Changes in blood Krebs von den Lungen-6 predict the mortality of patients with acute exacerbation of interstitial lung disease

Myeong Geun Choi, Sun Mi Choi, Jae Ha Lee, Jung-Ki Yoon, Jin Woo Song, Myeong Geun Choi, Sun Mi Choi, Jae Ha Lee, Jung-Ki Yoon, Jin Woo Song

Abstract

Acute exacerbation (AE) significantly affects the prognosis of patients with interstitial lung disease (ILD). This study aimed to investigate the best prognostic biomarker for patients with AE-ILD. Clinical data obtained during hospitalization were retrospectively analyzed for 96 patients with AE-ILD at three tertiary hospitals. The mean age of all subjects was 70.1 years; the percentage of males was 66.7%. Idiopathic pulmonary fibrosis accounted for 60.4% of the cases. During follow-up (median: 88 days), in-hospital mortality was 24%. Non-survivors had higher lactate dehydrogenase and C-reactive protein (CRP) levels, lower ratio of partial pressure of oxygen to the fraction of inspiratory oxygen (P/F ratio), and higher relative change in Krebs von den Lungen-6 (KL-6) levels over 1 week after hospitalization than survivors. In multivariable analysis adjusted by age, the 1-week change in KL-6-along with baseline P/F ratio and CRP levels-was an independent prognostic factor for in-hospital mortality (odds ratio 1.094, P = 0.025). Patients with remarkable increase in KL-6 (≥ 10%) showed significantly worse survival (in-hospital mortality: 63.2 vs. 6.1%) than those without. In addition to baseline CRP and P/F ratio, the relative changes in KL-6 over 1 week after hospitalization might be useful for predicting in-hospital mortality in patients with AE-ILD.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Flowchart of patient selection. ILD interstitial lung disease, AE acute exacerbation, KL-6 Krebs von den Lungen-6.
Figure 2
Figure 2
Comparison of the receiver operating characteristic curve of blood markers for predicting in-hospital mortality in patients with AE-ILD. AE-ILD acute exacerbation of interstitial lung disease; ROC curves: blue line, KL-6 relative change from baseline; red line, baseline P/F ratio; green line, baseline CRP. KL-6 Krebs von den Lungen-6, P/F ratio ratio of partial pressure of oxygen to the fraction of inspiratory oxygen, CRP C-reactive protein, AUC area under the curve.
Figure 3
Figure 3
Comparison of survival curves after hospitalization between groups with high and low changes in KL-6 among patients with AE-ILD. Kaplan–Meier curves: blue line, high KL-6 change group; red line, low KL-6 change group. KL-6 Krebs von den Lungen-6, AE-ILD acute exacerbation of interstitial lung disease.

References

    1. Raghu G, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2018;198:44–e68. doi: 10.1164/rccm.201807-1255ST.
    1. Travis WD, et al. An Official American Thoracic Society/European Respiratory Society Statement: Update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am. J. Respir. Crit. Care Med. 2013;188:733–748. doi: 10.1164/rccm.201308-1483ST.
    1. Kim DS, Collard HR, King TE., Jr Classification and natural history of the idiopathic interstitial pneumonias. Proc. Am. Thorac. Soc. 2006;3:285–292. doi: 10.1513/pats.200601-005TK.
    1. Song JW, Hong SB, Lim CM, Koh Y, Kim DS. Acute exacerbation of idiopathic pulmonary fibrosis: Incidence, risk factors and outcome. Eur. Respir. J. 2011;37:356–363. doi: 10.1183/09031936.00159709.
    1. Collard HR, et al. Acute exacerbation of idiopathic pulmonary fibrosis. An International Working Group Report. Am. J. Respir. Crit. Care Med. 2016;194:265–275. doi: 10.1164/rccm.201604-0801CI.
    1. Park IN, et al. Acute exacerbation of interstitial pneumonia other than idiopathic pulmonary fibrosis. Chest. 2007;132:214–220. doi: 10.1378/chest.07-0323.
    1. Moua T, et al. Patients with fibrotic interstitial lung disease hospitalized for acute respiratory worsening: A large cohort analysis. Chest. 2016;149:1205–1214. doi: 10.1016/j.chest.2015.12.026.
    1. Kishaba T, Tamaki H, Shimaoka Y, Fukuyama H, Yamashiro S. Staging of acute exacerbation in patients with idiopathic pulmonary fibrosis. Lung. 2014;192:141–149. doi: 10.1007/s00408-013-9530-0.
    1. Simon-Blancal V, et al. Acute exacerbation of idiopathic pulmonary fibrosis: Outcome and prognostic factors. Respiration. 2012;83:28–35. doi: 10.1159/000329891.
    1. Takei R, et al. Impact of lymphocyte differential count > 15% in BALF on the mortality of patients with acute exacerbation of chronic fibrosing idiopathic interstitial pneumonia. BMC Pulm. Med. 2017;17:67. doi: 10.1186/s12890-017-0412-8.
    1. Tzouvelekis A, Kouliatsis G, Anevlavis S, Bouros D. Serum biomarkers in interstitial lung diseases. Respir. Res. 2005;6:78–78. doi: 10.1186/1465-9921-6-78.
    1. Ishikawa N, Hattori N, Yokoyama A, Kohno N. Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir. Investig. 2012;50:3–13. doi: 10.1016/j.resinv.2012.02.001.
    1. Nobuoki K, et al. New serum indicator of interstitial pneumonitis activity: Sialylated carbohydrate antigen KL-6. Chest. 1989;96:68–73. doi: 10.1378/chest.96.1.68.
    1. Ohshimo S, et al. Baseline KL-6 predicts increased risk for acute exacerbation of idiopathic pulmonary fibrosis. Respir. Med. 2014;108:1031–1039. doi: 10.1016/j.rmed.2014.04.009.
    1. Jiang Y, et al. Sequential changes of serum KL-6 predict the progression of interstitial lung disease. J. Thorac. Dis. 2018;10:4705–4714. doi: 10.21037/jtd.2018.07.76.
    1. Kim HC, Choi KH, Jacob J, Song JW. Prognostic role of blood KL-6 in rheumatoid arthritis–associated interstitial lung disease. PLoS One. 2020;15:e0229997. doi: 10.1371/journal.pone.0229997.
    1. Raghu G, et al. Diagnosis of hypersensitivity pneumonitis in adults. An official ATS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med. 2020;202:e36–e69. doi: 10.1164/rccm.202005-2032ST.
    1. Park SW, et al. Korean guidelines for diagnosis and management of interstitial lung diseases: Part 1. Introduction. Tuberculosis Respir. Dis. 2019;82:269–276. doi: 10.4046/trd.2018.0090.
    1. MacIntyre N, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005;26:720–735. doi: 10.1183/09031936.05.00034905.
    1. Miller MR, et al. Standardisation of spirometry. Eur. Respir. J. 2005;26:319–338. doi: 10.1183/09031936.05.00034805.
    1. Wanger J, et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005;26:511–522. doi: 10.1183/09031936.05.00035005.
    1. Holland AE, et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014;44:1428–1446. doi: 10.1183/09031936.00150314.
    1. Meyer KC, et al. An Official American Thoracic Society Clinical Practice Guideline: The clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med. 2012;185:1004–1014. doi: 10.1164/rccm.201202-0320ST.
    1. Yokoyama A, et al. Circulating KL-6 predicts the outcome of rapidly progressive idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 1998;158:1680–1684. doi: 10.1164/ajrccm.158.5.9803115.
    1. Leuschner G, Behr J. Acute exacerbation in interstitial lung disease. Front. Med. (Lausanne) 2017;4:176–176. doi: 10.3389/fmed.2017.00176.
    1. Kang J, Han M, Song JW. Antifibrotic treatment improves clinical outcomes in patients with idiopathic pulmonary fibrosis: A propensity score matching analysis. Sci. Rep. 2020;10:15620. doi: 10.1038/s41598-020-72607-1.
    1. Cao M, et al. Acute exacerbations of fibrosing interstitial lung disease associated with connective tissue diseases: A population-based study. BMC Pulm. Med. 2019;19:215. doi: 10.1186/s12890-019-0960-1.
    1. Kamiya H, Panlaqui OM. Systematic review and meta-analysis of prognostic factors of acute exacerbation of idiopathic pulmonary fibrosis. BMJ Open. 2020;10:e035420. doi: 10.1136/bmjopen-2019-035420.

Source: PubMed

3
Subscribe