Accelerometer-Measured Daily Step Counts and Adiposity Indicators among Latin American Adults: A Multi-Country Study

Gerson Ferrari, Adilson Marques, Tiago V Barreira, Irina Kovalskys, Georgina Gómez, Attilio Rigotti, Lilia Yadira Cortés, Martha Cecilia Yépez García, Rossina G Pareja, Marianella Herrera-Cuenca, Viviana Guajardo, Ana Carolina B Leme, Juan Guzmán Habinger, Pedro Valdivia-Moral, Mónica Suárez-Reyes, Andreas Ihle, Elvio R Gouveia, Mauro Fisberg, On Behalf Of The Elans Study Group, Gerson Ferrari, Adilson Marques, Tiago V Barreira, Irina Kovalskys, Georgina Gómez, Attilio Rigotti, Lilia Yadira Cortés, Martha Cecilia Yépez García, Rossina G Pareja, Marianella Herrera-Cuenca, Viviana Guajardo, Ana Carolina B Leme, Juan Guzmán Habinger, Pedro Valdivia-Moral, Mónica Suárez-Reyes, Andreas Ihle, Elvio R Gouveia, Mauro Fisberg, On Behalf Of The Elans Study Group

Abstract

The aim of the present study was to examine the sex-related associations between accelerometer-measured daily step counts and adiposity indicators in adults from eight Latin American countries. We analyzed data from 2524 adults (aged 18-65 years) from the Latin American Study of Nutrition and Health. Device-measured daily step counts were measured by accelerometers (ActiGraph GT3X). The outcomes were body mass index (BMI; (kg/m2), waist and neck circumference (in cm). Overall, the mean of daily steps counts, BMI, waist and neck circumference were 10699.8, 27.3, 89.6, and 35.8. Weak and negative associations were observed between daily steps counts and BMI (r = -0.17; p < 0.05) and waist circumference (r = -0.16; p < 0.05); however, step counts was not associated with neck circumference. Daily steps counts were negatively associated with BMI (β: -0.054; 95%CI: -0.077; -0.012) and waist circumference (-0.098; -0.165; -0.030) independently of age and socioeconomic level. In men, there were significant negative associations between daily steps counts with BMI (-0.075; -0.119; -0.031) and waist circumference (-0.140; -0.233; -0.048), and in women, there was no significant association with either of the body composition indicators. The findings from this study need to be examined in prospective settings that use device-measured from Latin America.

Trial registration: ClinicalTrials.gov NCT02226627.

Keywords: Latin America; accelerometer; epidemiologic study; moderate-to-vigorous physical activity; obesity; overweight; physical activity; walking.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. World Health Organisation (WHO) Obesity and Overweight. [(accessed on 15 January 2021)]; Available online: .
    1. Kovalskys I., Fisberg M., Gomez G., Pareja R.G., Yepez Garcia M.C., Cortes Sanabria L.Y., Herrera-Cuenca M., Rigotti A., Guajardo V., Zalcman Zimberg I., et al. Energy intake and food sources of eight Latin American countries: Results from the Latin American Study of Nutrition and Health (ELANS) Public Health Nutr. 2018;21:2535–2547. doi: 10.1017/S1368980018001222.
    1. Abdelaal M., Le Roux C.W., Docherty N.G. Morbidity and mortality associated with obesity. Ann. Transl. Med. 2017;5:161. doi: 10.21037/atm.2017.03.107.
    1. Carioli G., Bertuccio P., Malvezzi M., Rodriguez T., Levi F., Boffetta P., La Vecchia C., Negri E. Cancer mortality predictions for 2019 in Latin America. Int. J. Cancer. 2020;147:619–632. doi: 10.1002/ijc.32749.
    1. Mortality G.B.D., Causes of Death C. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–171. doi: 10.1016/S0140-6736(14)61682-2.
    1. Allender S., Owen B., Kuhlberg J., Lowe J., Nagorcka-Smith P., Whelan J., Bell C. A community based systems diagram of obesity causes. PLoS ONE. 2015;10:e0129683. doi: 10.1371/journal.pone.0129683.
    1. Booth F.W., Roberts C.K., Thyfault J.P., Ruegsegger G.N., Toedebusch R.G. Role of inactivity in chronic diseases: Evolutionary insight and pathophysiological mechanisms. Physiol. Rev. 2017;97:1351–1402. doi: 10.1152/physrev.00019.2016.
    1. Salvo D., Reis R.S., Sarmiento O.L., Pratt M. Overcoming the challenges of conducting physical activity and built environment research in Latin America: IPEN Latin America. Prev. Med. 2014;69:S86–S92. doi: 10.1016/j.ypmed.2014.10.014.
    1. Lund C., De Silva M., Plagerson S., Cooper S., Chisholm D., Das J., Knapp M., Patel V. Poverty and mental disorders: Breaking the cycle in low-income and middle-income countries. Lancet. 2011;378:1502–1514. doi: 10.1016/S0140-6736(11)60754-X.
    1. United Nations . World Urbanization Prospects: The 2011 Revision: Data Tables and Highlights 2011 Rev. United Nations; New York, NY, USA: 2012.
    1. Jakicic J.M., Davis K.K. Obesity and physical activity. Psychiatr. Clin. N. Am. 2011;34:829–840. doi: 10.1016/j.psc.2011.08.009.
    1. Bull F.C., Al-Ansari S.S., Biddle S., Borodulin K., Buman M.P., Cardon G., Carty C., Chaput J.P., Chastin S., Chou R., et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020;54:1451–1462. doi: 10.1136/bjsports-2020-102955.
    1. Kraus W.E., Janz K.F., Powell K.E., Campbell W.W., Jakicic J.M., Troiano R.P., Sprow K., Torres A., Piercy K.L. Daily step counts for measuring physical activity exposure and its relation to health. Med. Sci. Sports Exerc. 2019;51:1206–1212. doi: 10.1249/MSS.0000000000001932.
    1. Malone S.K., Patterson F., Grunin L., Melkus G.D., Riegel B., Punjabi N., Yu G., Urbanek J., Crainiceanu C., Pack A. Habitual physical activity patterns in a nationally representative sample of U.S. adults. Transl. Behav. Med. 2020;11:332–341. doi: 10.1093/tbm/ibaa002.
    1. Hansen B.H., Dalene K.E., Ekelund U., Wang Fagerland M., Kolle E., Steene-Johannessen J., Tarp J., Alfred Anderssen S. Step by step: Association of device-measured daily steps with all-cause mortality—A prospective cohort Study. Scand. J. Med. Sci. Sports. 2020;30:1705–1711. doi: 10.1111/sms.13726.
    1. Ferrari G.L.M., Kovalskys I., Fisberg M., Gomez G., Rigotti A., Sanabria L.Y.C., Garcia M.C.Y., Torres R.G.P., Herrera-Cuenca M., Zimberg I.Z., et al. Comparison of self-report versus accelerometer-measured physical activity and sedentary behaviors and their association with body composition in Latin American countries. PLoS ONE. 2020;15:e0232420. doi: 10.1371/journal.pone.0232420.
    1. Lear S.A., Hu W., Rangarajan S., Gasevic D., Leong D., Iqbal R., Casanova A., Swaminathan S., Anjana R.M., Kumar R., et al. The effect of physical activity on mortality and cardiovascular disease in 130 000 people from 17 high-income, middle-income, and low-income countries: The PURE study. Lancet. 2017;390:2643–2654. doi: 10.1016/S0140-6736(17)31634-3.
    1. Koyanagi A., Stubbs B., Vancampfort D. Correlates of low physical activity across 46 low- and middle-income countries: A cross-sectional analysis of community-based data. Prev. Med. 2018;106:107–113. doi: 10.1016/j.ypmed.2017.10.023.
    1. Tudor-Locke C., Johnson W.D., Katzmarzyk P.T. Accelerometer-determined steps per day in US adults. Med. Sci. Sports Exerc. 2009;41:1384–1391. doi: 10.1249/MSS.0b013e318199885c.
    1. Ferrari G.L., Oliveira L.C., Araujo T.L., Matsudo V., Barreira T.V., Tudor-Locke C., Katzmarzyk P. Moderate-to-vigorous physical activity and sedentary behavior: Independent associations with body composition variables in brazilian children. Pediatr. Exerc. Sci. 2015;27:380–389. doi: 10.1123/pes.2014-0150.
    1. Luis de Moraes Ferrari G., Kovalskys I., Fisberg M., Gomez G., Rigotti A., Sanabria L.Y.C., Garcia M.C.Y., Torres R.G.P., Herrera-Cuenca M., Zimberg I.Z., et al. Original research Socio-demographic patterning of self-reported physical activity and sitting time in Latin American countries: Findings from ELANS. BMC Public Health. 2019;19:1723. doi: 10.1186/s12889-019-8048-7.
    1. Yang C.C., Hsu Y.L. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10:7772–7788. doi: 10.3390/s100807772.
    1. Dwyer T., Hosmer D., Hosmer T., Venn A.J., Blizzard C.L., Granger R.H., Cochrane J.A., Blair S.N., Shaw J.E., Zimmet P.Z., et al. The inverse relationship between number of steps per day and obesity in a population-based sample: The AusDiab study. Int. J. Obes. 2007;31:797–804. doi: 10.1038/sj.ijo.0803472.
    1. Mantovani A.M., Duncan S., Codogno J.S., Lima M.C., Fernandes R.A. Different amounts of physical activity measured by pedometer and the associations with health outcomes in adults. J. Phys. Act. Health. 2016;13:1183–1191. doi: 10.1123/jpah.2015-0730.
    1. Fisberg M., Kovalskys I., Gomez G., Rigotti A., Cortes L.Y., Herrera-Cuenca M., Yepez M.C., Pareja R.G., Guajardo V., Zimberg I.Z., et al. Latin American study of nutrition and health (ELANS): Rationale and study design. BMC Public Health. 2016;16:93. doi: 10.1186/s12889-016-2765-y.
    1. Ferrari G.L.M., Kovalskys I., Fisberg M., Gomez G., Rigotti A., Sanabria L.Y.C., Garcia M.C.Y., Torres R.G.P., Herrera-Cuenca M., Zimberg I.Z., et al. Methodological design for the assessment of physical activity and sedentary time in eight Latin American countries–The ELANS study. MethodsX. 2020;7:100843. doi: 10.1016/j.mex.2020.100843.
    1. NCHS Analytic and Reporting Guidelines: The Third National Health and Nutrition Examination Survey, NHANES III (1988–94) [(accessed on 5 March 2021)];1996 Available online: .
    1. Batista M.B., Romanzini C.L.P., Barbosa C.C.L., Blasquez Shigaki G., Romanzini M., Ronque E.R.V. Participation in sports in childhood and adolescence and physical activity in adulthood: A systematic review. J. Sports Sci. 2019;37:2253–2262. doi: 10.1080/02640414.2019.1627696.
    1. Barriera T.V., Tudor-Locke C., Champagne C.M., Broyles S.T., Johnson W.D., Katzmarzyk P.T. Comparison of GT3X accelerometer and YAMAX pedometer steps/day in a free-living sample of overweight and obese adults. J. Phys. Act. Health. 2013;10:263–270. doi: 10.1123/jpah.10.2.263.
    1. Chomistek A.K., Yuan C., Matthews C.E., Troiano R.P., Bowles H.R., Rood J., Barnett J.B., Willett W.C., Rimm E.B., Bassett D.R., Jr. Physical activity assessment with the actigraph GT3X and doubly labeled water. Med. Sci. Sports Exerc. 2017;49:1935–1944. doi: 10.1249/MSS.0000000000001299.
    1. Brond J.C., Arvidsson D. Sampling frequency affects the processing of Actigraph raw acceleration data to activity counts. J. Appl. Physiol. 2016;120:362–369. doi: 10.1152/japplphysiol.00628.2015.
    1. Troiano R.P., Berrigan D., Dodd K.W., Masse L.C., Tilert T., McDowell M. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 2008;40:181–188. doi: 10.1249/mss.0b013e31815a51b3.
    1. Ferrari G.L.M., Kovalskys I., Fisberg M., Gomez G., Rigotti A., Sanabria L.Y.C., Garcia M.C.Y., Torres R.G.P., Herrera-Cuenca M., Zimberg I.Z., et al. Socio-demographic patterning of objectively measured physical activity and sedentary behaviours in eight Latin American countries: Findings from the ELANS study. Eur. J. Sport Sci. 2019:1–12. doi: 10.1080/17461391.2019.1678671.
    1. Lohman T.G., Roche A.F., Martorell R. Anthropometric Standardization Reference Manual. 3rd ed. Volume 24 Human Kinetics Press; Champaign, IL, USA: 1988.
    1. World Health Organisation (WHO) Waist Circumference and Waist–Hip Ratio. Report of a WHO Expert Consultation. WHO; Geneva, Switzerland: 2008. pp. 8–11.
    1. Cornier M.A., Despres J.P., Davis N., Grossniklaus D.A., Klein S., Lamarche B., Lopez-Jimenez F., Rao G., St-Onge M.P., Towfighi A., et al. Assessing adiposity: A scientific statement from the American Heart Association. Circulation. 2011;124:1996–2019. doi: 10.1161/CIR.0b013e318233bc6a.
    1. IBM Corp . IBM SPSS Statistics for Windows, Version 22.0. IBM Corp.; Armonk, NY, USA: 2013.
    1. Cohen J. Statistical Power Analysis for Behavioural Sciences. Lawrence Erlbaum; Hillsdale, MI, USA: 1998.
    1. Yamamoto N., Miyazaki H., Shimada M., Nakagawa N., Sawada S.S., Nishimuta M., Kimura Y., Kawakami R., Nagayama H., Asai H., et al. Daily step count and all-cause mortality in a sample of Japanese elderly people: A cohort study. BMC Public Health. 2018;18:540. doi: 10.1186/s12889-018-5434-5.
    1. Hall K.S., Hyde E.T., Bassett D.R., Carlson S.A., Carnethon M.R., Ekelund U., Evenson K.R., Galuska D.A., Kraus W.E., Lee I.M., et al. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. Int. J. Behav. Nutr. Phys. Act. 2020;17:78. doi: 10.1186/s12966-020-00978-9.
    1. Duncan M.J., Minatto G., Wright S.L. Dose-response between pedometer assessed physical activity, functional fitness, and fatness in healthy adults aged 50–80 years. Am. J. Hum. Biol. 2016;28:890–894. doi: 10.1002/ajhb.22884.
    1. Fogelholm M., Malmberg J., Suni J., Santtila M., Kyrolainen H., Mantysaari M. Waist circumference and BMI are independently associated with the variation of cardio-respiratory and neuromuscular fitness in young adult men. Int. J. Obes. 2006;30:962–969. doi: 10.1038/sj.ijo.0803243.
    1. Taylor A.E., Ebrahim S., Ben-Shlomo Y., Martin R.M., Whincup P.H., Yarnell J.W., Wannamethee S.G., Lawlor D.A. Comparison of the associations of body mass index and measures of central adiposity and fat mass with coronary heart disease, diabetes, and all-cause mortality: A study using data from 4 UK cohorts. Am. J. Clin. Nutr. 2010;91:547–556. doi: 10.3945/ajcn.2009.28757.
    1. Tchoukalova Y.D., Koutsari C., Votruba S.B., Tchkonia T., Giorgadze N., Thomou T., Kirkland J.L., Jensen M.D. Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity. 2010;18:1875–1880. doi: 10.1038/oby.2010.56.
    1. Jones S.A., Wen F., Herring A.H., Evenson K.R. Correlates of US adult physical activity and sedentary behavior patterns. J. Sci. Med. Sport. 2016;19:1020–1027. doi: 10.1016/j.jsams.2016.03.009.
    1. Van Ballegooijen A.J., Van der Ploeg H.P., Visser M. Daily sedentary time and physical activity as assessed by accelerometry and their correlates in older adults. Eur. Rev. Aging Phys. Act. 2019;16:3. doi: 10.1186/s11556-019-0210-9.
    1. Davis M.G., Fox K.R., Hillsdon M., Sharp D.J., Coulson J.C., Thompson J.L. Objectively measured physical activity in a diverse sample of older urban UK adults. Med. Sci. Sports Exerc. 2011;43:647–654. doi: 10.1249/MSS.0b013e3181f36196.
    1. Diaz-Martinez X., Garrido A., Martinez M.A., Leiva A.M., Alvarez C., Ramirez-Campillo R., Cristi-Montero C., Rodriguez F., Salas-Bravo C., Duran E., et al. Correlates of physical inactivity: Findings from the Chilean National Health Survey 2009–2010. Rev. Med. Chil. 2017;145:1259–1267. doi: 10.4067/S0034-98872017001001259.
    1. Diaz-Martinez X., Steell L., Martinez M.A., Leiva A.M., Salas-Bravo C., Labrana A.M., Duran E., Cristi-Montero C., Livingstone K.M., Garrido-Mendez A., et al. Higher levels of self-reported sitting time is associated with higher risk of type 2 diabetes independent of physical activity in Chile. J. Public Health. 2018;40:501–507. doi: 10.1093/pubmed/fdx091.
    1. Cuberek R., Pelclova J., Gaba A., Pechova J., Svozilova Z., Pridalova M., Stefelova N., Hron K. Adiposity and changes in movement-related behaviors in older adult women in the context of the built environment: A protocol for a prospective cohort study. BMC Public Health. 2019;19:1522. doi: 10.1186/s12889-019-7905-8.
    1. Dohrn I.M., Kwak L., Oja P., Sjostrom M., Hagstromer M. Replacing sedentary time with physical activity: A 15-year follow-up of mortality in a national cohort. Clin. Epidemiol. 2018;10:179–186. doi: 10.2147/CLEP.S151613.
    1. Rezende L.F.M., Lee D.H., Ferrari G., Giovannucci E. Confounding due to pre-existing diseases in epidemiologic studies on sedentary behavior and all-cause mortality: A meta-epidemiologic study. Ann. Epidemiol. 2020;52:7–14. doi: 10.1016/j.annepidem.2020.09.009.
    1. Ferrari G.L.M., Victo E.R., Kovalskys I., Mello A.V., Previdelli A.N., Sole D., Fisberg M. Sedentary behavior, physical activity and body composition in adults. Rev. Assoc. Med. Bras. 2020;66:314–320. doi: 10.1590/1806-9282.66.3.314.
    1. Arias Tellez M.J., Acosta F.M., Sanchez-Delgado G., Martinez-Tellez B., Munoz-Hernandez V., Martinez-Avila W.D., Henriksson P., Ruiz J.R. Association of neck circumference with anthropometric indicators and body composition measured by dxa in young spanish adults. Nutrients. 2020;12:514. doi: 10.3390/nu12020514.

Source: PubMed

3
Subscribe