The Role of Visual-Spatial Abilities in Dyslexia: Age Differences in Children's Reading?

Giulia Giovagnoli, Stefano Vicari, Serena Tomassetti, Deny Menghini, Giulia Giovagnoli, Stefano Vicari, Serena Tomassetti, Deny Menghini

Abstract

Reading is a highly complex process in which integrative neurocognitive functions are required. Visual-spatial abilities play a pivotal role because of the multi-faceted visual sensory processing involved in reading. Several studies show that children with developmental dyslexia (DD) fail to develop effective visual strategies and that some reading difficulties are linked to visual-spatial deficits. However, the relationship between visual-spatial skills and reading abilities is still a controversial issue. Crucially, the role that age plays has not been investigated in depth in this population, and it is still not clear if visual-spatial abilities differ across educational stages in DD. The aim of the present study was to investigate visual-spatial abilities in children with DD and in age-matched normal readers (NR) according to different educational stages: in children attending primary school and in children and adolescents attending secondary school. Moreover, in order to verify whether visual-spatial measures could predict reading performance, a regression analysis has been performed in younger and older children. The results showed that younger children with DD performed significantly worse than NR in a mental rotation task, a more-local visual-spatial task, a more-global visual-perceptual task and a visual-motor integration task. However, older children with DD showed deficits in the more-global visual-perceptual task, in a mental rotation task and in a visual attention task. In younger children, the regression analysis documented that reading abilities are predicted by the visual-motor integration task, while in older children only the more-global visual-perceptual task predicted reading performances. Present findings showed that visual-spatial deficits in children with DD were age-dependent and that visual-spatial abilities engaged in reading varied across different educational stages. In order to better understand their potential role in affecting reading, a comprehensive description and a multi-componential evaluation of visual-spatial abilities is needed with children with DD.

Keywords: developmental disabilities; learning disabilities; reading deficits; visual-spatial deficits.

Figures

FIGURE 1
FIGURE 1
Effect Group × Task × Subgroup of the MANOVA with means and standard errors of each visual-spatial measure in younger (A) and older (B) subgroups of children. DD, Developmental Dyslexia; NR, Normal Readers; MAP, Map Mission; SRT, Spatial Rotation Test; STICK, Stick Test; VPT2, Visual Perception Test-subtest 2; VPT4, Visual Perception Test-subtest 4; VMI, Visual Motor Integration Task. ∗ indicates p < 0.05.
FIGURE 2
FIGURE 2
Regression graph for word and non-word inefficiency index in younger (A) and older (B) subgroups of children. VPT4, Visual Perception Test-subtest 4; VMI, Visual Motor Integration Task.

References

    1. American Psychiatric Association [APA] (2000). Diagnostic and Statistical Manual of Mental Disorders, (DSM–IV). Washington, DC: American Psychiatric Publishing.
    1. American Psychiatric Association [APA] (2013). Diagnostic and Statistical Manual of Mental Disorders, (DSM–5). Washington, DC: American Psychiatric Publishing.
    1. Beery K. E., Buktenica N. A. (2000). The Beery–Buktenica Developmental Test of Visual–Motor Integration with Additional Tests of Visual Perception and Motor Coordination. Firenze: Giunti O.S. Organizzazioni Speciali (Italian Adaptation).
    1. Biancarosa C., Snow C. E. (2006). Reading next—A Vision for Action and Research in Middle and High School Literacy:A Report to Carnegie Corporation of New York 2nd Edn. Washington, DC: Alliance for Excellent Education.
    1. Boets B., Vandermosten M., Cornelissen P., Wouters J., Ghesquière P. (2011). Coherent motion sensitivity and reading development in the transition from prereading to reading stage. Child. Dev. 82 854–869. 10.1111/j.1467-8624.2010.01527.x
    1. Borowsky R., Cummine J., Owen W. J., Friesen C. K., Shih F., Sarty G. E. (2006). FMRI of ventral and dorsal processing streams in basic reading processes: insular sensitivity to phonology. Brain Topogr. 18 233–239. 10.1007/s10548-006-0001-2
    1. Borowsky R., Esopenko C., Cummine J., Sarty G. E. (2007). Neural representations of visual words and objects: a functional MRI study on the modularity of reading and object processing. Brain Topogr. 20 89–96. 10.1007/s10548-007-0034-1
    1. Bosse M. L., Tainturier M. J., Valdois S. (2007). Developmental dyslexia: the visual attention span deficit hypothesis. Cognition 104 198–230. 10.1016/j.cognition.2006.05.009
    1. Bosse M. L., Valdois S. (2003). Patterns of developmental dyslexia according to a multi–trace memory model of reading. Curr. Psychol. Lett. 10 1.
    1. Bosse M. L., Valdois S. (2009). Influence of the visual attention span on child reading performance: a cross– sectional study. J. Read. Res. 32 230–253. 10.1111/j.1467-9817.2008.01387.x
    1. Carlesimo G. A., Perri R., Turriziani P., Tomaiuolo F., Caltagirone C. (2001). Remembering what but not where: independence of spatial and visual working memory in the human brain. Cortex 37 457–473. 10.1016/S0010-9452(08)70591-4
    1. Cohen L., Dehaene S., Naccache L., Lehericy S., Dehaene–Lambertz G., Henaff M. A., et al. (2000). The visual word form area. Brain 123 291 10.1093/brain/123.2.291
    1. Cohen L., Lehericy S., Chochon F., Lemer C., Rivaud S., Dehaene S. (2002). Language–specific tuning of visual cortex? Functional properties of the visual word form area. Brain 125 1054–1069. 10.1093/brain/awf094
    1. Conners C. K. (2000). Conners’ Rating Scales–Revised technical manual. North Tonawanda. New York, NY: Multi–Health Systems.
    1. Consensus Conference (2007). Disturbi Evolutivi Specifici di Apprendimento. Available at: [accessed September 1, 2012].
    1. Corballis M. C., Macadie L., Beale I. L. (1985). Mental rotation and visual laterality in normal and reading disabled children. Cortex 21 225–236. 10.1016/S0010-9452(85)80028-9
    1. Dehaene S., Cohen L. (2011). The unique role of the visual word form area in reading. Trends Cogn. Sci. 15 254–262. 10.1016/j.tics.2011.04.003
    1. Del Giudice E., Trojano L., Fragassi N. A., Posteraro S., Crisanti A. F., Tanzarella P., et al. (2000). Spatial cognition in children. II. Visuospatial and constructional skills in developmental reading disability. Brain Dev. 22 368–372. 10.1016/S0387-7604(00)00159-5
    1. Ehri L. C. (1987). Learning to read and spell words. J. Read. Behav. 19 5–31.
    1. Felmingham K. L., Jakobson L. S. (1995). Visual and visuomotor performance in dyslexic children. Exp. Brain Res. 106 467–474. 10.1007/BF00231069
    1. Friederici A. D., Michiru M., Bahlmann J. (2009). The role of the posterior temporal cortex in sentence comprehension. Neuroreport 20 563–568. 10.1097/WNR.0b013e3283297dee
    1. Geiger G., Cattaneo C., Galli R., Pozzoli U., Lorusso M. L., Facoetti A., et al. (2008). Wide and diffuse perceptual modes characterize dyslexics in vision and audition. Perception 37 1745–1764. 10.1068/p6036
    1. Goldstand S., Koslowe K. C., Parush S. (2005). Vision, visual–information processing, and academic performance among seventh–grade school children: a more significant relationship than we thought? Am. J. Occup. Ther. 59 377–389. 10.5014/ajot.59.4.377
    1. Goodman K. (1970). “Reading as a psychologistic guessing game,” in Theoretical Models and Processes of Reading eds Singer H., Ruddell R. B. (Newark, N.J: International reading Association; ).
    1. Gori S., Cecchini P., Bigoni A., Molteni M., Facoetti A. (2014). Magnocellular– dorsal pathway and sub–lexical route in developmental dyslexia. Front. Hum. Neurosci. 8:460 10.3389/fnhum.2014.00460
    1. Gori S., Facoetti A. (2015). How the visual aspects can be crucial in reading acquisition: the intriguing case of crowding and developmental dyslexia. J. Vis. 15 8 10.1167/15.1.8
    1. Gori S., Mascheretti S., Giora E., Ronconi L., Ruffino M., Quadrelli E., et al. (2015). The DCDC2 Intron 2 deletion impairs illusorymotion perception unveiling the selective role of magnocellular–dorsal stream in reading (dis)ability. Cereb. Cortex 25 1685–1695. 10.1093/cercor/bhu234
    1. Hammill D., Pearson N., Voress J. (1994). TPV. Test di Percezione Visiva e Integrazione Visuo–motoria. Trento: Erickson. (Italian Adaptation).
    1. Hautus M. J., Setchell G. J., Waldie K. E., Kirk I. J. (2003). Age–related improvements in auditory temporal resolution in reading–impaired children. Dyslexia 9 37–45. 10.1002/dys.234
    1. Hebart M. N., Hesselmann G. (2012). What visual information is processed in the human dorsal stream? J. Neurosci. 32 8107–8109. 10.1523/JNEUROSCI.1462-12.2012
    1. Jobard G., Crivello F., Tzourio–Mazoyer N. (2003). Evaluation of the dual route theory of reading: a metanalysis of 35 neuroimaging studies. Neuroimage 20 693–712. 10.1016/S1053-8119(03)00343-4
    1. Kaiser M. L., Albaret J. M., Doudin P. A. (2009). Relationship between visual-motor integration, eye-hand coordination, and quality of handwriting. J. Occupat. Ther. Sch. Early Interv. 2 87–95. 10.1080/19411240903146228
    1. Karlsdottir R., Stefansson T. (2002). Problems in developing functional handwriting. Percept. Mot. Skills 94 623–662. 10.2466/pms.2002.94.2.623
    1. Kuhn M. R., Schwanenflugel P. J., Morris R. D., Morrow L. M., Woo D. G., Meisinger E. B., et al. (2006). Teaching children to be fluent and automatic readers. J. Lit. Res. 38 357–387. 10.1207/s15548430jlr3804_1
    1. Lobier M., Valdois S. (2015). Visual attention deficits in developmental dyslexia cannot be ascribed solely to poor reading experience. Nat. Rev. Neurosci. 16 225 10.1038/nrn3836-c1
    1. Lobier M. A., Peyrin C., Pichat C., Le Bas J. F., Valdois S. (2014). Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Front. Hum. Neurosci. 7 479.
    1. Luria A. R. (1966). Higher Cortical Functions in Man. New York, NY: Basic.
    1. Manly T., Nimmo–Smith I., Watson P., Anderson V., Turner A., Robertson I. H. (2002). The differential assessment of children’s attention: the test of everyday attention for children (tea–ch), normative sample and ADHD performance. J. Child Psychol. Psychiatry 42 1065–1081. 10.1111/1469-7610.00806
    1. Menghini D., Carlesimo G. A., Marotta L., Finzi A., Vicari S. (2010a). Developmental dyslexia and explicit long–term memory. Dyslexia 16 213–225. 10.1002/dys.410
    1. Menghini D., Finzi A., Benassi M., Bolzani R., Facoetti A., Giovagnoli S., et al. (2010b). Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychologia 48 863–872. 10.1016/j.neuropsychologia.2009.11.003
    1. Menghini D., Finzi A., Carlesimo G. A., Vicari S. (2011). Working memory impairment in children with developmental dyslexia: is it just a phonological deficity? Dev. Neuropsychol. 36 199–213. 10.1080/87565641.2010.549868
    1. Nicolson R. I., Fawcett A. J. (1990). Automaticity: a new framework for dyslexia research? Cognition 35 159–182. 10.1016/0010-0277(90)90013-A
    1. Pennington B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition 101 385–413. 10.1016/j.cognition.2006.04.008
    1. Peterson R. L., Pennington B. F. (2012). Developmental dyslexia. Lancet 379 1997–2007. 10.1016/S0140-6736(12)60198-6
    1. Peterson R. L., Pennington B. F. (2015). Developmental dyslexia. Annu. Rev. Clin. Psychol. 11 1283–1307. 10.1146/annurev-clinpsy-032814-112842
    1. Pugh K. R., Mencl W. E., Jenner A. R., Katz L., Frost S. J., Lee J. R., et al. (2000). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Ment. Retard. Dev. Disabil. Res. Rev. 6 207–213. 10.1002/1098-2779(2000)6:3<207::AID-MRDD8>;2-G
    1. Pugh K. R., Mencl W. E., Jenner A. R., Katz L., Frost S. J., Lee J. R., et al. (2001). Neurobiological studies of reading and reading disability. J. Commun. Disord. 34 479–492. 10.1016/S0021-9924(01)00060-0
    1. Ramus F., Rosen S., Dakin S. C., Day B. L., Castellone J. M., White S., et al. (2003). Theories of developmental dyslexia: insights from a multiple case study of dyslexic adults. Brain 126 841–865. 10.1093/brain/awg076
    1. Raven J. C. (2010). CPM, Coloured Progressive Matrices, series A, AB, B. Firenze: Giunti O.S. Organizzazioni Speciali. (Italian Adaptation).
    1. Ruffino M., Gori S., Boccardi D., Molteni M., Facoetti A. (2014). Spatial and temporal attention in developmental dyslexia. Front. Hum. Neurosci. 22:331.
    1. Rüsseler J., Scholz J., Jordan K., Quaiser–Pohl C. (2005). Mental rotation of letters, pictures, and three–dimensional objects in German dyslexic children. Child. Neuropsychology 11 497–512. 10.1080/09297040490920168
    1. Sartori G., Job R., Tressoldi P. E. (2007). Batteria per la Valutazione Della Dislessia e Della Disortografia Evolutiva 2nd Edn. Firenze: Giunti O.S. Organizzazioni Speciali.
    1. Schwanenflugel P. J., Meisinger E. B., Wisenbaker J. M., Kuhn M. R., Strauss G. P., Morris R. D. (2006). Becoming a fluent and automatic reader in the early elementary school years. Read. Res. Qt. 41 496–522. 10.1598/RRQ.41.4.4
    1. Shaywitz S. E., Shaywitz B. A. (2005). Dyslexia specific reading disability. Biol. Psychiatry 57 1301–1309. 10.1016/j.biopsych.2005.01.043
    1. Snowling M. J. (2000). Dyslexia: a Cognitive–Developmental Perspective 2nd Edn. Oxford: Blackwell.
    1. Stein J. (2014). Dyslexia: the role of vision and visual attention. Curr. Dev. Disord. Rep. 1 267–280. 10.1007/s40474-014-0030-6
    1. Steinbrink C., Vogt K., Kastrup A., Müller H. P., Juengling F. D., Kassubek J., et al. (2008). The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neuropsychologia 46 3170–3178. 10.1016/j.neuropsychologia.2008.07.015
    1. Swan D., Goswami U. (1997). Phonological awareness deficits in developmental dyslexia. J. Res. Read 11 67–85.
    1. Talcott J., Hansen P., Willis–Owen C., McKinnell I., Richardson A., Stein J. (1998). Visual magnocellular impairment in adult develop–mental dyslexics. Neuro Ophthalmol. 20 187–201.
    1. Talcott J. B., Hansen P. C., Assoku E. L., Stein J. F. (2000). Visual motion sensitivity in dyslexia: evidence for temporal and energy integration deficits. Neuropsychologia 7 935–943. 10.1016/S0028-3932(00)00020-8
    1. Varvara P., Varuzza C., Sorrentino A. C., Vicari S., Menghini D. (2014). Executive functions in developmental dyslexia. Front. Hum. Neurosci. 8:120 10.3389/fnhum.2014.00120
    1. Vernon M. D. (1957). Backwardness in Reading. Cambridge: Cambridge University Press.
    1. Vicari S., Bellucci S., Carlesimo G. A. (2006). Evidence from two genetic syndromes for the independence of spatial and visual working memory. Dev. Med. Child Neurol. 48 126–131. 10.1017/S0012162206000272
    1. Vidyasagar T. R., Pammer K. (2010). Dyslexia: a deficit in visuo–spatial attention, not in phonological processing. Trends Cogn. Sci. 14 57–63. 10.1016/j.tics.2009.12.003
    1. von Károlyi C., Winner E., Gray W., Sherman G. F. (2003). Dyslexia linked to talent: global visual–spatial ability. Brain Lang. 85 427–431. 10.1016/S0093-934X(03)00052-X
    1. Wang L. C., Yang H. M. (2011). The comparison of the visuo–spatial abilities of dyslexic and normal students in Taiwan and Hong Kong. Res. Dev. Disabil. 32 1052–1057. 10.1016/j.ridd.2011.01.028
    1. Wexler J., Vaughn S., Edmonds M., Reutebuch C. K. (2012). A synthesis of fluency interventions for secondary struggling readers. Read. Writ. 21 317–347. 10.1007/s11145-007-9085-7
    1. White S., Milne E., Rosen S., Hansen P., Swettenham J., Frith U., et al. (2006). The role of sensorimotor impairments in dyslexia: a multiple case study of dyslexic children. Dev. Sci. 9 237–255. 10.1111/j.1467-7687.2006.00483.x
    1. Winner E., von Károlyi C., Malinsky D., French L., Seliger C., Ross E., et al. (2001). Dyslexia and visual–spatial talents: compensation vs. deficit model. Brain Lang. 76 81–110. 10.1006/brln.2000.2392

Source: PubMed

3
Subscribe