Evaluating the Three-Dimensional Printing Accuracy of Partial-Arch Models According to Outer Wall Thickness: An In Vitro Study

Seung-Ho Shin, Jae-Sung Kwon, June-Sung Shim, Jong-Eun Kim, Seung-Ho Shin, Jae-Sung Kwon, June-Sung Shim, Jong-Eun Kim

Abstract

The printing accuracy of three-dimensional (3D) dental models using photopolymer resin affects dental diagnostic procedures and prostheses. The accuracy of research into the outer wall thickness and printing direction data for partial-arch model printing has been insufficient. This study analyzed the effects of wall thickness and printing direction accuracy. Anterior and posterior partial-arch models were designed with different outer wall thicknesses. After 3D printing, a trueness analysis was performed. Those with full-arch models were the control group. The full-arch model had an error value of 73.60 ± 2.61 µm (mean ± standard deviation). The error values for the partial-arch models with 1-, 2-, and 3-mm thick outer walls were 54.80 ± 5.34, 47.58 ± 7.59, and 42.25 ± 9.19 μm, respectively, and that for the fully filled model was 38.20 ± 4.63 μm. The printing accuracies differed significantly between 0 degrees and 60 degrees, at 49.54 ± 8.16 and 40.66 ± 6.80 μm, respectively (F = 153.121, p < 0.001). In conclusion, the trueness of the partial-arch model was better than that of the full-arch model, and models with thick outer walls at 60 degrees were highly accurate.

Keywords: 3D printing; CAD/CAM; additive manufacture; hollow model; internal structure; trueness.

Conflict of interest statement

The authors declare that they have no conflict of interest. The funders had no role in the design of the study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Flow chart of the study design.
Figure 2
Figure 2
Designs of the (A) full-arch model, (B) anterior partial-arch model, and (C) posterior partial-arch model. Partial areas of the teeth and gingiva were designated and used to evaluate printing accuracy.
Figure 3
Figure 3
Cross sections of the 3D printed models. The anterior partial-arch groups consisted of a (A) 1-mm-thick shell model, (B) 2-mm-thick shell model, (C) 3-mm-thick shell model, (D) 4-mm-thick shell model, and (E) fully filled model. The posterior partial-arch groups consisted of a (F) 1-mm-thick shell model, (G) 2-mm-thick shell model, (H) 3-mm-thick shell model, (I) 4-mm-thick shell model, and (J) fully filled model.
Figure 4
Figure 4
RMSE values from three-way ANOVAs for Groups A and P (A), printing direction (B), and (C) outer wall thickness. Lower-case letters indicate significant differences (p < 0.05). Data are mean and standard deviation values.
Figure 5
Figure 5
RMSE values in the anterior 0-degree group (A), anterior 60-degree group (B), posterior 0-degree group (C), and posterior 60-degree group (D), Lower-case letters indicate significant differences (p < 0.05). Data are mean and standard deviation values.
Figure 5
Figure 5
RMSE values in the anterior 0-degree group (A), anterior 60-degree group (B), posterior 0-degree group (C), and posterior 60-degree group (D), Lower-case letters indicate significant differences (p < 0.05). Data are mean and standard deviation values.
Figure 6
Figure 6
Scan color maps for each printing direction and outer wall thickness of the full-arch and anterior and posterior partial-arch groups. Comparisons with the full-arch group revealed that the anterior and posterior 0 degree partial-arch groups had large volume changes. For the 1-mm-thickness groups, the fully filled model and anterior and posterior partial-arch groups printed at 60 degree were compared, revealing relatively small volume changes.

References

    1. Ender A., Attin T., Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions. J. Prosthet. Dent. 2016;115:313–320. doi: 10.1016/j.prosdent.2015.09.011.
    1. Rekow D., Thompson V.P. Near-surface damage-a persistent problem in crowns obtained by computer-aided design and manufacturing. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2005;219:233–243. doi: 10.1243/095441105X9363.
    1. Attaran M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017;60:677–688. doi: 10.1016/j.bushor.2017.05.011.
    1. Wesemann C., Muallah J., Mah J., Bumann A. Accuracy and efficiency of full-arch digitalization and 3D printing: A comparison between desktop model scanners, an intraoral scanner, a CBCT model scan, and stereolithographic 3D printing. Quintessence Int. 2017;48:41–50. doi: 10.3290/J.QI.A37130.
    1. Jeong I.-D., Lee J.-J., Jeon J.-H., Kim J.-H., Kim H.-Y., Kim W.-C. Accuracy of complete-arch model using an intraoral video scanner: An in vitro study. J. Prosthet. Dent. 2016;115:755–759. doi: 10.1016/j.prosdent.2015.11.007.
    1. Martorelli M., Gloria A., Bignardi C., Calì M., Maietta S. Design of Additively Manufactured Lattice Structures for Biomedical Applications. J. Health Eng. 2020;2020:2707560. doi: 10.1155/2020/2707560.
    1. Yoon H.-I., Hwang H.-J., Ohkubo C., Han J.-S., Park E.-J. Evaluation of the trueness and tissue surface adaptation of CAD-CAM mandibular denture bases manufactured using digital light processing. J. Prosthet. Dent. 2018;120:919–926. doi: 10.1016/j.prosdent.2018.01.027.
    1. Nestler N., Wesemann C., Spies B.C., Beuer F., Bumann A. Dimensional accuracy of extrusion- and photopolymeriza-tion-based 3D printers: In vitro study comparing printed casts. J. Prosthet. Dent. 2020;125:103–110. doi: 10.1016/j.prosdent.2019.11.011.
    1. Jin M.-C., Yoon H.-I., Yeo I.-S., Kim S.-H., Han J.-S. The effect of build angle on the tissue surface adaptation of maxillary and mandibular complete denture bases manufactured by digital light processing. J. Prosthet. Dent. 2020;123:473–482. doi: 10.1016/j.prosdent.2018.12.014.
    1. Osman R.B., Alharbi N., Wismeijer D. Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology? Int. J. Prosthodont. 2017;30:182–188. doi: 10.11607/ijp.5117.
    1. Zhang Z.C., Li P.L., Chu F.T., Shen G. Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. J. Orofac. Orthop. 2019;80:194–204. doi: 10.1007/s00056-019-00180-y.
    1. Alharbi N., Osman R.B., Wismeijer D. Factors Influencing the Dimensional Accuracy of 3D-Printed Full-Coverage Dental Restorations Using Stereolithography Technology. Int. J. Prosthodont. 2016;29:503–510. doi: 10.11607/ijp.4835.
    1. Unkovskiy A., Bui P.H.-B., Schille C., Geis-Gerstorfer J., Huettig F., Spintzyk S. Objects build orientation, positioning, and curing influence dimensional accuracy and flexural properties of stereolithographically printed resin. Dent. Mater. 2018;34:e324–e333. doi: 10.1016/j.dental.2018.09.011.
    1. Loflin W.A., English J.D., Borders C., Harris L.M., Moon A., Holland J.N., Kasper F.K. Effect of print layer height on the assessment of 3D-printed models. Am. J. Orthod. Dentofac. Orthop. 2019;156:283–289. doi: 10.1016/j.ajodo.2019.02.013.
    1. Jongsma L.A., Kleverlaan C.J. Influence of temperature on volumetric shrinkage and contraction stress of dental compo-sites. Dent. Mater. 2015;31:721–725. doi: 10.1016/j.dental.2015.03.009.
    1. Shin S.-H., Lim J.-H., Kang Y.-J., Kim J.-H., Shim J.-S., Kim J.-E. Evaluation of the 3D Printing Accuracy of a Dental Model According to its Internal Structure and Cross-Arch Plate Design: An In Vitro Study. Materials. 2020;13:5433. doi: 10.3390/ma13235433.
    1. Wilson E.G., Werrin S. Double arch impressions for simplified restorative dentistry. J. Prosthet. Dent. 1983;49:198–202. doi: 10.1016/0022-3913(83)90500-0.
    1. McCracken M.S., Louis D.R., Litaker M.S., Minyé H.M., Oates T., Gordan V.V., Marshall D.G., Meyerowitz C., Gilbert G.H. National Dental PBRN Collaborative Group Impression Techniques Used for Single-Unit Crowns: Findings from the National Dental Practice-Based Research Network. J. Prosthodont. Implant. Esthet. Reconstr. Dent. 2018;27:722–732. doi: 10.1111/jopr.12577.
    1. Ender A., Zimmermann M., Attin T., Mehl A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin. Oral Investig. 2016;20:1495–1504. doi: 10.1007/s00784-015-1641-y.
    1. Güth J.-F., Edelhoff D., Schweiger J., Keul C. A new method for the evaluation of the accuracy of full-arch digital impressions in vitro. Clin. Oral Investig. 2016;20:1487–1494. doi: 10.1007/s00784-015-1626-x.
    1. Abudayyeh I., Gordon B., Ansari M.M., Jutzy K., Stoletniy L., Hilliard A. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples. J. Interv. Cardiol. 2017;31:375–383. doi: 10.1111/joic.12446.
    1. Ye N., Wu T., Dong T., Yuan L., Fang B., Xia L. Precision of 3D-printed splints with different dental model offsets. Am. J. Orthod. Dentofac. Orthop. 2019;155:733–738. doi: 10.1016/j.ajodo.2018.09.012.
    1. McGuinness N.J., Stephens C.D. Storage of Orthodontic Study Models in Hospital Units in the U.K. Br. J. Orthod. 1992;19:227–232. doi: 10.1179/bjo.19.3.227.
    1. Prasad S., Kader N.A., Sujatha G., Raj T., Patil S. 3D printing in dentistry. J. 3D Print. Med. 2018;2:89–91. doi: 10.2217/3dp-2018-0012.
    1. Fernandez O. Obtaining a best fitting plane through 3D georeferenced data. J. Struct. Geol. 2005;27:855–858. doi: 10.1016/j.jsg.2004.12.004.
    1. Ender A., Mehl A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013;109:121–128. doi: 10.1016/S0022-3913(13)60028-1.
    1. Ozsoy U. Comparison of Different Calculation Methods Used to Analyze Facial Soft Tissue Asymmetry: Global and Partial 3-Dimensional Quantitative Evaluation of Healthy Subjects. J. Oral Maxillofac. Surg. 2016;74:1847.e1–1847.e9. doi: 10.1016/j.joms.2016.05.012.
    1. Aly P., Mohsen C. Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study. Eur. J. Dent. 2020;14:189–193. doi: 10.1055/s-0040-1705243.
    1. Sherman S.L., Kadioglu O., Currier G.F., Kierl J.P., Li J. Accuracy of digital light processing printing of 3-dimensional dental models. Am. J. Orthod. Dentofac. Orthop. 2020;157:422–428. doi: 10.1016/j.ajodo.2019.10.012.
    1. Etemad-Shahidi Y., Qallandar O.B., Evenden J., Alifui-Segbaya F., Ahmed K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020;9:3357. doi: 10.3390/jcm9103357.
    1. Hwang H.-J., Lee S.J., Park E.-J., Yoon H.-I. Assessment of the trueness and tissue surface adaptation of CAD-CAM maxillary denture bases manufactured using digital light processing. J. Prosthet. Dent. 2019;121:110–117. doi: 10.1016/j.prosdent.2018.02.018.
    1. Choi J.-Y., Kim N.-K., Kim Y., Lee J.-K., Kim M.-K. Analysis of errors in medical rapid prototyping models. Int. J. Oral Maxillofac. Surg. 2002;31:23–32. doi: 10.1054/ijom.2000.0135.
    1. Hazeveld A., Huddleston Slater J.J.H., Ren Y. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques. Am. J. Orthod. Dentofac. Orthop. 2014;145:108–115. doi: 10.1016/j.ajodo.2013.05.011.
    1. Cui K., Shang X., Luo C., Shen Z., Gao H., Xiong G. A Kind of Accuracy Improving Method Based on Error Analysis and Feedback for DLP 3D Printing; Proceedings of the 2019 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI); Zhengzhou, China. 11 October 2019; pp. 5–9.
    1. Barker T.M., Earwaker W.J.S., Lisle D.A. Accuracy of stereolithographic models of human anatomy. Australas. Radiol. 1994;38:106–111. doi: 10.1111/j.1440-1673.1994.tb00146.x.
    1. Rungrojwittayakul O., Kan J.Y., Shiozaki K., Swamidass R.S., Goodacre B.J., Goodacre C.J., Lozada J.L. Accuracy of 3D Printed Models Created by Two Technologies of Printers with Different Designs of Model Base. J. Prosthodont. 2020;29:124–128. doi: 10.1111/jopr.13107.
    1. Park G.-S., Kim S.-K., Heo S.-J., Koak J.-Y., Seo D.-G. Effects of Printing Parameters on the Fit of Implant-Supported 3D Printing Resin Prosthetics. Materials. 2019;12:2533. doi: 10.3390/ma12162533.
    1. Duty C., Failla J., Kim S., Smith T., Lindahl J., Kunc V. Z-Pinning approach for 3D printing mechanically isotropic materials. Addit. Manuf. 2019;27:175–184. doi: 10.1016/j.addma.2019.03.007.
    1. Lin Y.-S., Yang C.-J. Spring Assisting Mechanism for Enhancing the Separation Performance of Digital Light Process 3D Printers. IEEE Access. 2019;7:71718–71729. doi: 10.1109/ACCESS.2019.2920004.
    1. He H., Xu J., Yu X., Pan Y. Effect of Constrained Surface Texturing on Separation Force in Projection Stereolithography. J. Manuf. Sci. Eng. 2018;140:9. doi: 10.1115/1.4040322.

Source: PubMed

3
Subscribe