The Role of Immune Cells in the Pathogenesis of Idiopathic Inflammatory Myopathies

Lijuan Zhao, Qi Wang, Bin Zhou, Lihua Zhang, Honglin Zhu, Lijuan Zhao, Qi Wang, Bin Zhou, Lihua Zhang, Honglin Zhu

Abstract

Idiopathic inflammatory myopathies (IIMs) are chronic autoimmune disorders involving multiple organs, such as the muscle, skin, lungs and joints. Although the detailed pathogenesis of IIMs remains unclear, immune mechanisms have long been recognised as of key importance. Immune cells contribute to many inflammatory processes via intercellular interactions and secretion of inflammatory factors, and many studies have demonstrated the participation of a variety of immune cells, such as T cells and B cells, in the development of IIMs. Here, we summarise the current knowledge regarding immune cells in IIM patients and discuss their potential roles in IIM pathogenesis.

Keywords: Idiopathic inflammatory myopathies; immune cells; pathogenesis.

Conflict of interest statement

Conflicts of interest The authors declare no conflicts of interest.

copyright: © 2021 Zhao et al.

References

    1. Amici DR, Pinal-Fernandez I, Pagkatipunan R, Mears A, de Lorenzo R, Tiniakou E et al. (2019). Muscle endurance deficits in myositis patients despite normal manual muscle testing scores. Muscle Nerve,59:70-5.
    1. Alexanderson H, Regardt M, Ottosson C, Alemo Munters L, Dastmalchi M, Dani L et al. (2018). Muscle Strength and Muscle Endurance During the First Year of Treatment of Polymyositis and Dermatomyositis: A Prospective Study. J Rheumatol,45:538-46.
    1. Alemo Munters L, Dastmalchi M, Katz A, Esbjornsson M, Loell I, Hanna B et al. (2013). Improved exercise performance and increased aerobic capacity after endurance training of patients with stable polymyositis and dermatomyositis. Arthritis Res Ther,15:R83.
    1. Lundberg IE, de Visser M, Werth VP (2018). Classification of myositis. Nat Rev Rheumatol,14:269-78.
    1. Gao S, Luo H, Zhang H, Zuo X, Wang L, Zhu H (2017). Using multi-omics methods to understand dermatomyositis/polymyositis. Autoimmun Rev,16:1044-8.
    1. Xiao Y, Zhu H, Li L, Gao S, Liu D, Dai B et al. (2019). Global analysis of protein expression in muscle tissues of dermatomyositis/polymyosisits patients demonstrated an association between dysferlin and human leucocyte antigen A. Rheumatology (Oxford)
    1. Zong M, Lundberg IE (2011). Pathogenesis, classification and treatment of inflammatory myopathies. Nat Rev Rheumatol,7:297-306.
    1. Korotkova M, Helmers SB, Loell I, Alexanderson H, Grundtman C, Dorph C et al. (2008). Effects of immunosuppressive treatment on microsomal prostaglandin E synthase 1 and cyclooxygenases expression in muscle tissue of patients with polymyositis or dermatomyositis. Ann Rheum Dis,67:1596-602.
    1. Miller FW, Lamb JA, Schmidt J, Nagaraju K (2018). Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol,14:255-68.
    1. Huang K, Li QX, Bi FF, Duan HQ, Mastaglia F, Luo YB et al. (2018). Comparative immunoprofiling of polymyositis and dermatomyositis muscles. Int J Clin Exp Pathol,11:3984-93.
    1. Netea MG, Schlitzer A, Placek K, Joosten LAB, Schultze JL (2019). Innate and Adaptive Immune Memory: an Evolutionary Continuum in the Host's Response to Pathogens. Cell Host Microbe,25:13-26.
    1. Mace EM, Orange JS (2019). Emerging insights into human health and NK cell biology from the study of NK cell deficiencies. Immunol Rev,287:202-25.
    1. Jenkins SJ, Hume DA (2014). Homeostasis in the mononuclear phagocyte system. Trends Immunol,35:358-67.
    1. Alunno A, Bistoni O, Montanucci P, Basta G, Calafiore R, Gerli R (2018). Umbilical cord mesenchymal stem cells for the treatment of autoimmune diseases: beware of cell-to-cell contact. Ann Rheum Dis,77:e14.
    1. Rahman S, Sagar D, Hanna RN, Lightfoot YL, Mistry P, Smith CK et al. (2019). Low-density granulocytes activate T cells and demonstrate a non-suppressive role in systemic lupus erythematosus. Ann Rheum Dis,78:957-66.
    1. Springer TA (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell,76:301-14.
    1. Jenkins MK, Chu HH, McLachlan JB, Moon JJ (2010). On the composition of the preimmune repertoire of T cells specific for Peptide-major histocompatibility complex ligands. Annu Rev Immunol,28:275-94.
    1. Harty JT, Badovinac VP (2008). Shaping and reshaping CD8+ T-cell memory. Nat Rev Immunol,8:107-19.
    1. Zhu J, Yamane H, Paul WE (2010). Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol,28:445-89.
    1. Malmstrom V, Venalis P, Albrecht I (2012). T cells in myositis. Arthritis Res Ther,14:230.
    1. Emslie-Smith AM, Arahata K, Engel AG (1989). Major histocompatibility complex class I antigen expression, immunolocalization of interferon subtypes, and T cell-mediated cytotoxicity in myopathies. Hum Pathol,20:224-31.
    1. Pedrol E, Grau JM, Casademont J, Cid MC, Masanes F, Fernandez-Sola J et al. (1995). Idiopathic inflammatory myopathies. Immunohistochemical analysis of the major histocompatibility complex antigen expression, inflammatory infiltrate phenotype and activation cell markers. Clin Neuropathol,14:179-84.
    1. Nishio J, Suzuki M, Miyasaka N, Kohsaka H (2001). Clonal biases of peripheral CD8 T cell repertoire directly reflect local inflammation in polymyositis. J Immunol,167:4051-8.
    1. Mizuno K, Yachie A, Nagaoki S, Wada H, Okada K, Kawachi M et al. (2004). Oligoclonal expansion of circulating and tissue-infiltrating CD8+ T cells with killer/effector phenotypes in juvenile dermatomyositis syndrome. Clin Exp Immunol,137:187-94.
    1. Dimitri D, Benveniste O, Dubourg O, Maisonobe T, Eymard B, Amoura Z et al. (2006). Shared blood and muscle CD8+ T-cell expansions in inclusion body myositis. Brain,129:986-95.
    1. Benveniste O, Cherin P, Maisonobe T, Merat R, Chosidow O, Mouthon L et al. (2001). Severe perturbations of the blood T cell repertoire in polymyositis, but not dermatomyositis patients. J Immunol,167:3521-9.
    1. Page G, Chevrel G, Miossec P (2004). Anatomic localization of immature and mature dendritic cell subsets in dermatomyositis and polymyositis: Interaction with chemokines and Th1 cytokine-producing cells. Arthritis Rheum,50:199-208.
    1. Chevrel G, Page G, Granet C, Streichenberger N, Varennes A, Miossec P (2003). Interleukin-17 increases the effects of IL-1 beta on muscle cells: arguments for the role of T cells in the pathogenesis of myositis. J Neuroimmunol,137:125-33.
    1. Venalis P, Lundberg IE (2014). Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy. Rheumatology (Oxford),53:397-405.
    1. Waschbisch A, Schwab N, Ruck T, Stenner MP, Wiendl H (2010). FOXP3+ T regulatory cells in idiopathic inflammatory myopathies. J Neuroimmunol,225:137-42.
    1. Delemarre EM, van den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S et al. (2016). Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood,127:91-101.
    1. Tournadre A, Miossec P (2009). Chemokines and dendritic cells in inflammatory myopathies. Ann Rheum Dis,68:300-4.
    1. Dalakas MC, Hohlfeld R (2003). Polymyositis and dermatomyositis. Lancet,362:971-82.
    1. Gao S, Zuo X, Liu D, Xiao Y, Zhu H, Zhang H et al. (2018). The roles of neutrophil serine proteinases in idiopathic inflammatory myopathies. Arthritis Res Ther,20:134.
    1. Gao S, Zhu H, Yang H, Zhang H, Li Q, Luo H (2017). The role and mechanism of cathepsin G in dermatomyositis. Biomed Pharmacother,94:697-704.
    1. Acuto O, Michel F (2003). CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol,3:939-51.
    1. Acuto O, Mise-Omata S, Mangino G, Michel F (2003). Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol Rev,192:21-31.
    1. Mou D, Espinosa J, Lo DJ, Kirk AD (2014). CD28 negative T cells: is their loss our gain? Am J Transplant,14:2460-6.
    1. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L et al. (2002). Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med,8:379-85.
    1. Bryl E, Vallejo AN, Weyand CM, Goronzy JJ (2001). Down-regulation of CD28 expression by TNF-alpha. J Immunol,167:3231-8.
    1. Betjes MG (2016). Clinical consequences of circulating CD28-negative T cells for solid organ transplantation. Transpl Int,29:274-84.
    1. Fasth AE, Bjorkstrom NK, Anthoni M, Malmberg KJ, Malmstrom V (2010). Activating NK-cell receptors co-stimulate CD4(+)CD28(-) T cells in patients with rheumatoid arthritis. Eur J Immunol,40:378-87.
    1. Namekawa T, Wagner UG, Goronzy JJ, Weyand CM (1998). Functional subsets of CD4 T cells in rheumatoid synovitis. Arthritis Rheum,41:2108-16.
    1. Strioga M, Pasukoniene V, Characiejus D (2011). CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology,134:17-32.
    1. Posnett DN, Edinger JW, Manavalan JS, Irwin C, Marodon G (1999). Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+ CD28- cytotoxic effector clones. Int Immunol,11:229-41.
    1. Schmidt D, Martens PB, Weyand CM, Goronzy JJ (1996). The repertoire of CD4+ CD28- T cells in rheumatoid arthritis. Mol Med,2:608-18.
    1. Sun Z, Zhong W, Lu X, Shi B, Zhu Y, Chen L et al. (2008). Association of Graves' disease and prevalence of circulating IFN-gamma-producing CD28(-) T cells. J Clin Immunol,28:464-72.
    1. Fasth AE, Dastmalchi M, Rahbar A, Salomonsson S, Pandya JM, Lindroos E et al. (2009). T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J Immunol,183:4792-9.
    1. Pandya JM, Fasth AE, Zong M, Arnardottir S, Dani L, Lindroos E et al. (2010). Expanded T cell receptor Vbeta-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum,62:3457-66.
    1. Pandya JM, Venalis P, Al-Khalili L, Shahadat Hossain M, Stache V, Lundberg IE et al. (2016). CD4+ and CD8+ CD28(null) T Cells Are Cytotoxic to Autologous Muscle Cells in Patients With Polymyositis. Arthritis Rheumatol,68:2016-26.
    1. Nakajima T, Schulte S, Warrington KJ, Kopecky SL, Frye RL, Goronzy JJ et al. (2002). T-cell-mediated lysis of endothelial cells in acute coronary syndromes. Circulation,105:570-5.
    1. Pandya JM, Loell I, Hossain MS, Zong M, Alexanderson H, Raghavan S et al. (2016). Effects of conventional immunosuppressive treatment on CD244+ (CD28null) and FOXP3+ T cells in the inflamed muscle of patients with polymyositis and dermatomyositis. Arthritis Res Ther,18:80.
    1. Schirmer M, Vallejo AN, Weyand CM, Goronzy JJ (1998). Resistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4+CD28- T cells from rheumatoid arthritis patients. J Immunol,161:1018-25.
    1. Kovalcsik E, Antunes RF, Baruah P, Kaski JC, Dumitriu IE (2015). Proteasome-mediated reduction in proapoptotic molecule Bim renders CD4(+)CD28null T cells resistant to apoptosis in acute coronary syndrome. Circulation,131:709-20.
    1. Benveniste O, Guiguet M, Freebody J, Dubourg O, Squier W, Maisonobe T et al. (2011). Long-term observational study of sporadic inclusion body myositis. Brain,134:3176-84.
    1. Greenberg SA, Pinkus JL, Kong SW, Baecher-Allan C, Amato AA, Dorfman DM (2019). Highly differentiated cytotoxic T cells in inclusion body myositis. Brain,142:2590-604.
    1. Mason D (1992). Subsets of CD4+ T cells defined by their expression of different isoforms of the leucocyte-common antigen, CD45. Biochem Soc Trans,20:188-90.
    1. De Bleecker JL, Engel AG (1995). Immunocytochemical study of CD45 T cell isoforms in inflammatory myopathies. Am J Pathol,146:1178-87.
    1. Verneris MR, Karimi M, Baker J, Jayaswal A, Negrin RS (2004). Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood,103:3065-72.
    1. Roberts AI, Lee L, Schwarz E, Groh V, Spies T, Ebert EC et al. (2001). NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J Immunol,167:5527-30.
    1. Ruck T, Bittner S, Afzali AM, Gobel K, Glumm S, Kraft P et al. (2015). The NKG2D-IL-15 signaling pathway contributes to T-cell mediated pathology in inflammatory myopathies. Oncotarget,6:43230-43.
    1. Sharpe AH, Freeman GJ (2002). The B7-CD28 superfamily. Nat Rev Immunol,2:116-26.
    1. Carreno BM, Collins M (2002). The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol,20:29-53.
    1. Schmidt J, Rakocevic G, Raju R, Dalakas MC (2004). Upregulated inducible co-stimulator (ICOS) and ICOS-ligand in inclusion body myositis muscle: significance for CD8+ T cell cytotoxicity. Brain,127:1182-90.
    1. Armengol MP, Cardoso-Schmidt CB, Fernandez M, Ferrer X, Pujol-Borrell R, Juan M (2003). Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol,170:6320-8.
    1. Tateyama M, Fujihara K, Misu T, Itoyama Y (2009). CCR7+ myeloid dendritic cells together with CCR7+ T cells and CCR7+ macrophages invade CCL19+ nonnecrotic muscle fibers in inclusion body myositis. J Neurol Sci,279:47-52.
    1. Tateyama M, Fujihara K, Misu T, Feng J, Onodera Y, Itoyama Y (2006). Expression of CCR7 and its ligands CCL19/CCL21 in muscles of polymyositis. J Neurol Sci,249:158-65.
    1. Fujiyama T, Ito T, Ogawa N, Suda T, Tokura Y, Hashizume H (2014). Preferential infiltration of interleukin-4-producing CXCR4+ T cells in the lesional muscle but not skin of patients with dermatomyositis. Clin Exp Immunol,177:110-20.
    1. Tournadre A, Porcherot M, Cherin P, Marie I, Hachulla E, Miossec P (2009). Th1 and Th17 balance in inflammatory myopathies: interaction with dendritic cells and possible link with response to high-dose immunoglobulins. Cytokine,46:297-301.
    1. Lopez De Padilla CM, Vallejo AN, Lacomis D, McNallan K, Reed AM (2009). Extranodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum,60:1160-72.
    1. Benveniste O, Herson S, Salomon B, Dimitri D, Trebeden-Negre H, Jean L et al. (2004). Long-term persistence of clonally expanded T cells in patients with polymyositis. Ann Neurol,56:867-72.
    1. Bank I, Miranda AF, Chess L (2001). Mechanisms of cell-mediated myocytotoxicity in the peripheral blood of patients with inflammatory myopathies. J Clin Immunol,21:328-34.
    1. Hoeppli RE, Pesenacker AM (2019). Targeting Tregs in Juvenile Idiopathic Arthritis and Juvenile Dermatomyositis-Insights From Other Diseases. Front Immunol,10:46.
    1. Banica L, Besliu A, Pistol G, Stavaru C, Ionescu R, Forsea AM et al. (2009). Quantification and molecular characterization of regulatory T cells in connective tissue diseases. Autoimmunity,42:41-9.
    1. Allenbach Y, Chaara W, Rosenzwajg M, Six A, Prevel N, Mingozzi F et al. (2014). Th1 response and systemic treg deficiency in inclusion body myositis. PLoS One,9:e88788.
    1. Antiga E, Kretz CC, Klembt R, Massi D, Ruland V, Stumpf C et al. (2010). Characterization of regulatory T cells in patients with dermatomyositis. J Autoimmun,35:342-50.
    1. Vercoulen Y, Bellutti Enders F, Meerding J, Plantinga M, Elst EF, Varsani H et al. (2014). Increased presence of FOXP3+ regulatory T cells in inflamed muscle of patients with active juvenile dermatomyositis compared to peripheral blood. PLoS One,9:e105353.
    1. McLane LM, Banerjee PP, Cosma GL, Makedonas G, Wherry EJ, Orange JS et al. (2013). Differential localization of T-bet and Eomes in CD8 T cell memory populations. J Immunol,190:3207-15.
    1. Dzangue-Tchoupou G, Mariampillai K, Bolko L, Amelin D, Mauhin W, Corneau A et al. (2019). CD8+T-bet+ cells as a predominant biomarker for inclusion body myositis. Autoimmun Rev,18:325-33.
    1. Wilkinson MGL, Radziszewska A, Wincup C, Ioannou Y, Isenberg DA, Manson JJ et al. (2019). Using peripheral blood immune signatures to stratify patients with adult and juvenile inflammatory myopathies. Rheumatology (Oxford)
    1. Aleksza M, Szegedi A, Antal-Szalmas P, Irinyi B, Gergely L, Ponyi A et al. (2005). Altered cytokine expression of peripheral blood lymphocytes in polymyositis and dermatomyositis. Ann Rheum Dis,64:1485-9.
    1. Yi JS, Russo MA, Weinhold KJ, Guptill JT (2016). Adaptive immune response to therapy in hmgcr autoantibody myopathy. Muscle Nerve,53:313-7.
    1. Morita R, Schmitt N, Bentebibel SE, Ranganathan R, Bourdery L, Zurawski G et al. (2011). Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity,34:108-21.
    1. Espinosa-Ortega F, Gomez-Martin D, Santana-De Anda K, Romo-Tena J, Villasenor-Ovies P, Alcocer-Varela J (2015). Quantitative T cell subsets profile in peripheral blood from patients with idiopathic inflammatory myopathies: tilting the balance towards proinflammatory and pro-apoptotic subsets. Clin Exp Immunol,179:520-8.
    1. Houtman M, Ekholm L, Hesselberg E, Chemin K, Malmstrom V, Reed AM et al. (2018). T-cell transcriptomics from peripheral blood highlights differences between polymyositis and dermatomyositis patients. Arthritis Res Ther,20:188.
    1. Shimojima Y, Matsuda M, Ishii W, Kishida D, Sekijima Y (2017). T-cell receptor-mediated characteristic signaling pathway of peripheral blood T cells in dermatomyositis and polymyositis. Autoimmunity,50:481-90.
    1. Zhang M, Srivastava G, Lu L (2004). The pre-B cell receptor and its function during B cell development. Cell Mol Immunol,1:89-94.
    1. Nemazee D (2017). Mechanisms of central tolerance for B cells. Nat Rev Immunol,17:281-94.
    1. Mackay F, Schneider P, Rennert P, Browning J (2003). BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol,21:231-64.
    1. Crotty S (2014). T follicular helper cell differentiation, function, and roles in disease. Immunity,41:529-42.
    1. Allenbach Y, Arouche-Delaperche L, Preusse C, Radbruch H, Butler-Browne G, Champtiaux N et al. (2018). Necrosis in anti-SRP(+) and anti-HMGCR(+)myopathies: Role of autoantibodies and complement. Neurology,90:e507-e17.
    1. McHugh NJ, Tansley SL (2018). Autoantibodies in myositis. Nat Rev Rheumatol,14:290-302.
    1. Ray A, Amato AA, Bradshaw EM, Felice KJ, DiCapua DB, Goldstein JM et al. (2012). Autoantibodies produced at the site of tissue damage provide evidence of humoral autoimmunity in inclusion body myositis. PLoS One,7:e46709.
    1. Krystufkova O, Vallerskog T, Helmers SB, Mann H, Putova I, Belacek J et al. (2009). Increased serum levels of B cell activating factor (BAFF) in subsets of patients with idiopathic inflammatory myopathies. Ann Rheum Dis,68:836-43.
    1. Krystufkova O, Hulejova H, Mann HF, Pecha O, Putova I, Ekholm L et al. (2018). Serum levels of B-cell activating factor of the TNF family (BAFF) correlate with anti-Jo-1 autoantibodies levels and disease activity in patients with anti-Jo-1positive polymyositis and dermatomyositis. Arthritis Res Ther,20:158.
    1. Baek A, Park HJ, Na SJ, Shim DS, Moon JS, Yang Y et al. (2012). The expression of BAFF in the muscles of patients with dermatomyositis. J Neuroimmunol,249:96-100.
    1. Krystufkova O, Barbasso Helmers S, Venalis P, Malmstrom V, Lindroos E, Vencovsky J et al. (2014). Expression of BAFF receptors in muscle tissue of myositis patients with anti-Jo-1 or anti-Ro52/anti-Ro60 autoantibodies. Arthritis Res Ther,16:454.
    1. McIntyre D, Zuckerman NS, Field M, Mehr R, Stott DI (2014). The V(H) repertoire and clonal diversification of B cells in inflammatory myopathies. Eur J Immunol,44:585-96.
    1. Bradshaw EM, Orihuela A, McArdel SL, Salajegheh M, Amato AA, Hafler DA et al. (2007). A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol,178:547-56.
    1. Radke J, Koll R, Preusse C, Pehl D, Todorova K, Schonemann C et al. (2018). Architectural B-cell organization in skeletal muscle identifies subtypes of dermatomyositis. Neurol Neuroimmunol Neuroinflamm,5:e451.
    1. Salajegheh M, Pinkus JL, Amato AA, Morehouse C, Jallal B, Yao Y et al. (2010). Permissive environment for B-cell maturation in myositis muscle in the absence of B-cell follicles. Muscle Nerve,42:576-83.
    1. Greenberg SA, Bradshaw EM, Pinkus JL, Pinkus GS, Burleson T, Due B et al. (2005). Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology,65:1782-7.
    1. Sasaki H, Takamura A, Kawahata K, Takashima T, Imai K, Morio T et al. (2019). Peripheral blood lymphocyte subset repertoires are biased and reflect clinical features in patients with dermatomyositis. Scand J Rheumatol,48:225-9.
    1. Dzangue-Tchoupou G, Allenbach Y, Preusse C, Stenzel W, Benveniste O (2019). Mass cytometry reveals an impairment of B cell homeostasis in anti-synthetase syndrome. J Neuroimmunol,332:212-5.
    1. Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL et al. (2018). CD19(+)CD24(hi)CD38(hi) B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-alpha. Front Immunol,9:1372.
    1. Kikuchi Y, Koarada S, Tada Y, Ushiyama O, Morito F, Suzuki N et al. (2001). Difference in B cell activation between dermatomyositis and polymyositis: analysis of the expression of RP105 on peripheral blood B cells. Ann Rheum Dis,60:1137-40.
    1. Li W, Tian X, Lu X, Peng Q, Shu X, Yang H et al. (2016). Significant decrease in peripheral regulatory B cells is an immunopathogenic feature of dermatomyositis. Sci Rep,6:27479.
    1. Hervier B, Perez M, Allenbach Y, Devilliers H, Cohen F, Uzunhan Y et al. (2016). Involvement of NK Cells and NKp30 Pathway in Antisynthetase Syndrome. J Immunol,197:1621-30.
    1. Collison J (2016). Inflammatory myopathies: NK cell function linked to antisynthetase syndrome. Nat Rev Rheumatol,12:562.
    1. Pachman LM, Fedczyna TO, Lechman TS, Lutz J (2001). Juvenile dermatomyositis: the association of the TNF alpha-308A allele and disease chronicity. Curr Rheumatol Rep,3:379-86.
    1. Throm AA, Alinger JB, Pingel JT, Daugherty AL, Pachman LM, French AR (2018). Dysregulated NK cell PLCgamma2 signaling and activity in juvenile dermatomyositis. JCI Insight, 3.
    1. Benveniste O, Stenzel W, Hilton-Jones D, Sandri M, Boyer O, van Engelen BG (2015). Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol,129:611-24.
    1. Liu Y, Gao Y, Yang J, Shi C, Wang Y, Xu Y (2018). MicroRNA-381 reduces inflammation and infiltration of macrophages in polymyositis via downregulating HMGB1. Int J Oncol,53:1332-42.
    1. Rostasy KM, Piepkorn M, Goebel HH, Menck S, Hanefeld F, Schulz-Schaeffer WJ (2004). Monocyte/macrophage differentiation in dermatomyositis and polymyositis. Muscle Nerve,30:225-30.
    1. Roos A, Preusse C, Hathazi D, Goebel HH, Stenzel W (2019). Proteomic Profiling Unravels a Key Role of Specific Macrophage Subtypes in Sporadic Inclusion Body Myositis. Front Immunol,10:1040.
    1. Yasin SA, Schutz PW, Deakin CT, Sag E, Varsani H, Simou S et al. (2019). Histological heterogeneity in a large clinical cohort of juvenile idiopathic inflammatory myopathy: analysis by myositis autoantibody and pathological features. Neuropathol Appl Neurobiol,45:495-512.
    1. Etzerodt A, Moestrup SK (2013). CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid Redox Signal,18:2352-63.
    1. Enomoto Y, Suzuki Y, Hozumi H, Mori K, Kono M, Karayama M et al. (2017). Clinical significance of soluble CD163 in polymyositis-related or dermatomyositis-related interstitial lung disease. Arthritis Res Ther,19:9.
    1. Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R et al. (2005). Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol,57:664-78.
    1. Lopez de Padilla CM, Vallejo AN, McNallan KT, Vehe R, Smith SA, Dietz AB et al. (2007). Plasmacytoid dendritic cells in inflamed muscle of patients with juvenile dermatomyositis. Arthritis Rheum,56:1658-68.
    1. Greenberg SA, Pinkus GS, Amato AA, Pinkus JL (2007). Myeloid dendritic cells in inclusion-body myositis and polymyositis. Muscle Nerve,35:17-23.
    1. Pinal-Fernandez I, Casal-Dominguez M, Derfoul A, Pak K, Plotz P, Miller FW et al. (2019). Identification of distinctive interferon gene signatures in different types of myositis. Neurology,93:e1193-e204.
    1. Mascarenhas S, Avalos B, Ardoin SP (2012). An update on stem cell transplantation in autoimmune rheumatologic disorders. Curr Allergy Asthma Rep,12:530-40.
    1. Squillaro T, Peluso G, Galderisi U (2016). Clinical Trials With Mesenchymal Stem Cells: An Update. Cell Transplant,25:829-48.
    1. Wang D, Zhang H, Cao M, Tang Y, Liang J, Feng X et al. (2011). Efficacy of allogeneic mesenchymal stem cell transplantation in patients with drug-resistant polymyositis and dermatomyositis. Ann Rheum Dis,70:1285-8.
    1. Ankrum JA, Ong JF, Karp JM (2014). Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol,32:252-60.
    1. Lee NK, Na DL, Chang JW (2018). Killing two birds with one stone: The multifunctional roles of mesenchymal stem cells in the treatment of neurodegenerative and muscle diseases. Histol Histopathol,33:629-38.
    1. Denny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR et al. (2010). A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol,184:3284-97.
    1. Villanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM et al. (2011). Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol,187:538-52.
    1. Zhang S, Shu X, Tian X, Chen F, Lu X, Wang G (2014). Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: a potential contributor to interstitial lung disease complications. Clin Exp Immunol,177:134-41.
    1. Zhang S, Shen H, Shu X, Peng Q, Wang G (2017). Abnormally increased low-density granulocytes in peripheral blood mononuclear cells are associated with interstitial lung disease in dermatomyositis. Mod Rheumatol,27:122-9.
    1. Danieli MG, Calcabrini L, Calabrese V, Marchetti A, Logullo F, Gabrielli A (2009). Intravenous immunoglobulin as add on treatment with mycophenolate mofetil in severe myositis. Autoimmun Rev,9:124-7.
    1. Majithia V, Harisdangkul V (2005). Mycophenolate mofetil (CellCept): an alternative therapy for autoimmune inflammatory myopathy. Rheumatology (Oxford),44:386-9.
    1. Pisoni CN, Cuadrado MJ, Khamashta MA, Hughes GR, D'Cruz DP (2007). Mycophenolate mofetil treatment in resistant myositis. Rheumatology (Oxford),46:516-8.
    1. Rowin J, Amato AA, Deisher N, Cursio J, Meriggioli MN (2006). Mycophenolate mofetil in dermatomyositis: is it safe? Neurology,66:1245-7.
    1. Kotani T, Takeuchi T, Makino S, Hata K, Yoshida S, Nagai K et al. (2011). Combination with corticosteroids and cyclosporin-A improves pulmonary function test results and chest HRCT findings in dermatomyositis patients with acute/subacute interstitial pneumonia. Clin Rheumatol,30:1021-8.
    1. Wilkes MR, Sereika SM, Fertig N, Lucas MR, Oddis CV (2005). Treatment of antisynthetase-associated interstitial lung disease with tacrolimus. Arthritis Rheum,52:2439-46.
    1. Oddis CV, Sciurba FC, Elmagd KA, Starzl TE (1999). Tacrolimus in refractory polymyositis with interstitial lung disease. Lancet,353:1762-3.
    1. Mitsui T, Kuroda Y, Ueno S, Kaji R (2011). The effects of FK506 on refractory inflammatory myopathies. Acta Neurol Belg,111:188-94.
    1. Oddis CV, Aggarwal R (2018). Treatment in myositis. Nat Rev Rheumatol,14:279-89.
    1. Tjarnlund A, Tang Q, Wick C, Dastmalchi M, Mann H, Tomasova Studynkova J et al. (2018). Abatacept in the treatment of adult dermatomyositis and polymyositis: a randomised, phase IIb treatment delayed-start trial. Ann Rheum Dis,77:55-62.
    1. Levine TD (2005). Rituximab in the treatment of dermatomyositis: an open-label pilot study. Arthritis Rheum,52:601-7.
    1. Mahler EA, Blom M, Voermans NC, van Engelen BG, van Riel PL, Vonk MC (2011). Rituximab treatment in patients with refractory inflammatory myopathies. Rheumatology (Oxford),50:2206-13.
    1. Lambotte O, Kotb R, Maigne G, Blanc FX, Goujard C, Delfraissy JF (2005). Efficacy of rituximab in refractory polymyositis. J Rheumatol,32:1369-70.
    1. Valiyil R, Casciola-Rosen L, Hong G, Mammen A, Christopher-Stine L (2010). Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res (Hoboken),62:1328-34.
    1. Landon-Cardinal O, Allenbach Y, Soulages A, Rigolet A, Hervier B, Champtiaux N et al. (2018). Rituximab in the Treatment of Refractory Anti-HMGCR Immune-mediated Necrotizing Myopathy. J Rheumatol
    1. Fasano S, Gordon P, Hajji R, Loyo E, Isenberg DA (2017). Rituximab in the treatment of inflammatory myopathies: a review. Rheumatology (Oxford),56:26-36.
    1. Narazaki M, Hagihara K, Shima Y, Ogata A, Kishimoto T, Tanaka T (2011). Therapeutic effect of tocilizumab on two patients with polymyositis. Rheumatology (Oxford),50:1344-6.
    1. Kondo M, Murakawa Y, Matsumura T, Matsumoto O, Taira M, Moriyama M et al. (2014). A case of overlap syndrome successfully treated with tocilizumab: a hopeful treatment strategy for refractory dermatomyositis? Rheumatology (Oxford), 53:1907-8.
    1. Oddis CV (2016). Update on the pharmacological treatment of adult myositis. J Intern Med,280:63-74.
    1. Higgs BW, Zhu W, Morehouse C, White WI, Brohawn P, Guo X et al. (2014). A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-alpha monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Ann Rheum Dis,73:256-62.
    1. Chen Z, Wang X, Ye S (2019). Tofacitinib in Amyopathic Dermatomyositis-Associated Interstitial Lung Disease. N Engl J Med,381:291-3.
    1. Moghadam-Kia S, Charlton D, Aggarwal R, Oddis CV (2019). Management of refractory cutaneous dermatomyositis: potential role of Janus kinase inhibition with tofacitinib. Rheumatology (Oxford),58:1011-5.
    1. Kurasawa K, Arai S, Namiki Y, Tanaka A, Takamura Y, Owada T et al. (2018). Tofacitinib for refractory interstitial lung diseases in anti-melanoma differentiation-associated 5 gene antibody-positive dermatomyositis. Rheumatology (Oxford),57:2114-9.
    1. Paik JJ, Christopher-Stine L (2017). A case of refractory dermatomyositis responsive to tofacitinib. Semin Arthritis Rheum,46:e19.
    1. Kurtzman DJ, Wright NA, Lin J, Femia AN, Merola JF, Patel M et al. (2016). Tofacitinib Citrate for Refractory Cutaneous Dermatomyositis: An Alternative Treatment. JAMA Dermatol,152:944-5.

Source: PubMed

3
Subscribe