 2004;42(4):1564–1569. doi: 10.1128/JCM.42.4.1564-1569.2004.
    1. Sampath R, Hall TA, Massire C, Li F, Blyn LB, Eshoo MW, et al. Rapid identification of emerging infectious agents using pcr and electrospray ionization mass spectrometry. Ann NY Acad Sci. 2007;1102(1):109–120. doi: 10.1196/annals.1408.008.
    1. Prevention C for DC and. Guidance for clinicians on the use of rapid influenza diagnostic tests. 2013 [cited 5 Sep 2020]. .
    1. Balasingam S, Wilder-Smith A. Randomized controlled trials for influenza drugs and vaccines: a review of controlled human infection studies. Int J Infect Dis. 2016;49:18–29. doi: 10.1016/j.ijid.2016.05.013.
    1. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol. 2008;167(7):775–785. doi: 10.1093/aje/kwm375.
    1. Sherman AC, Mehta A, Dickert NW, Anderson EJ, Rouphael N. The future of flu: a review of the human challenge model and systems biology for advancement of influenza vaccinology. Front Cell Infect Mi. 2019;9:107. doi: 10.3389/fcimb.2019.00107.
    1. Yoon J, Yun SG, Nam J, Choi S-H, Lim CS. The use of saliva specimens for detection of influenza A and B viruses by rapid influenza diagnostic tests. J Virol Methods. 2017;243:15–19. doi: 10.1016/j.jviromet.2017.01.013.
    1. Liebowitz D, Gottlieb K, Kolhatkar NS, Garg SJ, Asher JM, Nazareno J, et al. Efficacy, immunogenicity, and safety of an oral influenza vaccine: a placebo-controlled and active-controlled phase 2 human challenge study. Lancet Infect Dis. 2020;20(4):435–444. doi: 10.1016/S1473-3099(19)30584-5.
    1. Rahil Z, Leylek R, Schürch CM, Chen H, Bjornson-Hooper Z, Christensen SR, et al. Landscape of coordinated immune responses to H1N1 challenge in humans. J Clin Investig. 2020;130:5800–5816. doi: 10.1172/JCI137265.
    1. BioFire FilmArray Respiratory Panel (RP) instructions for use. .
    1. QuickVue Package Insert. .
    1. Stevenson M, Nunes T, Heuer C, Marshall J, Sanchez J, Thornton R, et al. epiR.pdf [cited 5 Sep 2020]. .
    1. Chan M, Koo SH, Jiang B, Lim PQ, Tan TY. Comparison of the Biofire FilmArray Respiratory Panel, Seegene AnyplexII RV16, and Argene for the detection of respiratory viruses. J Clin Virol. 2018;106:13–17. doi: 10.1016/j.jcv.2018.07.002.
    1. Popowitch EB, O’Neill SS, Miller MB. Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP fast multiplex assays for detection of respiratory viruses. J Clin Microbiol. 2013;51(5):1528–1533. doi: 10.1128/JCM.03368-12.
    1. Ruggiero P, McMillen T, Tang Y-W, Babady NE. Evaluation of the BioFire FilmArray respiratory panel and the GenMark eSensor respiratory viral panel on lower respiratory tract specimens. J Clin Microbiol. 2014;52(1):288–290. doi: 10.1128/JCM.02787-13.
    1. Grijalva CG, Poehling KA, Edwards KM, Weinberg GA, Staat MA, Iwane MK, et al. Accuracy and interpretation of rapid influenza tests in children. Pediatrics. 2007;119(1):6–11. doi: 10.1542/peds.2006-1694.
    1. Hurt AC, Alexander R, Hibbert J, Deed N, Barr IG. Performance of six influenza rapid tests in detecting human influenza in clinical specimens. J Clin Virol. 2007;39(2):132–135. doi: 10.1016/j.jcv.2007.03.002.
    1. Velasco JM, Valderama MT, Diones PC, Navarro FC, Develos M, Lopez MN, et al. Performance of a rapid diagnostic test for influenza in a Tertiary Military Hospital, Philippines. Mil Med. 2021;22:usab006. doi: 10.1093/milmed/usab006.
    1. Stein J, Louie J, Flanders S, Maselli J, Hacker JK, Drew WL, et al. Performance characteristics of clinical diagnosis, a clinical decision rule, and a rapid influenza test in the detection of influenza infection in a community sample of adults. Ann Emerg Med. 2005;46(5):412–419. doi: 10.1016/j.annemergmed.2005.05.020.
    1. Uyeki TM, Prasad R, Vukotich C, Stebbins S, Rinaldo CR, Ferng Y, et al. Low sensitivity of rapid diagnostic test for influenza. Clin Infect Dis. 2009;48(9):89–92. doi: 10.1086/597828.

Source: PubMed

3
Subscribe