ILB® Attenuates Clinical Symptoms and Serum Biomarkers of Oxidative/Nitrosative Stress and Mitochondrial Dysfunction in Patients with Amyotrophic Lateral Sclerosis

Giacomo Lazzarino, Renata Mangione, Antonio Belli, Valentina Di Pietro, Zsuzsanna Nagy, Nicholas M Barnes, Lars Bruce, Bernardo M Ropero, Lennart I Persson, Benedetta Manca, Miriam Wissam Saab, Angela M Amorini, Barbara Tavazzi, Giuseppe Lazzarino, Ann Logan, Giacomo Lazzarino, Renata Mangione, Antonio Belli, Valentina Di Pietro, Zsuzsanna Nagy, Nicholas M Barnes, Lars Bruce, Bernardo M Ropero, Lennart I Persson, Benedetta Manca, Miriam Wissam Saab, Angela M Amorini, Barbara Tavazzi, Giuseppe Lazzarino, Ann Logan

Abstract

Oxidative/nitrosative stress and mitochondrial dysfunction is a hallmark of amyotrophic lateral sclerosis (ALS), an invariably fatal progressive neurodegenerative disease. Here, as an exploratory arm of a phase II clinical trial (EudraCT Number 2017-005065-47), we used high performance liquid chromatography(HPLC) to investigate changes in the metabolic profiles of serum from ALS patients treated weekly for 4 weeks with a repeated sub-cutaneous dose of 1 mg/kg of a proprietary low molecular weight dextran sulphate, called ILB®. A significant normalization of the serum levels of several key metabolites was observed over the treatment period, including N-acetylaspartate (NAA), oxypurines, biomarkers of oxidative/nitrosative stress and antioxidants. An improved serum metabolic profile was accompanied by significant amelioration of the patients' clinical conditions, indicating a response to ILB® treatment that appears to be mediated by improvement of tissue bioenergetics, decrease of oxidative/nitrosative stress and attenuation of (neuro)inflammatory processes.

Keywords: HPLC; N-acetylaspartate; amino acids; amyotrophic lateral sclerosis; antioxidants; energy metabolism; low molecular weight-dextran sulphate; mitochondrial dysfunction; oxidative/nitrosative stress; serum biomarkers.

Conflict of interest statement

Patents pertaining to this LMW-DS drug have been filed by Tikomed AB. L.B. is co-inventor of the LMW-DS used in the study and is a board member of Tikomed AB. A.L., Z.N., N.M.B. and A.B. declare consultancy payments from Tikomed AB and/or Neuregenix Ltd. for related services outside the submitted work. The other authors declare that they have no competing interests. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Box plots reporting minimum, maximum, median, 25% and 75% percentiles of the serum concentrations of the neuronal specific metabolite N-acetylaspartate (NAA, (a)) and of indices of energy metabolism impairment (uric acid, (b) and sum of oxypurines (c)) in 13 patients with ALS before (Pre) and after (Post) ILB® treatment. The values found in a group of 163 healthy controls are also reported. (○): open circles are the values of metabolites in each subject enrolled in the study. Means ± S.D. of NAA in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 0.037 ± 0.026, 0.223 ± 0.136 and 0.130 ± 0.084 μmol/L serum. Means ± S.D. of uric acid in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 270.50 ± 57.90, 397.10 ± 70.32 and 371.40 ± 71.98 μmol/L serum. Means ± S.D. of sum of oxypurines in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 276.80 ± 58.45, 407.60 ± 69.34 and 381.20 ± 72.38 μmol/L serum. * Significantly different from Controls, p < 0.001. ** Significantly different from Pre, p < 0.05.
Figure 2
Figure 2
Box plots reporting minimum, maximum, median, 25% and 75% percentiles of the serum concentrations of lipid peroxidation end product (MDA, (a)) and stable compounds of nitric oxide metabolism (nitrite + nitrate, (b)) in 13 patients with ALS before (Pre) and after (Post) ILB® treatment. The values measured in a group of 163 healthy controls are also reported. (○) Open circles are the values of metabolites in each subject enrolled in the study. Means ± S.D. of MDA in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 0.066 ± 0.048, 0.190 ± 0.114 and 0.128 ± 0.046 μmol/L serum. Means ± S.D. of nitrite + nitrate in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 30.90 ± 9.67, 53.98 ± 12.55 and 48.47 ± 12.25 μmol/L serum. * Significantly different from Controls, p < 0.001. ** Significantly different from Pre, p < 0.05.
Figure 3
Figure 3
Box plots reporting minimum, maximum, median, 25% and 75% percentiles of the serum concentrations of amino acids related to muscular protein degradation (ALA, (a)) and to nitric oxide generation (CITR, (b) and ORN/CITR ratio, (c)) in patients with ALS before (Pre) and after (Post) ILB® treatment. The values measured in a group of 163 healthy controls are also reported. (○) Open circles are the values of metabolites in each subject enrolled in the study. Means ± S.D. of ALA in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 364.40 ± 95.50, 429.00 ± 85.96 and 374.70 ± 83.43 μmol/L serum. Means ± S.D. of CITR in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 18.82 ± 4.22, 23.59 ± 7.03 and 18.60 ± 5.10 μmol/L serum. Means ± S.D. of ORN/CITR in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 4.47 ± 1.78, 1.52 ± 0.68 and 2−19 ± 1.03. * Significantly different from Controls, p < 0.001. ** Significantly different from Pre, p < 0.05.
Figure 4
Figure 4
Box plots reporting minimum, maximum, median, 25% and 75% percentiles of the serum concentrations of the main vitamin E congeners (α-tocopherol, (a) and γ-tocopherol, (b)) in patients with ALS before (Pre) and after (Post) ILB® treatment. The values measured in a group of 163 healthy controls are also reported. (○) Open circles are the values of metabolites in each subject enrolled in the study. Means ± S.D. of α-tocopherol in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 25.03 ± 5.78, 9.35 ± 5.54 and 11.70 ± 8.50 μmol/L serum. Means ± S.D. of γ-tocopherol in controls, patients with ALS before (Pre) and after (Post) ILB® treatment were, respectively, 1.05 ± 0.28, 0.497 ± 0.139 and 0.692 ± 0.367 μmol/L serum. * Significantly different from Controls, p < 0.001. ** Significantly different from Pre, p < 0.05.

References

    1. Mitchell J.D., Borasio G.D. Amyotrophic lateral sclerosis. Lancet. 2007;369:2031–2041. doi: 10.1016/S0140-6736(07)60944-1.
    1. Andrews J.A., Jackson C.E., Heiman-Patterson T.D., Bettica P., Brooks B.R., Pioro E.P. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2020;21:509–518. doi: 10.1080/21678421.2020.1771734.
    1. Le Gall L., Anakor E., Connolly O., Vijayakumar U.G., Duddy W.J., Duguez S. Molecular and cellular mechanisms affected in ALS. J. Pers. Med. 2020;10:101. doi: 10.3390/jpm10030101.
    1. Aydemir D., Ulusu N.N. Importance of the serum biochemical parameters as potential biomarkers for rapid diagnosis and evaluating preclinical stage of ALS. Med. Hypotheses. 2020;141:109736. doi: 10.1016/j.mehy.2020.109736.
    1. von Zur-Mühlen B., Lundgren T., Bayman L., Berne C., Bridges N., Eggerman T., Foss A., Goldstein J., Jenssen T., Jorns C., et al. Open randomized multicenter study to evaluate safety and efficacy of low molecular weight sulphated dextran in islet transplantation. Transplantation. 2019;103:630–637. doi: 10.1097/TP.0000000000002425.
    1. Lazzarino G., Amorini A.M., Barnes N.M., Bruce L., Mordente A., Lazzarino G., Di Pietro V., Tavazzi B., Belli A., Logan A. Low molecular weight dextran sulfate (ILB®) restores brain energy metabolism following severe traumatic brain injury in the rat. Antioxidants. 2020;9:850. doi: 10.3390/antiox9090850.
    1. Logan A., Nagy Z., Barnes N.M., Belli A., Di Pietro V., Tavazzi B., Lazzarino G., Lazzarino G., Bruce L., Ropero B.M., et al. A phase II open label clinical study of the safety, tolerability and efficacy of a low molecular weight dextran sulphate for Amyotrophic Lateral Sclerosis. PLoS ONE. 2021:submitted
    1. A Single-Centre, Open Single-Arm Study Where the Safety, Tolerability and Efficacy of Subcutaneously Administered ILB Will Be Evaluated in Patients with Amyotrophic Lateral Sclerosis. [(accessed on 11 May 2021)]; Available online: .
    1. Cedarbaum J.M., Stambler N., Malta E., Fuller C., Hilt D., Thurmond B., Nakanishi A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III) J. Neurol. Sci. 1999;169:13–21. doi: 10.1016/S0022-510X(99)00210-5.
    1. Lazzarino G., Amorini A.M., Fazzina G., Vagnozzi R., Signoretti S., Donzelli S., Di Stasio E., Giardina B., Tavazzi B. Single-sample preparation for simultaneous cellular redox and energy state determination. Anal. Biochem. 2003;322:51–59. doi: 10.1016/j.ab.2003.07.013.
    1. Tavazzi B., Lazzarino G., Leone P., Amorini A.M., Bellia F., Janson C.G., Di Pietro V., Ceccarelli L., Donzelli S., Francis J.S., et al. Simultaneous high performance liquid chromatographic separation of purines, pyrimidines, N-acetylated amino acids, and dicarboxylic acids for the chemical diagnosis of inborn errors of metabolism. Clin. Biochem. 2005;38:997–1008. doi: 10.1016/j.clinbiochem.2005.08.002.
    1. Lazzarino G., Longo S., Amorini A.M., Di Pietro V., D’Urso S., Lazzarino G., Belli A., Tavazzi B. Single-step preparation of selected biological fluids for the high performance liquid chromatographic analysis of fat-soluble vitamins and antioxidants. J. Chromatogr. A. 2017;1527:43–52. doi: 10.1016/j.chroma.2017.10.053.
    1. Romitelli F., Santini S.A., Chierici E., Pitocco D., Tavazzi B., Amorini A.M., Lazzarino G., Di Stasio E. Comparison of nitrite/nitrate concentration in human plasma and serum samples measured by the enzymatic batch Griess assay, ion-pairing HPLC and ion-trap GC-MS: The importance of a correct removal of proteins in the Griess assay. J. Chromatogr. B. 2007;851:257–267. doi: 10.1016/j.jchromb.2007.02.003.
    1. Amorini A.M., Giorlandino C., Longo S., D’Urso S., Mesoraca A., Santoro M.L., Picardi M., Gullotta S., Cignini P., Lazzarino D., et al. Metabolic profile of amniotic fluid as a biochemical tool to screen for inborn errors of metabolism and fetal anomalies. Mol. Cell. Biochem. 2012;359:205–216. doi: 10.1007/s11010-011-1015-y.
    1. Artiss J.D., Karcher R.E., Cavanagh K.T., Collins S.L., Peterson V.J., Varma S., Zak B. A liquid-stable reagent for lactic acid levels. Application to the Hitachi 911 and Beckman CX7. Am. J. Clin. Pathol. 2000;114:139–143. doi: 10.1309/65UJ-FQ75-DVGC-XX1N.
    1. Sharma C., Kim S., Nam Y., Jung U.J., Kim S.R. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer’s Disease. Int. J. Mol. Sci. 2021;22:4850. doi: 10.3390/ijms22094850.
    1. Nunes C., Laranjinha J. Nitric oxide and dopamine metabolism converge via mitochondrial dysfunction in the mechanisms of neurodegeneration in Parkinson’s disease. Arch. Biochem. Biophys. 2021;704:108877. doi: 10.1016/j.abb.2021.108877.
    1. Noori A., Mezlini A.M., Hyman B.T., Serrano-Pozo A., Das S. Systematic review and meta-analysis of human transcriptomics reveals neuroinflammation, deficient energy metabolism, and proteostasis failure across neurodegeneration. Neurobiol. Dis. 2021;149:105225. doi: 10.1016/j.nbd.2020.105225.
    1. McDonald T.S., McCombe P.A., Woodruff T.M., Lee J.D. The potential interplay between energy metabolism and innate complement activation in amyotrophic lateral sclerosis. FASEB J. 2020;34:7225–7233. doi: 10.1096/fj.201901781.
    1. Straub I.R., Weraarpachai W., Shoubridge E.A. Multi-OMICS study of a CHCHD10 variant causing ALS demonstrates metabolic rewiring and activation of endoplasmic reticulum and mitochondrial unfolded protein responses. Hum. Mol. Genet. 2021;30:687–705. doi: 10.1093/hmg/ddab078.
    1. Gerou M., Hall B., Woof R., Allsop J., Kolb S.J., Meyer K., Shaw P.J., Allen S.P. Amyotrophic lateral sclerosis alters the metabolic aging profile in patient derived fibroblasts. Neurobiol. Aging. 2021;105:64–77. doi: 10.1016/j.neurobiolaging.2021.04.013.
    1. Allen S.P., Hall B., Castelli L.M., Francis L., Woof R., Siskos A.P., Kouloura E., Gray E., Thompson A.G., Talbot K., et al. Astrocyte adenosine deaminase loss increases motor neuron toxicity in amyotrophic lateral sclerosis. Brain. 2019;142:586–605. doi: 10.1093/brain/awy353.
    1. Tefera T.W., Steyn F.J., Ngo S.T., Borges K. CNS glucose metabolism in Amyotrophic Lateral Sclerosis: A therapeutic target? Cell Biosci. 2021;11:14. doi: 10.1186/s13578-020-00511-2.
    1. Ohta Y., Yamashita T., Nomura E., Hishikawa N., Ikegami K., Osakada Y., Matsumoto N., Kawahara Y., Yunoki T., Takahashi Y., et al. Improvement of a decreased anti-oxidative activity by edaravone in amyotrophic lateral sclerosis patients. J. Neurol. Sci. 2020;415:116906. doi: 10.1016/j.jns.2020.116906.
    1. Simone I.L., Ruggieri M., Tortelli R., Ceci E., D’Errico E., Leo A., Zoccolella S., Mastrapasqua M., Capozzo R., Livrea P., et al. Serum N-acetylaspartate level in amyotrophic lateral sclerosis. Arch. Neurol. 2011;68:1308–1312. doi: 10.1001/archneurol.2011.217.
    1. Weerasekera A., Peeters R., Sima D.M., Dresselaers T., Sunaert S., De Vocht J., Claeys K., Van Huffel S., Van Damme P., Himmelreich U. Motor cortex metabolite alterations in amyotrophic lateral sclerosis assessed in vivo using edited and non-edited magnetic resonance spectroscopy. Brain Res. 2019;1718:22–31. doi: 10.1016/j.brainres.2019.04.018.
    1. Reischauer C., Gutzeit A., Neuwirth C., Fuchs A., Sartoretti-Schefer S., Weber M., Czell D. In-vivo evaluation of neuronal and glial changes in amyotrophic lateral sclerosis with diffusion tensor spectroscopy. Neuroimage Clin. 2018;20:993–1000. doi: 10.1016/j.nicl.2018.10.001.
    1. Ratai E.M., Alshikho M.J., Zürcher N.R., Loggia M.L., Cebulla C.L., Cernasov P., Reynolds B., Fish J., Seth R., Babu S., et al. Integrated imaging of [(11)C]-PBR28 PET, MR diffusion and magnetic resonance spectroscopy (1)H-MRS in amyotrophic lateral sclerosis. Neuroimage Clin. 2018;20:357–364. doi: 10.1016/j.nicl.2018.08.007.
    1. Hanstock C., Sun K., Choi C., Eurich D., Camicioli R., Johnston W., Kalra S. Spectroscopic markers of neurodegeneration in the mesial prefrontal cortex predict survival in ALS. Amyotroph. Lateral Scler. Front. Degener. 2020;21:246–251. doi: 10.1080/21678421.2020.1727926.
    1. Vicario N., Spitale F.M., Tibullo D., Giallongo C., Amorini A.M., Scandura G., Spoto G., Saab M.W., D’Aprile S., Alberghina C., et al. Clobetasol promotes neuromuscular plasticity in mice after motoneuronal loss via sonic hedgehog signaling, immunomodulation and metabolic rebalancing. Cell Death Dis. 2021;12:625. doi: 10.1038/s41419-021-03907-1.
    1. Vagnozzi R., Marmarou A., Tavazzi B., Signoretti S., Di Pierro D., del Bolgia F., Amorini A.M., Fazzina G., Sherkat S., Lazzarino G. Changes of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury. J. Neurotrauma. 1999;16:903–913. doi: 10.1089/neu.1999.16.903.
    1. Signoretti S., Marmarou A., Aygok G.A., Fatouros P.P., Portella G., Bullock R.M. Assessment of mitochondrial impairment in traumatic brain injury using high-resolution proton magnetic resonance spectroscopy. J. Neurosurg. 2008;108:42–52. doi: 10.3171/JNS/2008/108/01/0042.
    1. Belli A., Sen J., Petzold A., Russo S., Kitchen N., Smith M., Tavazzi B., Vagnozzi R., Signoretti S., Amorini A.M., et al. Extracellular N-acetylaspartate depletion in traumatic brain injury. J. Neurochem. 2006;96:861–869. doi: 10.1111/j.1471-4159.2005.03602.x.
    1. Vagnozzi R., Signoretti S., Tavazzi B., Floris R., Ludovici A., Marziali S., Tarascio G., Amorini A.M., Di Pietro V., Delfini R., et al. Temporal window of metabolic brain vulnerability to concussion: A pilot 1H-magnetic resonance spectroscopic study in concussed athletes—part III. Neurosurgery. 2008;62:1286–1295. doi: 10.1227/.
    1. Vagnozzi R., Signoretti S., Cristofori L., Alessandrini F., Floris R., Isgrò E., Ria A., Marziale S., Zoccatelli G., Tavazzi B., et al. Assessment of metabolic brain damage and recovery following mild traumatic brain injury: A multicentre, proton magnetic resonance spectroscopic study in concussed patients. Brain. 2010;133:3232–3242. doi: 10.1093/brain/awq200.
    1. Toczek M., Zielonka D., Zukowska P., Marcinkowski J.T., Slominska E., Isalan M., Smolenski R.T., Mielcarek M. An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington’s disease related cardiomyopathy. Biochim. Biophys. Acta. 2016;1862:2147–2157. doi: 10.1016/j.bbadis.2016.08.019.
    1. Van Wylen D.G. Effect of ischemic preconditioning on interstitial purine metabolite and lactate accumulation during myocardial ischemia. Circulation. 1994;89:2283–2289. doi: 10.1161/01.CIR.89.5.2283.
    1. Lazzarino G., Raatikainen P., Nuutinen M., Nissinen J., Tavazzi B., Di Pierro D., Giardina B., Peuhkurinen K. Myocardial release of malondialdehyde and purine compounds during coronary bypass surgery. Circulation. 1994;90:291–297. doi: 10.1161/01.CIR.90.1.291.
    1. Cristofori L., Tavazzi B., Gambin R., Vagnozzi R., Vivenza C., Amorini A.M., Di Pierro D., Fazzina G., Lazzarino G. Early onset of lipid peroxidation after human traumatic brain injury: A fatal limitation for the free radical scavenger pharmacological therapy? J. Investig. Med. 2001;49:450–458. doi: 10.2310/6650.2001.33790.
    1. Lazzarino G., Amorini A.M., Petzold A., Gasperini C., Ruggieri S., Quartuccio M.E., Lazzarino G., Di Stasio E., Tavazzi B. Serum compounds of energy metabolism impairment are related to disability, disease course and neuroimaging in multiple sclerosis. Mol. Neurobiol. 2017;54:7520–7533. doi: 10.1007/s12035-016-0257-9.
    1. Lazzarino G., Amorini A.M., Eikelenboom M., Killestein J., Belli A., Di Pietro V., Tavazzi B., Barkhof F., Polman C., Uitdehaag B., et al. Cerebrospinal fluid ATP metabolites in multiple sclerosis. Mult. Scler. J. 2010;16:549–554. doi: 10.1177/1352458510364196.
    1. Tavazzi B., Amorini A.M., Fazzina G., Di Pierro D., Tuttobene M., Giardina B., Lazzarino G. Oxidative stress induces impairment of human erythrocyte energy metabolism through the oxygen radical-mediated direct activation of AMP-deaminase. J. Biol. Chem. 2001;276:48083–48092. doi: 10.1074/jbc.M101715200.
    1. Bracko O., Di Pietro V., Lazzarino G., Amorini A.M., Tavazzi B., Artmann J., Wong E.C., Buxton R.B., Weller M., Luft A.R., et al. 3-Nitropropionic acid-induced ischemia tolerance in the rat brain is mediated by reduced metabolic activity and cerebral blood flow. J. Cereb. Blood Flow Metab. 2014;34:1522–1530. doi: 10.1038/jcbfm.2014.112.
    1. Vagnozzi R., Tavazzi B., Signoretti S., Amorini A.M., Belli A., Cimatti M., Delfini R., Di Pietro V., Finocchiaro A., Lazzarino G. Temporal window of metabolic brain vulnerability to concussions: Mitochondrial-related impairment—part I. Neurosurgery. 2007;61:379–388. doi: 10.1227/01.NEU.0000280002.41696.D8.
    1. Sassani M., Alix J.J., McDermott C.J., Baster K., Hoggard N., Wild J.M., Mortiboys H.J., Shaw P.J., Wilkinson I.D., Jenkins T.M. Magnetic resonance spectroscopy reveals mitochondrial dysfunction in amyotrophic lateral sclerosis. Brain. 2020;143:3603–3618. doi: 10.1093/brain/awaa340.
    1. Ramachandra C.J.A., Hernandez-Resendiz S., Crespo-Avilan G.E., Lin Y.-H., Hausenloy D.J. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 2020;57:102884. doi: 10.1016/j.ebiom.2020.102884.
    1. Kaur I., Behl T., Sehgal A., Singh S., Sharma N., Aleya L., Bungau S. Connecting the dots between mitochondrial dysfunction and Parkinson’s disorder: Focus mitochondria-targeting therapeutic paradigm in mitigating the disease severity. Environ. Sci. Pollut. Res. Int. 2021;28:37060–37081. doi: 10.1007/s11356-021-14619-6.
    1. Sahel D.K., Kaira M., Raj K., Sharma S., Singh S. Mitochondrial dysfunctioning and neuroinflammation: Recent highlights on the possible mechanisms involved in Traumatic Brain Injury. Neurosci. Lett. 2019;710:134347. doi: 10.1016/j.neulet.2019.134347.
    1. Moosavi B., Zhu X.L., Yang W.C., Yang G.F. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur. J. Cell Biol. 2020;99:151057. doi: 10.1016/j.ejcb.2019.151057.
    1. Tavazzi B., Vagnozzi R., Signoretti S., Amorini A.M., Belli A., Cimatti M., Delfini R., Di Pietro V., Finocchiaro A., Lazzarino G. Temporal window of metabolic brain vulnerability to concussions: Oxidative and nitrosative stresses—part II. Neurosurgery. 2007;61:390–395. doi: 10.1227/01.NEU.0000255525.34956.3F.
    1. Pérez-Torres I., Manzano-Pech L., Rubio-Ruíz M.E., Soto M.E., Guarner-Lans V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules. 2020;25:2555. doi: 10.3390/molecules25112555.
    1. Król M., Kepinska M. Human Nitric Oxide Synthase—Its Functions, Polymorphisms, and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. Int. J. Mol. Sci. 2020;22:56. doi: 10.3390/ijms22010056.
    1. Illes P., Rubini P., Ulrich H., Zhao Y., Tang Y. Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. Cells. 2020;9:1108. doi: 10.3390/cells9051108.
    1. Debska-Vielhaber G., Miller I., Peeva V., Zuschratter W., Walczak J., Schreiber S., Petri S., Machts J., Vogt S., Szczepanowska J., et al. Impairment of mitochondrial oxidative phosphorylation in skin fibroblasts of SALS and FALS patients is rescued by in vitro treatment with ROS scavengers. Exp. Neurol. 2021;339:113620. doi: 10.1016/j.expneurol.2021.113620.
    1. Devos D., Moreau C., Kyheng M., Garçon G., Rolland A.S., Blasco H., Gelé P., Lenglet T.T., Veyrat-Durebex C., Corcia P., et al. A ferroptosis-based panel of prognostic biomarkers for Amyotrophic Lateral Sclerosis. Sci. Rep. 2019;9:2918. doi: 10.1038/s41598-019-39739-5.
    1. Golenia A., Leśkiewicz M., Regulska M., Budziszewska B., Szczęsny E., Jagiełła J., Wnuk M., Ostrowskam M., Lasoń W., Basta-Kaim A., et al. Catalase activity in blood fractions of patients with sporadic ALS. Pharmacol. Rep. 2014;66:704–707. doi: 10.1016/j.pharep.2014.02.021.
    1. Schonhoff C.M., Matsuoka M., Tummala H., Johnson M.A., Estevéz A.G., Wu R., Kamaid A., Ricart K.C., Hashimoto Y., Gaston B., et al. S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc. Natl. Acad Sci. USA. 2006;103:2404–2409. doi: 10.1073/pnas.0507243103.
    1. Cheong I., Marjańska M., Deelchand D.K., Eberly L.E., Walk D., Öz G. Ultra-High Field Proton MR Spectroscopy in Early-Stage Amyotrophic Lateral Sclerosis. Neurochem. Res. 2017;42:1833–1844. doi: 10.1007/s11064-017-2248-2.
    1. Weiduschat N., Mao X., Hupf J., Armstrong N., Kang G., Lange D.J., Mitsumoto H., Shungu D.C. Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci. Lett. 2014;570:102–107. doi: 10.1016/j.neulet.2014.04.020.
    1. Kalinina E., Novichkova M. Glutathione in Protein Redox Modulation through S-Glutathionylation and S-Nitrosylation. Molecules. 2021;26:435. doi: 10.3390/molecules26020435.
    1. Blasco H., Garcon G., Patin F., Veyrat-Durebex C., Boyer J., Devos D., Vourc’h P., Andres C.R., Corcia P. Panel of Oxidative Stress and Inflammatory Biomarkers in ALS: A Pilot Study. Can. J. Neurol. Sci. 2017;44:90–95. doi: 10.1017/cjn.2016.284.
    1. Valbuena G.N., Rizzardini M., Cimini S., Siskos A.P., Bendotti C., Cantoni L., Keun H.C. Metabolomic Analysis Reveals Increased Aerobic Glycolysis and Amino Acid Deficit in a Cellular Model of Amyotrophic Lateral Sclerosis. Mol. Neurobiol. 2016;53:2222–2240. doi: 10.1007/s12035-015-9165-7.
    1. Palma A., de Carvalho M., Barata N., Evangelista T., Chicau P., Regalla M., Costa J. Biochemical characterization of plasma in amyotrophic lateral sclerosis: Amino acid and protein composition. Amyotroph. Lateral Scler. 2005;6:104–110. doi: 10.1080/14660820410021320a.
    1. Bereman M.S., Kirkwood K.I., Sabaretnam T., Furlong S., Rowe D.B., Guillemin G.J., Mellinger A.L., Muddiman D.C. Metabolite Profiling Reveals Predictive Biomarkers and the Absence of beta-Methyl Amino-l-alanine in Plasma from Individuals Diagnosed with Amyotrophic Lateral Sclerosis. J. Proteome Res. 2020;19:3276–3285. doi: 10.1021/acs.jproteome.0c00216.

Source: PubMed

3
Subscribe