Degradable polymeric vehicles for postoperative pain management

Natasha C Brigham, Ru-Rong Ji, Matthew L Becker, Natasha C Brigham, Ru-Rong Ji, Matthew L Becker

Abstract

Effective control of pain management has the potential to significantly decrease the need for prescription opioids following a surgical procedure. While extended release products for pain management are available commercially, the implementation of a device that safely and reliably provides extended analgesia and is sufficiently flexible to facilitate a diverse array of release profiles would serve to advance patient comfort, quality of care and compliance following surgical procedures. Herein, we review current polymeric systems that could be utilized in new, controlled post-operative pain management devices and highlight where opportunities for improvement exist.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1. Various analgesic agents can be…
Fig. 1. Various analgesic agents can be added to an inserted polymeric matrix to alleviate pain following a surgery.
Selection of the API will depend on the targeted biological process that is intended to be aided or impeded. Pain is a neurological process and as such, analgesic APIs act on the central and peripheral nervous system (A). Each of three classes of analgesic drug acts upon a site or multiple sites of the pain pathway to block or mitigate the signal transduction necessary for pain (B). NSAIDs act on the cyclo-oxygenase (COX) enzyme to block the production of inflammatory mediators, such as prostaglandins (e.g., PGE2), as well as interleukin (IL)-1, IL-6 and tumor necrosis factor (TNF), that are responsible for the initiation of nociception (C). Local anesthetics block ion channels in the periphery to create an inactive state, preventing the signal from continuing (D). Opioids work on the central and peripheral terminals and spinal cord and brain neurons to suppress pain signaling. Their mechanisms of action involve the G-protein-coupled receptors in nociceptive neurons in the PNS and CNS to inhibit the influx of calcium ions via calcium channels on primary sensory neurons, leading to an inhibition of neurotransmitter release and blockade of pain transmission. In postsynaptic neurons in the CNS (e.g., spinal cord dorsal horn), opioids also activate potassium channels and create an influx of potassium ions to hyperpolarize neurons, therefore, decreasing their activities (E). DRG (Dorsal Root Ganglion), B (unprotonated local anesthetic/base), and BH+ (protonated local anesthetic/base).
Fig. 2. Schematic of the circulatory system…
Fig. 2. Schematic of the circulatory system to depict different drug distribution effects from various administration methods.
A Oral administration is the most common and simplest method for analgesic delivery to date, however, first pass metabolism limits bioavailability to the active site and exposes even healthy tissue to the drug, therefore making it inefficient and uneconomical. Both (B) injectable (mainly subcutaneous or intramuscular) and (C) implantable controlled delivery methods afford a more localized exposure of the drug when administered, especially when impregnated into a controlled release matrix. If implanted at the site of injury, therapeutic effects should stay localized to a radius relative to the site of insertion, which will depend on the system itself (i.e., drug solubility and absorption).
Fig. 3. Polymeric drug delivery systems afford…
Fig. 3. Polymeric drug delivery systems afford many different size scales due to the flexibility in processing of synthetic polymers.
Each scale class offers it’s own benefits and application methods that prove useful for targeting specific types of pain.
Fig. 4. Degradable polymeric systems can erode…
Fig. 4. Degradable polymeric systems can erode by different mechanisms depending on their chemical structure and mechanial properties. This factor, along with how the drug is incorporated into the matrix will ultimately impact how drug elution from the system occurs.
Controlled delivery systems can incorporate drug in a matrix (A, B) or a reservoir (B, C) system. Depending on the application, this will alter the drug release from the system in a specific manner. Reservoir systems are characteristic of a delayed release as the polymer surrounding the drug core degrades whereas matrix systems will depend more highly on the polymer-drug interactions among other factors (B). If solely based on polymer degradation, however, the release will either be more exponential (bulk erosion) or continual (surface erosion). Bulk erosion usually provides the system a “burst” release at early time points, followed by a continuous decrease in rate.

References

    1. Mathiesen O, Thomsen B, Kitter B, Dahl J, Kehlet H. Need for improved treatment of postoperative pain. Dan. Med. J. 2012;59:A4401.
    1. Apfelbaum JL, Chen C, Mehta SS, Gan TJ. Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesth. Analg. 2003;97:534–540. doi: 10.1213/01.ANE.0000068822.10113.9E.
    1. Gan TJ, Habib AS, Miller TE, White W, Apfelbaum JL. Incidence, patient satisfaction, and perceptions of post-surgical pain: results from a US national survey. Curr. Med. Res. Opin. 2014;30:149–160. doi: 10.1185/03007995.2013.860019.
    1. Bartels K, et al. Opioid use and storage patterns by patients after hospital discharge following surgery. PLoS ONE. 2016;11:e0147972. doi: 10.1371/journal.pone.0147972.
    1. Mason MJ, et al. Depression moderates the relationship between pain and the nonmedical use of opioid medication among adult outpatients. J. Addict. Med. 2016;10:408–413. doi: 10.1097/ADM.0000000000000253.
    1. Leppert W, Malec-Milewska M, Zajaczkowska R, Wordliczek J. Transdermal and topical drug administration in the treatment of pain. Molecules. 2018;23:681. doi: 10.3390/molecules23030681.
    1. Guay, J. & Kopp, S. Epidural pain relief versus systemic opioid‐based pain relief for abdominal aortic surgery. Cochrane Database Syst. Rev. 2016, CD005059 (2016).
    1. Ji RR, Chamessian A, Zhang YQ. Pain regulation by non-neuronal cells and inflammation. Science. 2016;354:572–577. doi: 10.1126/science.aaf8924.
    1. Kehlet H, Jensen TS, Woolf CJ. Persistent postsurgical pain: risk factors and prevention. Lancet. 2006;367:1618–1625. doi: 10.1016/S0140-6736(06)68700-X.
    1. Chi-Fei Wang J, Hung CH, Gerner P, Ji RR, Strichartz GR. The qualitative hyperalgesia profile: a new metric to assess chronic post-thoracotomy. Pain. Open Pain. J. 2013;6:190–198. doi: 10.2174/1876386301306010190.
    1. Matsuda M, Huh Y, Ji RR. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. J. Anesth. 2019;33:131–139. doi: 10.1007/s00540-018-2579-4.
    1. Gold MS, Gebhart GF. Nociceptor sensitization in pain pathogenesis. Nat. Med. 2010;16:1248–1257. doi: 10.1038/nm.2235.
    1. Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26:696–705. doi: 10.1016/j.tins.2003.09.017.
    1. Price, T. J. et al. Transition to chronic pain: opportunities for novel therapeutics. Nat. Rev. Neurosci. 19, 383–384 (2018).
    1. Ji, R. R., Berta, T. & Nedergaard, M. Glia and pain: is chronic pain a gliopathy? Pain154 Supplement 1, S10-S28. 10.1016/j.pain.2013.06.022 (2013).
    1. Inoue K, Tsuda M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat. Rev. Neurosci. 2018;19:138–152. doi: 10.1038/nrn.2018.2.
    1. Kehlet H, Dahl J. Anaesthesia, surgery, and challenges in postoperative recovery. Lancet. 2004;362:1921–1928. doi: 10.1016/S0140-6736(03)14966-5.
    1. Bulut T, Yilmazlar A, Yavascaoglu B, Sarisozen B. The effect of local anaesthetic on post-operative pain with wound instillation via a catheter for paediatric orthopaedic extremity surgery. J. Child Orthop. 2011;5:179–185. doi: 10.1007/s11832-011-0337-3.
    1. Garimella V, Cellini C. Postoperative pain control. Clin. Colon Rectal Surg. 2013;26:191–196. doi: 10.1055/s-0033-1351138.
    1. Vadivelu N, Mitra S, Narayan D. Recent advances in postoperative pain management. Yale J. Biol. Med. 2010;83:11–25.
    1. Corder, G., Castro, D. C., Bruchas, M. R. & Scherrer, G. Endogenous and exogenous opioids in pain. Annu. Rev. Neurosci. 41, 453–473 (2018).
    1. Stein C, Lang LJ. Peripheral mechanisms of opioid analgesia. Curr. Opin. Pharmacol. 2009;9:3–8. doi: 10.1016/j.coph.2008.12.009.
    1. Ji RR, et al. Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. J. Neurosci. 1995;15:8156–8166. doi: 10.1523/JNEUROSCI.15-12-08156.1995.
    1. Millan MJ. Multiple opioid systems and pain. Pain. 1986;27:303–347. doi: 10.1016/0304-3959(86)90158-2.
    1. Matthes HW, et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 1996;383:819–823. doi: 10.1038/383819a0.
    1. McCorvy JD, et al. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol. 2018;14:126–134. doi: 10.1038/nchembio.2527.
    1. Martyn JAJ, Mao J, Bittner EA. Opioid tolerance in critical illness. N. Engl. J. Med. 2019;380:365–378. doi: 10.1056/NEJMra1800222.
    1. Mao JClinical. Diagnosis of opioid-induced hyperalgesia. Reg. Anesth. Pain. Med. 2015;40:663–664. doi: 10.1097/AAP.0000000000000317.
    1. Aneizi, A. et al. Impact of preoperative opioid use on 2-year patient-reported outcomes in knee surgery patients. J. Knee Surg. 10.1055/s-0040-1716358 (2020).
    1. Volkow ND, Collins FS. The role of science in addressing the opioid crisis. N. Engl. J. Med. 2017;377:391–394. doi: 10.1056/NEJMsr1706626.
    1. Culp WC, Culp WC. Practical application of local anesthetics. J. Vasc. Interv. Radiol. 2011;22:111–118. doi: 10.1016/j.jvir.2010.10.005.
    1. Peskin RM. Handbook of local anesthesia. N. Y. State Dent. J. 2005;71:76–77.
    1. Waxman SG, Dib-Hajj S, Cummins TR, Black JA. Sodium channels and pain. Proc. Natl Acad. Sci. USA. 1999;96:7635–7639. doi: 10.1073/pnas.96.14.7635.
    1. Bennett DL, Woods CG. Painful and painless channelopathies. Lancet Neurol. 2014;13:587–599. doi: 10.1016/S1474-4422(14)70024-9.
    1. Roberge CW, McEwen M. The effects of local anesthetics on postoperative pain. Aorn j. 1998;68:1003–1012. doi: 10.1016/S0001-2092(06)62134-0.
    1. Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth. Prog. 2012;59:90–101. doi: 10.2344/0003-3006-59.2.90.
    1. Binshtok AM, Bean BP, Woolf CJ. Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature. 2007;449:607–610. doi: 10.1038/nature06191.
    1. Xu ZZ, et al. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat. Med. 2015;21:1326–1331. doi: 10.1038/nm.3978.
    1. Gold MS, Levine JD, Correa AM. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J. Neurosci. 1998;18:10345–10355. doi: 10.1523/JNEUROSCI.18-24-10345.1998.
    1. Aley KO, Levine JD. Role of protein kinase A in the maintenance of inflammatory pain. J. Neurosci. 1999;19:2181–2186. doi: 10.1523/JNEUROSCI.19-06-02181.1999.
    1. St-Jacques B, Ma W. Prostaglandin E2/EP4 signalling facilitates EP4 receptor externalization in primary sensory neurons in vitro and in vivo. Pain. 2013;154:313–323. doi: 10.1016/j.pain.2012.11.005.
    1. Reichling DB, Levine JD. Critical role of nociceptor plasticity in chronic pain. Trends Neurosci. 2009;32:611–618. doi: 10.1016/j.tins.2009.07.007.
    1. Choi S-H, Aid S, Bosetti F. The distinct roles of cyclooxygenase-1 and -2 in neuroinflammation: implications for translational research. Trends Pharmacol. Sci. 2009;30:174–181. doi: 10.1016/j.tips.2009.01.002.
    1. Samad TA, et al. Interleukin-1beta-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410:471–475. doi: 10.1038/35068566.
    1. Fuenmayor E, et al. Comparison of fused-filament fabrication to direct compression and injection molding in the manufacture of oral tablets. Int. J. Pharm. 2019;558:328–340. doi: 10.1016/j.ijpharm.2019.01.013.
    1. Fuenmayor E, et al. Mass-customization of oral tablets via the combination of 3D printing and injection molding. Int. J. Pharm. 2019;569:118611. doi: 10.1016/j.ijpharm.2019.118611.
    1. Pandey, M. et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Deliv. Transl. Res.10, 986–1001 (2020).
    1. Xu X, Zhao J, Wang M, Wang L, Yang J. 3D printed polyvinyl alcohol tablets with multiple release profiles. Sci. Rep. 2019;9:12487. doi: 10.1038/s41598-019-48921-8.
    1. Repka MA, Majumdar S, Kumar Battu S, Srirangam R, Upadhye ,SB. Applications of hot-melt extrusion for drug delivery. Expert Opin. Drug Deliv. 2008;5:1357–1376. doi: 10.1517/17425240802583421.
    1. Alshetaili AS, et al. Preparation and evaluation of hot-melt extruded patient-centric ketoprofen mini-tablets. Curr. Drug Deliv. 2016;13:730–741. doi: 10.2174/1567201812666151012113806.
    1. Al-Hashimi N, Begg N, Alany RG, Hassanin H, Elshaer A. Oral modified release multiple-unit particulate systems: compressed pellets, microparticles and nanoparticles. Pharmaceutics. 2018;10:176. doi: 10.3390/pharmaceutics10040176.
    1. Portenoy RK, et al. Steady-state pharmacokinetic comparison of a new, extended-release, once-daily morphine formulation, Avinza, and a twice-daily controlled-release morphine formulation in patients with chronic moderate-to-severe pain. J. Pain. Symptom Manag. 2002;23:292–300. doi: 10.1016/S0885-3924(02)00382-2.
    1. Wilson, C. G. in Biomaterials Science 3rd edn, (eds Ratner, B., Hoffman, A., Schoen, F. & Lemons, J. E.) 1083–1087 (Academic Press, 2013).
    1. Pond SM, Tozer TN. First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. 1984;9:1–25. doi: 10.2165/00003088-198409010-00001.
    1. Candiotti K. Liposomal bupivacaine: an innovative nonopioid local analgesic for the management of postsurgical pain. Pharmacotherapy. 2012;32:19S–26S. doi: 10.1002/j.1875-9114.2012.01183.x.
    1. Gambling, D., Hughes, T., Martin, G., Horton, W. & Manvelian, G. A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth Analg.100, 1065–1074 (2005).
    1. Sharpe L, et al. PH-responsive microencapsulation systems for the oral delivery of polyanhydride nanoparticles. Biomacromolecules. 2018;19:793–802. doi: 10.1021/acs.biomac.7b01590.
    1. Janssen M, et al. Celecoxib-loaded PEA microspheres as an auto regulatory drug-delivery system after intra-articular injection. J. Control Release. 2016;244:30–40. doi: 10.1016/j.jconrel.2016.11.003.
    1. Kim DK, Dobson J. Nanomedicine for targeted drug delivery. J. Mater. Chem. 2009;19:6294–6307. doi: 10.1039/b902711b.
    1. Galer BS, Rowbotham MC, Perander J, Friedman E. Topical lidocaine patch relieves postherpetic neuralgia more effectively than a vehicle topical patch: results of an enriched enrollment study. Pain. 1999;80:533–538. doi: 10.1016/S0304-3959(98)00244-9.
    1. Blair HA. Capsaicin 8% dermal patch: a review in peripheral neuropathic pain. Drugs. 2018;78:1489–1500. doi: 10.1007/s40265-018-0982-7.
    1. Food and Drug Administration. Fentanyl Transdermal System (marketed as Duragesic and generics). (2015).
    1. Oliashirazi A, Wilson-Byrne T, Shuler FD, Parvizi J. Patient-controlled fentanyl iontophoretic transdermal system improved postoperative mobility compared to intravenous patient-controlled analgesia morphine: a pooled analysis of randomized, controlled trials. Pain. Pract. 2017;17:197–207. doi: 10.1111/papr.12432.
    1. Soto F, et al. Noninvasive transdermal delivery system of lidocaine using an acoustic droplet-vaporization based wearable patch. Small. 2018;14:e1803266. doi: 10.1002/smll.201803266.
    1. Margetts L, Sawyer R. Transdermal drug delivery: principles and opioid therapy. Continuing Educ. Anaesth. Crit. Care Pain. 2007;7:171–176. doi: 10.1093/bjaceaccp/mkm033.
    1. Endo Pharmaceuticals Inc. LIDODERM (Lidocaine Patch 5%) (2015).
    1. Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 2018;10:1379. doi: 10.3390/polym10121379.
    1. Stoddard A, McNicholas C, Peipert JF. Efficacy and safety of long-acting reversible contraception. Drugs. 2011;71:969–980. doi: 10.2165/11591290-000000000-00000.
    1. Hoy SM, Keating GM. Fentanyl transdermal matrix patch (Durotep MT patch; Durogesic DTrans; Durogesic SMAT): in adults with cancer-related pain. Drugs. 2008;68:1711–1721. doi: 10.2165/00003495-200868120-00008.
    1. Dankiewicz EH. Use of the low-dose buprenorphine patch: a response. J. Palliat. Med. 2014;17:379–380. doi: 10.1089/jpm.2014.9438.
    1. Pacira Biosciences, I. Non-Opioid Exparel, (2020).
    1. Pacira Biosciences, I. FDA Advisory Committee Meeting Briefing Document: EXPAREL® (bupivacaine liposome injectable suspension). Meeting of the Anesthetic and Analgesic Drug Products Advisory Committee. (2018).
    1. Richard BM, et al. The safety and tolerability evaluation of DepoFoam bupivacaine (bupivacaine extended-release liposome injection) administered by incision wound infiltration in rabbits and dogs. Expert Opin. Investig. Drugs. 2011;20:1327–1341. doi: 10.1517/13543784.2011.611499.
    1. Davidson EM, et al. High-dose bupivacaine remotely loaded into multivesicular liposomes demonstrates slow drug release without systemic toxic plasma concentrations after subcutaneous administration in humans. Anesth. Analg. 2010;110:1018–1023. doi: 10.1213/ANE.0b013e3181d26d2a.
    1. Chahar P, Cummings KC., 3rd Liposomal bupivacaine: a review of a new bupivacaine formulation. J. Pain. Res. 2012;5:257–264.
    1. Malige, A., Yeazell, S., Ng-Pellegrino, A. & Carolan, G. Risk factors for complications and return to the emergency department after interscalene block using liposomal bupivacaine for shoulder surgery. J Shoulder Elbow Surg. (2020).
    1. Rautio J, Meanwell NA, Di L, Hageman MJ. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 2018;17:559–587. doi: 10.1038/nrd.2018.46.
    1. Spahn V, et al. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science. 2017;355:966–969. doi: 10.1126/science.aai8636.
    1. Ji RR, Xu ZZ, Wang X, Lo EH. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol. Sci. 2009;30:336–340. doi: 10.1016/j.tips.2009.04.002.
    1. Martinez PR, Goyanes A, Basit AW, Gaisford S. Influence of geometry on the drug release profiles of stereolithographic (SLA) 3D-printed tablets. AAPS PharmSciTech. 2018;19:3355–3361. doi: 10.1208/s12249-018-1075-3.
    1. Patra JK, et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology. 2018;16:71. doi: 10.1186/s12951-018-0392-8.
    1. Maitz MF. Applications of synthetic polymers in clinical medicine. Biosurf. Biotribol. 2015;1:161–176. doi: 10.1016/j.bsbt.2015.08.002.
    1. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–492. doi: 10.1038/nature02388.
    1. Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–114. doi: 10.1016/0142-9612(96)85755-3.
    1. Tamada J, Langer R. The development of polyanhydrides for drug delivery applications. J. Biomater. Sci. Polym. Ed. 1992;3:315–353. doi: 10.1163/156856292X00402.
    1. Barr J, Woodburn KW, Ng SY, Shen HR, Heller J. Post surgical pain management with poly(ortho esters) Adv. Drug Deliv. Rev. 2002;54:1041–1048. doi: 10.1016/S0169-409X(02)00056-X.
    1. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem. Rev. 1999;99:3181–3198. doi: 10.1021/cr940351u.
    1. Song R, et al. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel Ther. 2018;12:3117–3145. doi: 10.2147/DDDT.S165440.
    1. Gianolio DA, et al. Hyaluronan-tethered opioid depots: synthetic strategies and release kinetics in vitro and in vivo. Bioconjug. Chem. 2008;19:1767–1774. doi: 10.1021/bc8000479.
    1. Leiman, D., Niebler, G. & Minkowitz, H. S. Pharmacokinetics and safety of INL-001 (Bupivacaine HCl) implants compared with bupivacaine HCl infiltration after open unilateral inguinal hernioplasty. Adv. Ther.1, 691–706 (2020).
    1. Velanovich V, et al. Safety and efficacy of bupivacaine HCl collagen-matrix implant (INL-001) in open inguinal hernia repair: results from two randomized controlled trials. Adv. Ther. 2019;36:200–216. doi: 10.1007/s12325-018-0836-4.
    1. Langer R. Polymer implants for drug delivery in the brain. J. Control. Release. 1991;16:53–59. doi: 10.1016/0168-3659(91)90030-H.
    1. Leong KW, Kost J, Mathiowitz E, Langer R. Polyanhydrides for controlled release of bioactive agents. Biomaterials. 1986;7:364–371. doi: 10.1016/0142-9612(86)90007-4.
    1. Rosen HB, Chang J, Wnek GE, Linhardt RJ, Langer R. Bioerodible polyanhydrides for controlled drug delivery. Biomaterials. 1983;4:131–133. doi: 10.1016/0142-9612(83)90054-6.
    1. Kipper MJ, Shen E, Determan A, Narasimhan B. Design of an injectable system based on bioerodible polyanhydride microspheres for sustained drug delivery. Biomaterials. 2002;23:4405–4412. doi: 10.1016/S0142-9612(02)00181-3.
    1. Stephens D, et al. Investigation of the in vitro release of gentamicin from a polyanhydride matrix. J. Control. Release. 2000;63:305–317. doi: 10.1016/S0168-3659(99)00205-9.
    1. Li L, Deng J, Stephens D. Polyanhydride implant for antibiotic delivery—from the bench to the clinic. Adv. Drug Deliv. Rev. 2002;54:963–986. doi: 10.1016/S0169-409X(02)00045-5.
    1. Torres MP, Determan AS, Anderson GL, Mallapragada SK, Narasimhan B. Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials. 2007;28:108–116. doi: 10.1016/j.biomaterials.2006.08.047.
    1. Liu X, Pettway GJ, McCauley LK, Ma PX. Pulsatile release of parathyroid hormone from an implantable delivery system. Biomaterials. 2007;28:4124–4131. doi: 10.1016/j.biomaterials.2007.05.034.
    1. Dang M, Koh AJ, Jin X, McCauley LK, Ma PX. Local pulsatile PTH delivery regenerates bone defects via enhanced bone remodeling in a cell-free scaffold. Biomaterials. 2017;114:1–9. doi: 10.1016/j.biomaterials.2016.10.049.
    1. Wang J, et al. Redox-responsive polyanhydride micelles for cancer therapy. Biomaterials. 2014;35:3080–3090. doi: 10.1016/j.biomaterials.2013.12.025.
    1. Berrada M, Yang Z, Lehnert S. Tumor treatment by sustained intratumoral release of 5-fluorouracil: effects of drug alone and in combined treatments. Int. J. Radiat. Oncol. Biol. Phys. 2002;54:1550–1557. doi: 10.1016/S0360-3016(02)03740-9.
    1. Storm PB, et al. Polymer delivery of camptothecin against 9L gliosarcoma: release, distribution, and efficacy. J. Neurooncol. 2002;56:209–217. doi: 10.1023/A:1015003232713.
    1. Sipos E, Tyler B, Piantadosi S, Burger P, Brem H. Optimizing interstitial delivery of BCNU from controlled release polymers for the treatment of brain tumors. Cancer Chemother. Pharmacol. 1997;39:383–389. doi: 10.1007/s002800050588.
    1. Vogel BM, Mallapragada SK. Synthesis of novel biodegradable polyanhydrides containing aromatic and glycol functionality for tailoring of hydrophilicity in controlled drug delivery devices. Biomaterials. 2005;26:721–728. doi: 10.1016/j.biomaterials.2004.03.024.
    1. Maniar M, Domb A, Haffer A, Shah J. Controlled release of a local anesthetic from fatty acid dimer based polyanhydride. J. Control. Release. 1994;30:233–239. doi: 10.1016/0168-3659(94)90029-9.
    1. Park E-S, Maniar M, Shah JC. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. J. Control. Release. 1998;52:179–189. doi: 10.1016/S0168-3659(97)00223-X.
    1. Ulery BD, et al. Facile fabrication of polyanhydride/anesthetic nanoparticles with tunable release kinetics. Adv. Healthc. Mater. 2014;3:843–847. doi: 10.1002/adhm.201300521.
    1. Heller J. Development of poly(ortho esters): a historical overview. Biomaterials. 1990;11:659–665. doi: 10.1016/0142-9612(90)90024-K.
    1. Heller J, Penhale DWH, Helwing RF. Preparation of poly(ortho esters) by the reaction of diketene acetals and polyols. J. Polym. Sci. Polym. Lett. Ed. 1980;18:619–624. doi: 10.1002/pol.1980.130180907.
    1. Heller J, Barr J. Poly(ortho esters) from concept to reality †. Biomacromolecules. 2004;5:1625–1632. doi: 10.1021/bm040049n.
    1. Ng SY, et al. Development of a poly(ortho ester) prototype with a latent acid in the polymer backbone for 5-fluorouracil delivery. J. Control. Release. 2000;65:367–374. doi: 10.1016/S0168-3659(99)00218-7.
    1. Rothen-Weinhold A, et al. Release of BSA from poly(ortho ester) extruded thin strands. J. Control. Release. 2001;71:31–37. doi: 10.1016/S0168-3659(00)00348-5.
    1. Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 2011;49:832–864. doi: 10.1002/polb.22259.
    1. Gou M, et al. Transdermal anaesthesia with lidocaine nano-formulation pretreated with low-frequency ultrasound in rats model. J. Nanosci. Nanotechnol. 2009;9:6360–6365. doi: 10.1166/jnn.2009.1343.
    1. Cohn D, Hotovely Salomon A. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials. 2005;26:2297–2305. doi: 10.1016/j.biomaterials.2004.07.052.
    1. Cutright DE, Beasley JD, Perez B. Histologic comparison of polylactic and polyglycolic acid sutures. Oral. Surg. Oral. Med. Oral. Pathol. 1971;32:165–173. doi: 10.1016/0030-4220(71)90265-9.
    1. Frazza EJ, Schmitt EE. A new absorbable suture. J. Biomed. Mater. Res. 1971;5:43–58. doi: 10.1002/jbm.820050207.
    1. Lee JE, et al. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief. Acta Biomater. 2013;9:8318–8327. doi: 10.1016/j.actbio.2013.06.003.
    1. Padmakumar S, et al. Electrospun polymeric core–sheath yarns as drug eluting surgical sutures. ACS Appl. Mater. Interfaces. 2016;8:6925–6934. doi: 10.1021/acsami.6b00874.
    1. Ungaro F, et al. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: Modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers. J. Controlled Release. 2011;157:149–159. doi: 10.1016/j.jconrel.2011.08.010.
    1. Toti US, et al. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32:6606–6613. doi: 10.1016/j.biomaterials.2011.05.038.
    1. Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials. 2000;21:2475–2490. doi: 10.1016/S0142-9612(00)00115-0.
    1. Fu K, Pack D, Klibanov A, Langer R. Visual evidence of acidic environment within degrading Poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm. Res. 2000;17:100–106. doi: 10.1023/A:1007582911958.
    1. Danhier F, et al. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release. 2012;161:505–522. doi: 10.1016/j.jconrel.2012.01.043.
    1. Kappy M, Stuart T, Perelman A, Clemons R. Suppression of gonadotropin secretion by a long-acting gonadotropin-releasing hormone analog (leuprolide acetate, Lupron Depot) in children with precocious puberty. J. Clin. Endocrinol. Metab. 1989;69:1087–1089. doi: 10.1210/jcem-69-5-1087.
    1. Garner J, et al. A protocol for assay of poly(lactide-co-glycolide) in clinical products. Int. J. Pharmaceutics. 2015;495:87–92. doi: 10.1016/j.ijpharm.2015.08.063.
    1. Ensign LM, et al. Mucus-penetrating nanoparticles for vaginal drug delivery protect against herpes simplex virus. Sci. Transl. Med. 2012;4:138ra179. doi: 10.1126/scitranslmed.3003453.
    1. Pakulska M, et al. Encapsulation-free controlled release: electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles. Sci. Adv. 2016;2:e1600519. doi: 10.1126/sciadv.1600519.
    1. Schneider CS, et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 2017;3:e1601556. doi: 10.1126/sciadv.1601556.
    1. Tobío M, Gref R, Sánchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm. Res. 1998;15:270–275. doi: 10.1023/A:1011922819926.
    1. Khodaverdi, E. et al. Preparation and analysis of a sustained drug delivery system by PLGA–PEG–PLGA triblock copolymers. Polym. Bull.69, 429–438 (2012).
    1. Miyazaki, M. et al. PEG-based nanocomposite hydrogel: thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polymer115, 246–254 (2017).
    1. De Koker S, Hoogenboom R, De Geest BG. Polymeric multilayer capsules for drug delivery. Chem. Soc. Rev. 2012;41:2867–2884. doi: 10.1039/c2cs15296g.
    1. Sarode A, Annapragada A, Guo J, Mitragotri S. Layered self-assemblies for controlled drug delivery: a translational overview. Biomaterials. 2020;242:119929. doi: 10.1016/j.biomaterials.2020.119929.
    1. Durect:. POSIMIR®(bupivacaine extended-release solution). (2020).
    1. Singla N, et al. Opioid-free recovery after herniorrhaphy with HTX-011 as the foundation of a multimodal analgesic regimen. Surgery. 2020;168:915–920. doi: 10.1016/j.surg.2020.06.036.
    1. Center for Drug Evaluation and Research (CDER). Determining Whether to Submit an ANDA or a 505(b)(2) Application: Guidance for Industry. Docket Number: FDA-2017-D-5974. (U.S. Food & Drug Administration, 2019).
    1. Freije I, Lamouche S, Tanguay M. Review of drugs approved via the 505(b)(2) pathway: uncovering drug development trends and regulatory requirements. Ther. Innov. Regul. Sci. 2020;54:128–138. doi: 10.1007/s43441-019-00036-y.
    1. McKernan LC, et al. Posttraumatic stress symptoms mediate the effects of trauma exposure on clinical indicators of central sensitization in patients with chronic pain. Clin. J. Pain. 2019;35:385–393. doi: 10.1097/AJP.0000000000000689.
    1. Ji RR, Nackley A, Huh Y, Terrando N, Maixner W. Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 2018;129:343–366. doi: 10.1097/ALN.0000000000002130.
    1. Ji R-R, Xu Z-Z, Gao Y-J. Emerging targets in neuroinflammation-driven chronic pain. Nat. Rev. Drug Discov. 2014;13:533–548. doi: 10.1038/nrd4334.
    1. Schumacher, M. A., Basbaum, A. I. & Way, W. Basic and clinical pharmacology. In Opiod Analgesics and Antagonists, 12th edn, 542–543 (McGraw-Hill, 2012).
    1. Ioan, D.-C. et al. Piroxicam-Collagen-Based Sponges for Medical Applications. International Journal of Polymer Science2019, 1–7 (2019).
    1. Catanzano O, Docking R, Schofield P, Boateng J. Advanced multi-targeted composite biomaterial dressing for pain and infection control in chronic leg ulcers. Carbohydrate Polymers. 2017;172:40–48. doi: 10.1016/j.carbpol.2017.05.040.
    1. Cohen B, Shefy-Peleg A, Zilberman M. Novel gelatin/alginate soft tissue adhesives loaded with drugs for pain management: structure and properties. Journal of Biomaterials Science, Polymer Edition. 2014;25:224–240. doi: 10.1080/09205063.2013.849904.
    1. Shikanov A, Domb AJ, Weiniger CF. Long acting local anesthetic-polymer formulation to prolong the effect of analgesia. J Control Release. 2007;117:97–103. doi: 10.1016/j.jconrel.2006.10.014.
    1. Wu MH, et al. Evaluation of a novel biodegradable thermosensitive keto-hydrogel for improving postoperative pain in a rat model. PLoS One. 2017;12:e0186784. doi: 10.1371/journal.pone.0186784.
    1. Li A, Yang F, Xin J, Bai X. An efficient and long-acting local anesthetic: ropivacaine-loaded lipid-polymer hybrid nanoparticles for the control of pain. Int. J. Nanomed. 2019;14:913–920. doi: 10.2147/IJN.S190164.
    1. Wang Z, et al. Long-term effect of ropivacaine nanoparticles for sciatic nerve block on postoperative pain in rats. Int. J. Nanomed. 2016;11:2081–2090.
    1. Zhao C, et al. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nat. Commun. 2019;10:2566. doi: 10.1038/s41467-019-10296-9.
    1. Chai F, et al. In vivo evaluation of post-operative pain reduction on rat model after implantation of intraperitoneal PET meshes functionalised with cyclodextrins and loaded with ropivacaine. Biomaterials. 2019;192:260–270. doi: 10.1016/j.biomaterials.2018.07.032.
    1. Kovaliov M, et al. Extended-release of opioids using fentanyl-based polymeric nanoparticles for enhanced pain management. RSC Advances. 2017;7:47904–47912. doi: 10.1039/C7RA08450A.
    1. Tobe M, et al. Long-term effect of sciatic nerve block with slow-release lidocaine in a rat model of postoperative pain. Anesthesiology. 2010;112:1473–1481. doi: 10.1097/ALN.0b013e3181d4f66f.
    1. Liu KS, Chen WH, Lee CH, Su YF, Liu SJ. Extended pain relief achieved by analgesic-eluting biodegradable nanofibers in the Nuss procedure: in vitro and in vivo studies. Int. J. Nanomed. 2018;13:8355–8364. doi: 10.2147/IJN.S189505.
    1. Petit A, et al. Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials. 2014;35:7919–7928. doi: 10.1016/j.biomaterials.2014.05.064.
    1. Lee KJ, Yang SY, Ryu W. Controlled release of bupivacaine HCl through microchannels of biodegradable drug delivery device. Biomed. Microdevices. 2012;14:583–593. doi: 10.1007/s10544-012-9637-8.
    1. Abid S, Hussain T, Nazir A, Zahir A, Khenoussi N. A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds. Polymer Bulletin. 2019;76:6387–6411. doi: 10.1007/s00289-019-02727-w.
    1. Indulekha S, Arunkumar P, Bahadur D, Srivastava R. Thermoresponsive polymeric gel as an on-demand transdermal drug delivery system for pain management. Mater Sci Eng C Mater Biol Appl. 2016;62:113–122. doi: 10.1016/j.msec.2016.01.021.
    1. Yue J, et al. Facile design and development of photoluminescent graphene quantum dots grafted dextran/glycol-polymeric hydrogel for thermoresponsive triggered delivery of buprenorphine on pain management in tissue implantation. J Photochem Photobiol B. 2019;197:111530. doi: 10.1016/j.jphotobiol.2019.111530.

Source: PubMed

3
Subscribe