Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review

Asher Ornoy, Maria Becker, Liza Weinstein-Fudim, Zivanit Ergaz, Asher Ornoy, Maria Becker, Liza Weinstein-Fudim, Zivanit Ergaz

Abstract

In spite of the huge progress in the treatment of diabetes mellitus, we are still in the situation that both pregestational (PGDM) and gestational diabetes (GDM) impose an additional risk to the embryo, fetus, and course of pregnancy. PGDM may increase the rate of congenital malformations, especially cardiac, nervous system, musculoskeletal system, and limbs. PGDM may interfere with fetal growth, often causing macrosomia, but in the presence of severe maternal complications, especially nephropathy, it may inhibit fetal growth. PGDM may also induce a variety of perinatal complications such as stillbirth and perinatal death, cardiomyopathy, respiratory morbidity, and perinatal asphyxia. GDM that generally develops in the second half of pregnancy induces similar but generally less severe complications. Their severity is higher with earlier onset of GDM and inversely correlated with the degree of glycemic control. Early initiation of GDM might even cause some increase in the rate of congenital malformations. Both PGDM and GDM may cause various motor and behavioral neurodevelopmental problems, including an increased incidence of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Most complications are reduced in incidence and severity with the improvement in diabetic control. Mechanisms of diabetic-induced damage in pregnancy are related to maternal and fetal hyperglycemia, enhanced oxidative stress, epigenetic changes, and other, less defined, pathogenic mechanisms.

Keywords: anomalies; diabetic control; gestational diabetes; growth disturbances; neurodevelopmental problems; perinatal complications; pregestational diabetes; pregnancy.

Conflict of interest statement

None of the authors has any conflict of interest in the preparation of this manuscript.

Figures

Figure 1
Figure 1
Factors affecting fetal growth in diabetic pregnancies. Insulin resistance is mediated by the secretion of pregnancy-associated hormones like estrogen, progesterone, cortisol, cytokines, and by other growth hormones secreted by the placenta entering the maternal circulation, like hPGH and placental lactogen. In addition, adipose tissue produces adipocytokines, including leptin, adiponectin, tumor necrosis factor-α (TNF-α), that are possibly contributing to insulin resistance. Generally, insulin resistance induces glucose intolerance, resulting in hyperglycemia. This, in turn, causes placental changes and excessive glucose, amino acid, and lipids in the fetus. The fetus responds to maternal hyperglycemia by hyperinsulinemia, which in turn reduces fetal blood glucose levels but also increases fetal adipose tissue and enhances growth. In addition, PGH facilitates fetal gluconeogenesis and lipogenesis, further contributing to enhanced fetal growth.

References

    1. Reece E.A. Diabetes-induced birth defects: What do we know? What can we do? Curr. Diabetes Rep. 2012;12:24–32. doi: 10.1007/s11892-011-0251-6.
    1. Reece E.A. Perspectives on obesity, pregnancy and birth outcomes in the United States: The scope of the problem. Am. J. Obs. Gynecol. 2008;198:23–27. doi: 10.1016/j.ajog.2007.06.076.
    1. Reece E.A. The fetal and maternal consequences of gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2010;23:199–203. doi: 10.3109/14767050903550659.
    1. Feig D.S., Palda V.A. Type 2 diabetes in pregnancy: A growing concern. Lancet. 2002;359:1690–1692. doi: 10.1016/S0140-6736(02)08599-9.
    1. Harris B.S., Bishop K.C., Kemeny H.R., Walker J.S., Rhee E., Kuller J.A. Risk Factors for Birth Defects. Obstet. Gynecol. Surv. 2017;72:123–135. doi: 10.1097/OGX.0000000000000405.
    1. Schneider S., Bock C., Wetzel M., Maul H., Loerbroks A. The prevalence of gestational diabetes in advanced economies. J. Perinat. Med. 2012;40:511–520. doi: 10.1515/jpm-2012-0015.
    1. Kong L., Nilsson I.A.K., Gissler M., Lavebratt C. Associations of Maternal Diabetes and Body Mass Index with Offspring Birth Weight and Prematurity. JAMA Pediatr. 2019;173:371–378. doi: 10.1001/jamapediatrics.2018.5541.
    1. Ornoy A., Ratzon N., Greenbaum C., Wolf A., Dulitzky M. School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J. Pediatr. Endocrinol. Metab. 2001;14(Suppl. 1):681–689. doi: 10.1515/JPEM.2001.14.S1.681.
    1. Ornoy A., Reece E.A., Pavlinkova G., Kappen C., Miller R.K. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Birth Defects Res. Part C Embryo Today Rev. 2015;105:53–72. doi: 10.1002/bdrc.21090.
    1. Hawthorne G. Maternal complications in diabetic pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011;25:77–90. doi: 10.1016/j.bpobgyn.2010.10.015.
    1. Kitzmiller J.L., Combs C.A. Diabetic nephropathy and pregnancy. Obstet. Gynecol. Clin. N. Am. 1996;23:173–203. doi: 10.1016/S0889-8545(05)70251-5.
    1. Leguizamon G., Reece E.A. Effect of medical therapy on progressive nephropathy: Influence of pregnancy, diabetes and hypertension. J. Matern. Fetal Med. 2000;9:70–78. doi: 10.1002/(SICI)1520-6661(200001/02)9:1<70::AID-MFM15>;2-#.
    1. Reece E.A., Leguizamon G., Homko C. Pregnancy performance and outcomes associated with diabetic nephropathy. Am. J. Perinatol. 1998;15:413–421. doi: 10.1055/s-2007-993968.
    1. Stévenin C., Collet C., White C., Marre M. Management of diabetic nephropathy before and during pregnancy. Diabetes Metab. 2001;27:S42–S47.
    1. Tinker S.C., Gilboa S.M., Moore C.A., Waller D.K., Simeone R.M., Kim S.Y., Jamieson D.J., Botto L.D., Reefhuis J. Specific birth defects in pregnancies of women with diabetes: National Birth Defects Prevention Study, 1997–2011. Am. J. Obs. Gynecol. 2020;222 doi: 10.1016/j.ajog.2019.08.028.
    1. Greene M.F., Hare J.W., Cloherty J.P., Benacerraf B.R., Soeldner J.S. First-trimester hemoglobin A1 and risk for major malformation and spontaneous abortion in diabetic pregnancy. Teratology. 1989;39:225–231. doi: 10.1002/tera.1420390303.
    1. Engineer A., Saiyin T., Greco E.R., Feng Q. Say NO to ROS: Their Roles in Embryonic Heart Development and Pathogenesis of Congenital Heart Defects in Maternal Diabetes. Antioxidants. 2019;8:436. doi: 10.3390/antiox8100436.
    1. Martínez-Frías M.L. Epidemiological analysis of outcomes of pregnancy in diabetic mothers: Identification of the most characteristic and most frequent congenital anomalies. Am. J. Med. Genet. 1994;51:108–113. doi: 10.1002/ajmg.1320510206.
    1. Wren C., Birrell G., Hawthorne G. Cardiovascular malformations in infants of diabetic mothers. Heart. 2003;89:1217–1220. doi: 10.1136/heart.89.10.1217.
    1. Corrigan N., Brazil D.P., McAuliffe F. Fetal cardiac effects of maternal hyperglycemia during pregnancy. Birth Defects Res. Part Aclinical Mol. Teratol. 2009;85:523–530. doi: 10.1002/bdra.20567.
    1. Correa A., Gilboa S.M., Besser L.M., Botto L.D., Moore C.A., Hobbs C.A., Cleves M.A., Riehle-Colarusso T.J., Waller D.K., Reece E.A. Diabetes mellitus and birth defects. Am. J. Obs. Gynecol. 2008;199:237-e1. doi: 10.1016/j.ajog.2008.06.028.
    1. Sirico A., Sarno L., Zullo F., Martinelli P., Maruotti G.M. Pregestational diabetes and fetal heart rate in the first trimester of pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;232:30–32. doi: 10.1016/j.ejogrb.2018.11.003.
    1. Borsari L., Malagoli C., Werler M.M., Rothman K.J., Malavolti M., Rodolfi R., De Girolamo G., Nicolini F., Vinceti M. Joint Effect of Maternal Tobacco Smoking and Pregestational Diabetes on Preterm Births and Congenital Anomalies: A Population-Based Study in Northern Italy. J. Diabetes Res. 2018;2018:2782741. doi: 10.1155/2018/2782741.
    1. López-de-Andrés A., Perez-Farinos N., Hernández-Barrera V., Palomar-Gallego M.A., Carabantes-Alarcón D., Zamorano-León J.J., de Miguel-Diez J., Jimenez-Garcia R. A Population-Based Study of Diabetes during Pregnancy in Spain (2009–2015): Trends in Incidence, Obstetric Interventions, and Pregnancy Outcomes. J. Clin. Med. 2020;9:582. doi: 10.3390/jcm9020582.
    1. Wei Y., Xu Q., Yang H., Yang Y., Wang L., Chen H., Anderson C., Liu X., Song G., Li Q., et al. Preconception diabetes mellitus and adverse pregnancy outcomes in over 6.4 million women: A population-based cohort study in China. PLoS Med. 2019;16:e1002926. doi: 10.1371/journal.pmed.1002926.
    1. Billionnet C., Mitanchez D., Weill A., Nizard J., Alla F., Hartemann A., Jacqueminet S. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia. 2017;60:636–644. doi: 10.1007/s00125-017-4206-6.
    1. Zawiejska A., Wróblewska-Seniuk K., Gutaj P., Mantaj U., Gomulska A., Kippen J., Wender-Ozegowska E. Early Screening for Gestational Diabetes Using IADPSG Criteria May Be a Useful Predictor for Congenital Anomalies: Preliminary Data from a High-Risk Population. J. Clin. Med. 2020;9:3553. doi: 10.3390/jcm9113553.
    1. Wu Y., Liu B., Sun Y., Du Y., Santillan M.K., Santillan D.A., Snetselaar L.G., Bao W. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus With Congenital Anomalies of the Newborn. Diabetes Care. 2020;43:2983–2990. doi: 10.2337/dc20-0261.
    1. Ornoy A., Rand S.B., Bischitz N. Hyperglycemia and hypoxia are interrelated in their teratogenic mechanism: Studies on cultured rat embryos. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2010;89:106–115. doi: 10.1002/bdrb.20230.
    1. Bitsanis D., Ghebremeskel K., Moodley T., Crawford M.A., Djahanbakhch O. Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids. Lipids. 2006;41:341–346. doi: 10.1007/s11745-006-5104-8.
    1. Baker L., Piddington R., Goldman A., Egler J., Moehring J. Myo-inositol and prostaglandins reverse the glucose inhibition of neural tube fusion in cultured mouse embryos. Diabetologia. 1990;33:593–596. doi: 10.1007/BF00400202.
    1. Kawasaki M., Arata N., Ogawa Y. Obesity and abnormal glucose tolerance in the offspring of mothers with diabetes. Curr. Opin. Obstet. Gynecol. 2018;30:361–368. doi: 10.1097/GCO.0000000000000479.
    1. Ornoy A. The impact of intrauterine exposure versus postnatal environment in neurodevelopmental toxicity: Long-term neurobehavioral studies in children at risk for developmental disorders. Toxicol. Lett. 2003;140:171–181. doi: 10.1016/S0378-4274(02)00505-2.
    1. Clausen T.D., Mathiesen E.R., Hansen T., Pedersen O., Jensen D.M., Lauenborg J., Damm P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: The role of intrauterine hyperglycemia. Diabetes Care. 2008;31:340–346. doi: 10.2337/dc07-1596.
    1. Silverman B.L., Metzger B.E., Cho N.H., Loeb C.A. Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care. 1995;18:611–617. doi: 10.2337/diacare.18.5.611.
    1. Kc K., Shakya S., Zhang H. Gestational Diabetes Mellitus and Macrosomia: A Literature Review. Ann. Nutr. Metab. 2015;66(Suppl. 2):14–20. doi: 10.1159/000371628.
    1. Vieira M.C., Sankaran S., Pasupathy D. Fetal macrosomia. Obstet. Gynaecol. Reprod. Med. 2020;30:146–151. doi: 10.1016/j.ogrm.2020.02.011.
    1. Visser G.H., de Valk H.W. Management of diabetes in pregnancy: Antenatal follow-up and decisions concerning timing and mode of delivery. Best Pract. Res. Clin. Obstet. Gynaecol. 2015;29:237–243. doi: 10.1016/j.bpobgyn.2014.08.005.
    1. Pedersen J. The Pregnant Diabetic and Her Newborn: Problems and Management. Arch. Intern. Med. 1968;122:92.
    1. Greco P., Vimercati A., Scioscia M., Rossi A.C., Giorgino F., Selvaggi L. Timing of Fetal Growth Acceleration in Women with Insulin-Dependent Diabetes. Fetal Diagn. Ther. 2003;18:437–441. doi: 10.1159/000073139.
    1. Boulet S.L., Alexander G.R., Salihu H.M., Pass M. Macrosomic births in the United States: Determinants, outcomes, and proposed grades of risk. Am. J. Obstet. Gynecol. 2003;188:1372–1378. doi: 10.1067/mob.2003.302.
    1. Oral E., Cağdaş A., Gezer A., Kaleli S., Aydinli K., Öçer F. Perinatal and maternal outcomes of fetal macrosomia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001;99:167–171. doi: 10.1016/S0301-2115(01)00416-X.
    1. Hyperglycemia and Adverse Pregnancy Outcomes. N. Engl. J. Med. 2008;358:1991–2002. doi: 10.1056/NEJMoa0707943.
    1. Perlow J.H., Wigton T., Hart J., Strassner H.T., Nageotte M.P., Wolk B.M. Birth trauma. A five-year review of incidence and associated perinatal factors. J. Reprod. Med. 1996;41:754.
    1. Stotland N.E., Caughey A.B., Breed E.M., Escobar G.J. Risk factors and obstetric complications associated with macrosomia. Int. J. Gynecol. Obstet. 2004;87:220–226. doi: 10.1016/j.ijgo.2004.08.010.
    1. Meshari A.A., De Silva S., Rahman I. Fetal macrosomia—maternal risks and fetal outcome. Int. J. Gynecol. Obstet. 1990;32:215–222. doi: 10.1016/0020-7292(90)90348-O.
    1. Plows J.F., Stanley J.L., Baker P.N., Reynolds C.M., Vickers M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018;19:3342. doi: 10.3390/ijms19113342.
    1. Barbour L.A. Metabolic Culprits in Obese Pregnancies and Gestational Diabetes Mellitus: Big Babies, Big Twists, Big Picture The 2018 Norbert Freinkel Award Lecture. Diabetes Care. 2019;42:718–726. doi: 10.2337/dci18-0048.
    1. Gupta R.K., Gao N., Gorski R.K., White P., Hardy O.T., Rafiq K., Brestelli J.E., Chen G., Stoeckert C.J., Jr., Kaestner K.H. Expansion of adult beta-cell mass in response to increased metabolic demand is dependent on HNF-4alpha. Genes Dev. 2007;21:756–769. doi: 10.1101/gad.1535507.
    1. Plank J.L., Frist A.Y., LeGrone A.W., Magnuson M.A., Labosky P.A. Loss of Foxd3 results in decreased β-cell proliferation and glucose intolerance during pregnancy. Endocrinology. 2011;152:4589–4600. doi: 10.1210/en.2010-1462.
    1. Horn S., Kirkegaard J.S., Hoelper S., Seymour P.A., Rescan C., Nielsen J.H., Madsen O.D., Jensen J.N., Krüger M., Grønborg M., et al. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo. Mol. Endocrinol. 2016;30:133–143. doi: 10.1210/me.2015-1208.
    1. Moyce B.L., Dolinsky V.W. Maternal β-Cell Adaptations in Pregnancy and Placental Signalling: Implications for Gestational Diabetes. Int. J. Mol. Sci. 2018;19:3467. doi: 10.3390/ijms19113467.
    1. Kampmann U., Knorr S., Fuglsang J., Ovesen P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J. Diabetes Res. 2019;2019:5320156. doi: 10.1155/2019/5320156.
    1. Fuglsang J., Lauszus F., Flyvbjerg A., Ovesen P. Human placental growth hormone, insulin-like growth factor I and-II, and insulin requirements during pregnancy in type 1 diabetes. J. Clin. Endocrinol. Metab. 2003;88:4355–4361. doi: 10.1210/jc.2003-030726.
    1. Velegrakis A., Sfakiotaki M., Sifakis S. Human placental growth hormone in normal and abnormal fetal growth (Review) Biomed Rep. 2017;7:115–122. doi: 10.3892/br.2017.930.
    1. Caufriez A., Frankenne F., Hennen G., Copinschi G. Regulation of maternal IGF-I by placental GH in normal and abnormal human pregnancies. Am. J. Physiol. 1993;265:E572–E577. doi: 10.1152/ajpendo.1993.265.4.E572.
    1. Yu Y., Luo G.H., Zhang J., Jiang H., Wei J., Shi Y.P., Zhang X.Y., Xu N. Increased mRNA levels of apolipoprotein M and apolipoprotein AI in the placental tissues with fetal macrosomia. Arch. Gynecol. Obs. 2015;291:299–303. doi: 10.1007/s00404-014-3441-z.
    1. Hammoud N.M., Visser G.H.A., van Rossem L., Biesma D.H., Wit J.M., de Valk H.W. Long-term BMI and growth profiles in offspring of women with gestational diabetes. Diabetologia. 2018;61:1037–1045. doi: 10.1007/s00125-018-4584-4.
    1. Baptiste-Roberts K., Nicholson W.K., Wang N.Y., Brancati F.L. Gestational diabetes and subsequent growth patterns of offspring: The National Collaborative Perinatal Project. Matern. Child Health J. 2012;16:125–132. doi: 10.1007/s10995-011-0756-2.
    1. Buchanan T.A., Xiang A.H. Gestational diabetes mellitus. J. Clin. Investig. 2005;115:485–491. doi: 10.1172/JCI200524531.
    1. Catalano P.M. Obesity, insulin resistance, and pregnancy outcome. Reproduction. 2010;140:365–371. doi: 10.1530/REP-10-0088.
    1. Briana D.D., Malamitsi-Puchner A. Reviews: Adipocytokines in normal and complicated pregnancies. Reprod. Sci. 2009;16:921–937. doi: 10.1177/1933719109336614.
    1. Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science. 1996;271:665–668. doi: 10.1126/science.271.5249.665.
    1. Graça G., Duarte I.F., Barros A.S., Goodfellow B.J., Diaz S.O., Pinto J., Carreira I.M., Galhano E., Pita C., Gil A.M. Impact of Prenatal Disorders on the Metabolic Profile of Second Trimester Amniotic Fluid: A Nuclear Magnetic Resonance Metabonomic Study. J. Proteome Res. 2010;9:6016–6024. doi: 10.1021/pr100815q.
    1. O’Neill K., Alexander J., Azuma R., Xiao R., Snyder N.W., Mesaros C.A., Blair I.A., Pinney S.E. Gestational Diabetes Alters the Metabolomic Profile in 2nd Trimester Amniotic Fluid in a Sex-Specific Manner. Int. J. Mol. Sci. 2018;19:2696. doi: 10.3390/ijms19092696.
    1. Huynh J., Dawson D., Roberts D., Bentley-Lewis R. A systematic review of placental pathology in maternal diabetes mellitus. Placenta. 2015;36:101–114. doi: 10.1016/j.placenta.2014.11.021.
    1. Desoye G., Gauster M., Wadsack C. Placental transport in pregnancy pathologies. Am. J. Clin. Nutr. 2011;94:1896S–1902S. doi: 10.3945/ajcn.110.000851.
    1. Barbour L.A., Hernandez T.L. Maternal Lipids and Fetal Overgrowth: Making Fat from Fat. Clin. Ther. 2018;40:1638–1647. doi: 10.1016/j.clinthera.2018.08.007.
    1. Stanirowski P.J., Szukiewicz D., Pazura-Turowska M., Sawicki W., Cendrowski K. Placental Expression of Glucose Transporter Proteins in Pregnancies Complicated by Gestational and Pregestational Diabetes Mellitus. Can. J. Diabetes. 2018;42:209–217. doi: 10.1016/j.jcjd.2017.04.008.
    1. Scholl T.O., Sowers M., Chen X., Lenders C. Maternal glucose concentration influences fetal growth, gestation, and pregnancy complications. Am. J. Epidemiol. 2001;154:514–520. doi: 10.1093/aje/154.6.514.
    1. Combs C.A., Gunderson E., Kitzmiller J.L., Gavin L.A., Main E.K. Relationship of Fetal Macrosomia to Maternal Postprandial Glucose Control During Pregnancy. Diabetes Care. 1992;15:1251. doi: 10.2337/diacare.15.10.1251.
    1. Metzger B.E., Silverman B.L., Freinkel N., Dooley S.L., Ogata E.S., Green O.C. Amniotic fluid insulin concentration as a predictor of obesity. Arch. Dis. Child. 1990;65:1050. doi: 10.1136/adc.65.10_Spec_No.1050.
    1. Silverman B.L., Rizzo T.A., Cho N.H., Metzger B.E. Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care. 1998;21(Suppl. 2):B142–B149.
    1. DubÉ M.-C., Morisset A.-S., Tchernof A., Weisnagel S.J. Cord blood C-peptide levels relate to the metabolic profile of women with and without gestational diabetes. Acta Obstet. Gynecol. Scand. 2012;91:1469–1473. doi: 10.1111/aogs.12005.
    1. Carpenter M.W., Canick J.A., Hogan J.W., Shellum C., Somers M., Star J.A. Amniotic fluid insulin at 14-20 weeks’ gestation: Association with later maternal glucose intolerance and birth macrosomia. Diabetes Care. 2001;24:1259–1263. doi: 10.2337/diacare.24.7.1259.
    1. Atègbo J.M., Grissa O., Yessoufou A., Hichami A., Dramane K.L., Moutairou K., Miled A., Grissa A., Jerbi M., Tabka Z., et al. Modulation of adipokines and cytokines in gestational diabetes and macrosomia. J. Clin. Endocrinol. Metab. 2006;91:4137–4143. doi: 10.1210/jc.2006-0980.
    1. Wolf H.J., Ebenbichler C.F., Huter O., Bodner J., Lechleitner M., Föger B., Patsch J.R., Desoye G. Fetal leptin and insulin levels only correlate inlarge-for-gestational age infants. Eur. J. Endocrinol. 2000;142:623–629. doi: 10.1530/eje.0.1420623.
    1. Persson B., Westgren M., Celsi G., Nord E., Ortqvist E. Leptin concentrations in cord blood in normal newborn infants and offspring of diabetic mothers. Horm. Metab. Res. 1999;31:467–471. doi: 10.1055/s-2007-978776.
    1. Horosz E., Bomba-Opon D.A., Szymanska M., Wielgos M. Third trimester plasma adiponectin and leptin in gestational diabetes and normal pregnancies. Diabetes Res. Clin. Pract. 2011;93:350–356. doi: 10.1016/j.diabres.2011.05.005.
    1. Lepercq J., Taupin P., Dubois-Laforgue D., Duranteau L., Lahlou N., Boitard C., Landais P., Hauguel-De Mouzon S., Timsit J. Heterogeneity of fetal growth in type 1 diabetic pregnancy. Diabetes Metab. 2001;27:339–344.
    1. De Silva M.H.A.D., Hewawasam R.P., Iresha M.A.G. Cord Leptin, C-Peptide and Insulin Levels in Large for Gestational Age Newborns in Sri Lanka. Int. J. Pediatr. 2019;2019:4268658. doi: 10.1155/2019/4268658.
    1. Hytinantti T.K., Juntunen M., Koistinen H.A., Koivisto V.A., Karonen S.L., Andersson S. Postnatal changes in concentrations of free and bound leptin. Arch. Dis. Childhood. Fetal Neonatal Ed. 2001;85:F123–F126. doi: 10.1136/fn.85.2.F123.
    1. Chaoimh C.N., Murray D.M., Kenny L.C., Irvine A.D., Hourihane J.O., Kiely M. Cord blood leptin and gains in body weight and fat mass during infancy. Eur. J. Endocrinol. 2016;175:403–410. doi: 10.1530/EJE-16-0431.
    1. Worda C., Leipold H., Gruber C., Kautzky-Willer A., Knöfler M., Bancher-Todesca D. Decreased plasma adiponectin concentrations in women with gestational diabetes mellitus. Am. J. Obs. Gynecol. 2004;191:2120–2124. doi: 10.1016/j.ajog.2004.04.038.
    1. Lindsay R.S., Walker J.D., Havel P.J., Hamilton B.A., Calder A.A., Johnstone F.D. Adiponectin is present in cord blood but is unrelated to birth weight. Diabetes Care. 2003;26:2244–2249. doi: 10.2337/diacare.26.8.2244.
    1. Telejko B., Kuzmicki M., Zonenberg A., Modzelewska A., Niedziolko-Bagniuk K., Ponurkiewicz A., Wawrusiewicz-Kurylonek N., Nikolajuk A., Szamatowicz J., Laudanski P., et al. Ghrelin in gestational diabetes: Serum level and mRNA expression in fat and placental tissue. Exp. Clin. Endocrinol. Diabetes. 2010;118:87–92. doi: 10.1055/s-0029-1238313.
    1. Hehir M.P., Laursen H., Higgins M.F., Brennan D.J., O’Connor D.P., McAuliffe F.M. Ghrelin concentrations in maternal and cord blood of type 1 diabetic and non-diabetic pregnancies at term. Endocrine. 2013;43:233–235. doi: 10.1007/s12020-012-9735-7.
    1. Karakulak M., Saygili U., Temur M., Yilmaz Ö., Özün Özbay P., Calan M., Coşar H. Comparison of umbilical cord ghrelin concentrations in full-term pregnant women with or without gestational diabetes. Endocr. Res. 2017;42:79–85. doi: 10.1080/07435800.2016.1194855.
    1. Farquhar J., Heiman M., Wong A.C., Wach R., Chessex P., Chanoine J.P. Elevated umbilical cord ghrelin concentrations in small for gestational age neonates. J. Clin. Endocrinol. Metab. 2003;88:4324–4327. doi: 10.1210/jc.2003-030265.
    1. Ng P.C., Lee C.H., Lam C.W., Wong E., Chan I.H., Fok T.F. Plasma ghrelin and resistin concentrations are suppressed in infants of insulin-dependent diabetic mothers. J. Clin. Endocrinol. Metab. 2004;89:5563–5568. doi: 10.1210/jc.2004-0736.
    1. McIntyre H.D., Serek R., Crane D.I., Veveris-Lowe T., Parry A., Johnson S., Leung K.C., Ho K.K., Bougoussa M., Hennen G., et al. Placental growth hormone (GH), GH-binding protein, and insulin-like growth factor axis in normal, growth-retarded, and diabetic pregnancies: Correlations with fetal growth. J. Clin. Endocrinol. Metab. 2000;85:1143–1150. doi: 10.1210/jcem.85.3.6480.
    1. Kadakia R., Ma M., Josefson J.L. Neonatal adiposity increases with rising cord blood IGF-1 levels. Clin. Endocrinol. 2016;85:70–75. doi: 10.1111/cen.13057.
    1. Higgins M.F., Russell N.E., Crossey P.A., Nyhan K.C., Brazil D.P., McAuliffe F.M. Maternal and Fetal Placental Growth Hormone and IGF Axis in Type 1 Diabetic Pregnancy. PLoS ONE. 2012;7:e29164. doi: 10.1371/annotation/b3c08210-a703-4986-aa97-c8513c5aff5f.
    1. Ringholm L., Juul A., Pedersen-Bjergaard U., Thorsteinsson B., Damm P., Mathiesen E.R. Lower levels of placental growth hormone in early pregnancy in women with type 1 diabetes and large for gestational age infants. Growth Horm. IGF Res. 2015;25:312–315. doi: 10.1016/j.ghir.2015.11.002.
    1. Whittaker P.G., Stewart M.O., Taylor A., Howell R., Lind T. Insulin-like growth factor 1 and its binding protein 1 during normal and diabetic pregnancies. Obstet. Gynecol. 1990;76:223–229.
    1. Liu Y.-J., Tsushima T., Minei S., Sanaka M., Nagashima T., Yanagisawa K., Omori Y. Insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBP-1,-2 and-3) in diabetic pregnancy: Relationship to macrosomia. Endocr. J. 1996;43:221–231. doi: 10.1507/endocrj.43.221.
    1. Tisi D.K., Liu X.J., Wykes L.J., Skinner C.D., Koski K.G. Insulin-like growth factor II and binding proteins 1 and 3 from second trimester human amniotic fluid are associated with infant birth weight. J. Nutr. 2005;135:1667–1672. doi: 10.1093/jn/135.7.1667.
    1. Underwood L.E., D’Ercole A.J. Insulin and insulin-like growth factors/somatomedins in fetal and neonatal development. Clin. Endocrinol. Metab. 1984;13:69–89. doi: 10.1016/S0300-595X(84)80009-2.
    1. Eidelman A.I., Samueloff A. The pathophysiology of the fetus of the diabetic mother. Semin. Perinatol. 2002;26:232–236. doi: 10.1053/sper.2002.34215.
    1. Krüger C., Dörr H., Von Muehlendahl K., Herkenhoff H. Neonatal diabetes and intra-uterine growth retardation. Eur. J. Pediatr. 1996;156:1–2. doi: 10.1007/s004310050540.
    1. Fowden A. Insulin deficiency: Effects on fetal growth and development. J. Paediatr. Child Health. 1993;29:6–11. doi: 10.1111/j.1440-1754.1993.tb00428.x.
    1. Reiher H., Fuhrmann K., Noack S., Woltanski K.-P., Jutzi E., Dorsche H.H.v., Hahn H.-J. Age-dependent Insulin Secretion of the Endocrine Pancreas In Vitro from Fetuses of Diabetic and Nondiabetic Patients. Diabetes Care. 1983;6:446. doi: 10.2337/diacare.6.5.446.
    1. Sokooti S., Kieneker L.M., Borst M.H.d., Muller Kobold A., Kootstra-Ros J.E., Gloerich J., van Gool A.J., Heerspink H.J.L., Gansevoort R.T., Dullaart R.P.F., et al. Plasma C-Peptide and Risk of Developing Type 2 Diabetes in the General Population. J. Clin. Med. 2020;9:3001. doi: 10.3390/jcm9093001.
    1. Jansson T., Myatt L., Powell T.L. The role of trophoblast nutrient and ion transporters in the development of pregnancy complications and adult disease. Curr. Vasc. Pharmacol. 2009;7:521–533. doi: 10.2174/157016109789043982.
    1. Stanirowski P., Szukiewicz D., Pyzlak M., Abdalla N., Sawicki W., Cendrowski K. Analysis of correlations between the placental expression of glucose transporters GLUT-1, GLUT-4 and GLUT-9 and selected maternal and fetal parameters in pregnancies complicated by diabetes mellitus. J. Matern. Fetal Neonatal Med. 2017;32:1–221. doi: 10.1080/14767058.2017.1387897.
    1. Lampl M., Jeanty P. Exposure to maternal diabetes is associated with altered fetal growth patterns: A hypothesis regarding metabolic allocation to growth under hyperglycemic-hypoxemic conditions. Am. J. Hum. Biol. 2004;16:237–263. doi: 10.1002/ajhb.20015.
    1. Romon M., Nuttens M.C., Vambergue A., Vérier-Mine O., Biausque S., Lemaire C., Fontaine P., Salomez J.L., Beuscart R. Higher carbohydrate intake is associated with decreased incidence of newborn macrosomia in women with gestational diabetes. J. Am. Diet. Assoc. 2001;101:897–902. doi: 10.1016/S0002-8223(01)00220-6.
    1. Parfitt V., Clark J., Turner G., Hartog M. Maternal postprandial blood glucose levels influence infant birth weight in diabetic pregnancy. Diabetes Res. 1992;19:133–135.
    1. Li M., Hinkle S.N., Grantz K.L., Kim S., Grewal J., Grobman W.A., Skupski D.W., Newman R.B., Chien E.K., Sciscione A., et al. Glycaemic status during pregnancy and longitudinal measures of fetal growth in a multi-racial US population: A prospective cohort study. Lancet Diabetes Endocrinol. 2020;8:292–300. doi: 10.1016/S2213-8587(20)30024-3.
    1. Chiefari E., Quaresima P., Visconti F., Mirabelli M., Brunetti A. Gestational diabetes and fetal overgrowth: Time to rethink screening guidelines. Lancet. Diabetes Endocrinol. 2020;8:561–562. doi: 10.1016/S2213-8587(20)30189-3.
    1. Quaresima P., Visconti F., Chiefari E., Mirabelli M., Borelli M., Caroleo P., Foti D., Puccio L., Venturella R., Di Carlo C., et al. Appropriate Timing of Gestational Diabetes Mellitus Diagnosis in Medium- and Low-Risk Women: Effectiveness of the Italian NHS Recommendations in Preventing Fetal Macrosomia. J. Diabetes Res. 2020;2020:5393952. doi: 10.1155/2020/5393952.
    1. Silva A.L.d., Amaral A.R.d., Oliveira D.S.d., Martins L., Silva M.R.E., Silva J.C. Neonatal outcomes according to different therapies for gestational diabetes mellitus. J. Pediatr. 2017;93:87–93. doi: 10.1016/j.jped.2016.04.004.
    1. Ladfors L., Shaat N., Wiberg N., Katasarou A., Berntorp K., Kristensen K. Fetal overgrowth in women with type 1 and type 2 diabetes mellitus. PLoS ONE. 2017;12:e0187917. doi: 10.1371/journal.pone.0187917.
    1. McGrath R.T., Glastras S.J., Hocking S.L., Fulcher G.R. Large-for-Gestational-Age Neonates in Type 1 Diabetes and Pregnancy: Contribution of Factors Beyond Hyperglycemia. Diabetes Care. 2018;41:1821. doi: 10.2337/dc18-0551.
    1. Jansson N., Rosario F.J., Gaccioli F., Lager S., Jones H.N., Roos S., Jansson T., Powell T.L. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J. Clin. Endocrinol. Metab. 2013;98:105–113. doi: 10.1210/jc.2012-2667.
    1. Morrens A., Verhaeghe J., Vanhole C., Devlieger R., Mathieu C., Benhalima K. Risk factors for large-for-gestational age infants in pregnant women with type 1 diabetes. BMC Pregnancy Childbirth. 2016;16:162. doi: 10.1186/s12884-016-0958-0.
    1. Parellada C.B., Asbjörnsdóttir B., Ringholm L., Damm P., Mathiesen E.R. Fetal growth in relation to gestational weight gain in women with type 2 diabetes: An observational study. Diabet. Med. 2014;31:1681–1689. doi: 10.1111/dme.12558.
    1. Rifas-Shiman S.L., Fleisch A., Hivert M.F., Mantzoros C., Gillman M.W., Oken E. First and second trimester gestational weight gains are most strongly associated with cord blood levels of hormones at delivery important for glycemic control and somatic growth. Metab. Clin. Exp. 2017;69:112–119. doi: 10.1016/j.metabol.2017.01.019.
    1. Evers I.M., de Valk H.W., Mol B.W., ter Braak E.W., Visser G.H. Macrosomia despite good glycaemic control in Type I diabetic pregnancy; results of a nationwide study in The Netherlands. Diabetologia. 2002;45:1484–1489. doi: 10.1007/s00125-002-0958-7.
    1. Kawakita T., Bowers K., McWhorter K., Rosen B., Adams M., Miodovnik M., Khoury J.C. Characterizing Gestational Weight Gain According to Institute of Medicine Guidelines in Women with Type 1 Diabetes Mellitus: Association with Maternal and Perinatal Outcome. Am. J. Perinatol. 2016;33:1266–1272. doi: 10.1055/s-0036-1585420.
    1. Wiznitzer A., Furman B., Zuili I., Shany S., Reece E.A., Mazor M. Cord leptin level and fetal macrosomia. Obstet. Gynecol. 2000;96:707–713. doi: 10.1016/s0029-7844(00)00992-3.
    1. Masuzaki H., Ogawa Y., Sagawa N., Hosoda K., Matsumoto T., Mise H., Nishimura H., Yoshimasa Y., Tanaka I., Mori T., et al. Nonadipose tissue production of leptin: Leptin as a novel placenta-derived hormone in humans. Nat. Med. 1997;3:1029–1033. doi: 10.1038/nm0997-1029.
    1. Pérez-Pérez A., Toro A., Vilariño-García T., Maymó J., Guadix P., Dueñas J.L., Fernández-Sánchez M., Varone C., Sánchez-Margalet V. Leptin action in normal and pathological pregnancies. J. Cell. Mol. Med. 2018;22:716–727. doi: 10.1111/jcmm.13369.
    1. Shekhawat P.S., Garland J.S., Shivpuri C., Mick G.J., Sasidharan P., Pelz C.J., McCormick K.L. Neonatal cord blood leptin: Its relationship to birth weight, body mass index, maternal diabetes, and steroids. Pediatr. Res. 1998;43:338–343. doi: 10.1203/00006450-199803000-00005.
    1. Ozsu E., Ceylaner S., Onay H. Early-onset severe obesity due to complete deletion of the leptin gene in a boy. J. Pediatr. Endocrinol. Metab. 2017;30:1227–1230. doi: 10.1515/jpem-2017-0063.
    1. Niazi R.K., Gjesing A.P., Hollensted M., Have C.T., Grarup N., Pedersen O., Ullah A., Shahid G., Ahmad W., Gul A., et al. Identification of novel LEPR mutations in Pakistani families with morbid childhood obesity. BMC Med. Genet. 2018;19:199. doi: 10.1186/s12881-018-0710-x.
    1. Caminos J.E., Nogueiras R., Gallego R., Bravo S., Tovar S., García-Caballero T., Casanueva F.F., Diéguez C. Expression and regulation of adiponectin and receptor in human and rat placenta. J. Clin. Endocrinol. Metab. 2005;90:4276–4286. doi: 10.1210/jc.2004-0930.
    1. Wang Z.V., Scherer P.E. Adiponectin, the past two decades. J. Mol. Cell Biol. 2016;8:93–100. doi: 10.1093/jmcb/mjw011.
    1. Ballesteros M., Simón I., Vendrell J., Ceperuelo-Mallafré V., Miralles R.M., Albaiges G., Tinahones F., Megia A. Maternal and cord blood adiponectin multimeric forms in gestational diabetes mellitus: A prospective analysis. Diabetes Care. 2011;34:2418–2423. doi: 10.2337/dc11-0788.
    1. Luo Z.C., Nuyt A.M., Delvin E., Fraser W.D., Julien P., Audibert F., Girard I., Shatenstein B., Deal C., Grenier E., et al. Maternal and fetal leptin, adiponectin levels and associations with fetal insulin sensitivity. Obesity. 2013;21:210–216. doi: 10.1002/oby.20250.
    1. Teague A.M., Fields D.A., Aston C.E., Short K.R., Lyons T.J., Chernausek S.D. Cord blood adipokines, neonatal anthropometrics and postnatal growth in offspring of Hispanic and Native American women with diabetes mellitus. Reprod. Biol. Endocrinol. 2015;13:68. doi: 10.1186/s12958-015-0061-9.
    1. Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–660. doi: 10.1038/45230.
    1. Date Y., Kojima M., Hosoda H., Sawaguchi A., Mondal M.S., Suganuma T., Matsukura S., Kangawa K., Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255–4261. doi: 10.1210/endo.141.11.7757.
    1. Brink H.S., van der Lely A.J., Delhanty P.J.D., Huisman M., van der Linden J. Gestational diabetes mellitus and the ghrelin system. Diabetes Metab. 2019;45:393–395. doi: 10.1016/j.diabet.2017.10.013.
    1. Gómez-Díaz R.A., Gómez-Medina M.P., Ramírez-Soriano E., López-Robles L., Aguilar-Salinas C.A., Saucedo R., Zarate A., Valladares-Salgado A., Wacher N.H. Lower Plasma Ghrelin Levels are Found in Women with Diabetes-Complicated Pregnancies. J. Clin. Res. Pediatr. Endocrinol. 2016;8:425–431. doi: 10.4274/jcrpe.2504.
    1. Mirlesse V., Frankenne F., Alsat E., Poncelet M., Hennen G., Evain-Brion D. Placental growth hormone levels in normal pregnancy and in pregnancies with intrauterine growth retardation. Pediatr. Res. 1993;34:439–442. doi: 10.1203/00006450-199310000-00011.
    1. McIntyre H., Zeck W., Russell A. Placental growth hormone, fetal growth and the IGF axis in normal and diabetic pregnancy. Curr. Diabetes Rev. 2009;5:185–189. doi: 10.2174/157339909788920947.
    1. Verhaeghe J., Coopmans W., van Herck E., van Schoubroeck D., Deprest J.A., Witters I. IGF-I, IGF-II, IGF Binding Protein 1, and C-Peptide in Second Trimester Amniotic Fluid Are Dependent on Gestational Age but Do Not Predict Weight at Birth. Pediatr. Res. 1999;46:101–108. doi: 10.1203/00006450-199907000-00017.
    1. Biesenbach G., Grafinger P., Zazgornik J., Stöger H. Perinatal complications and three-year follow up of infants of diabetic mothers with diabetic nephropathy stage IV. Ren. Fail. 2000;22:573–580. doi: 10.1081/JDI-100100898.
    1. Leguizamón G., Trigubo D., Pereira J.I., Vera M.F., Fernández J.A. Vascular complications in the diabetic pregnancy. Curr. Diabetes Rep. 2015;15:22. doi: 10.1007/s11892-015-0586-5.
    1. Samii L., Kallas-Koeman M., Donovan L.E., Lodha A., Crawford S., Butalia S. The association between vascular complications during pregnancy in women with Type 1 diabetes and congenital malformations. Diabet. Med. 2019;36:237–242. doi: 10.1111/dme.13872.
    1. Persson M., Shah P.S., Rusconi F., Reichman B., Modi N., Kusuda S., Lehtonen L., Håkansson S., Yang J., Isayama T., et al. Association of Maternal Diabetes With Neonatal Outcomes of Very Preterm and Very Low-Birth-Weight Infants: An International Cohort Study. JAMA Pediatr. 2018;172:867–875. doi: 10.1001/jamapediatrics.2018.1811.
    1. Langer O., Levy J., Brustman L., Anyaegbunam A., Merkatz R., Divon M. Glycemic control in gestational diabetes mellitus--how tight is tight enough: Small for gestational age versus large for gestational age? Am. J. Obs. Gynecol. 1989;161:646–653. doi: 10.1016/0002-9378(89)90371-2.
    1. Barker D.J. Maternal nutrition, fetal nutrition, and disease in later life. Nutrition. 1997;13:807–813. doi: 10.1016/S0899-9007(97)00193-7.
    1. Eriksson J., Forsén T., Tuomilehto J., Osmond C., Barker D. Fetal and childhood growth and hypertension in adult life. Hypertension. 2000;36:790–794. doi: 10.1161/01.HYP.36.5.790.
    1. Ornoy A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod. Toxicol. 2011;32:205–212. doi: 10.1016/j.reprotox.2011.05.002.
    1. Ornoy A. Biomarkers of maternal diabetes and its complication in pregnancy. Reprod. Toxicol. 2012;34:174–179. doi: 10.1016/j.reprotox.2012.05.005.
    1. Barker D.J., Osmond C., Forsén T.J., Kajantie E., Eriksson J.G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 2005;353:1802–1809. doi: 10.1056/NEJMoa044160.
    1. Stettler N., Stallings V.A., Troxel A.B., Zhao J., Schinnar R., Nelson S.E., Ziegler E.E., Strom B.L. Weight gain in the first week of life and overweight in adulthood: A cohort study of European American subjects fed infant formula. Circulation. 2005;111:1897–1903. doi: 10.1161/01.CIR.0000161797.67671.A7.
    1. Saenger P., Czernichow P., Hughes I., Reiter E.O. Small for gestational age: Short stature and beyond. Endocr. Rev. 2007;28:219–251. doi: 10.1210/er.2006-0039.
    1. Barker D.J. Fetal origins of coronary heart disease. BMJ. 1995;311:171–174. doi: 10.1136/bmj.311.6998.171.
    1. Taal H.R., Vd Heijden A.J., Steegers E.A., Hofman A., Jaddoe V.W. Small and large size for gestational age at birth, infant growth, and childhood overweight. Obesity. 2013;21:1261–1268. doi: 10.1002/oby.20116.
    1. Karlberg J., Albertsson-Wikland K. Growth in full-term small-for-gestational-age infants: From birth to final height. Pediatr. Res. 1995;38:733–739. doi: 10.1203/00006450-199511000-00017.
    1. Durá-Travé T., San Martín-García I., Gallinas-Victoriano F., Chueca Guindulain M.J., Berrade-Zubiri S. Catch-up growth and associated factors in very low birth weight infants. Anales de Pediatría. 2020;93:282–288. doi: 10.1016/j.anpedi.2019.06.017.
    1. Finkielstain G.P., Lui J.C., Baron J. Catch-up growth: Cellular and molecular mechanisms. World Rev. Nutr. Diet. 2013;106:100–104. doi: 10.1159/000342535.
    1. Wit J.M., Boersma B. Catch-up growth: Definition, mechanisms, and models. J. Pediatr. Endocrinol. Metab. 2002;15(Suppl. 5):1229–1241.
    1. Lei X., Chen Y., Ye J., Ouyang F., Jiang F., Zhang J. The optimal postnatal growth trajectory for term small for gestational age babies: A prospective cohort study. J. Pediatr. 2015;166:54–58. doi: 10.1016/j.jpeds.2014.09.025.
    1. Boghossian N.S., Hansen N.I., Bell E.F., Brumbaugh J.E., Stoll B.J., Laptook A.R., Shankaran S., Wyckoff M.H., Colaizy T.T., Das A., et al. Outcomes of Extremely Preterm Infants Born to Insulin-Dependent Diabetic Mothers. Pediatrics. 2016;137 doi: 10.1542/peds.2015-3424.
    1. Rizzo T.A., Dooley S.L., Metzger B.E., Cho N.H., Ogata E.S., Silverman B.L. Prenatal and perinatal influences on long-term psychomotor development in offspring of diabetic mothers. Am. J. Obs. Gynecol. 1995;173:1753–1758. doi: 10.1016/0002-9378(95)90422-0.
    1. Vohr B.R., McGarvey S.T. Growth patterns of large-for-gestational-age and appropriate-for-gestational-age infants of gestational diabetic mothers and control mothers at age 1 year. Diabetes Care. 1997;20:1066–1072. doi: 10.2337/diacare.20.7.1066.
    1. Vohr B.R., McGarvey S.T., Tucker R. Effects of maternal gestational diabetes on offspring adiposity at 4–7 years of age. Diabetes Care. 1999;22:1284–1291. doi: 10.2337/diacare.22.8.1284.
    1. Tarry-Adkins J.L., Aiken C.E., Ozanne S.E. Neonatal, infant, and childhood growth following metformin versus insulin treatment for gestational diabetes: A systematic review and meta-analysis. PLoS Med. 2019;16:e1002848. doi: 10.1371/journal.pmed.1002848.
    1. Ornoy A., Ratzon N., Greenbaum C., Peretz E., Soriano D., Dulitzky M. Neurobehaviour of school age children born to diabetic mothers. Arch. Dis. Childhood. Fetal Neonatal Ed. 1998;79:F94–F99. doi: 10.1136/fn.79.2.F94.
    1. Ornoy A., Wolf A., Ratzon N., Greenbaum C., Dulitzky M. Neurodevelopmental outcome at early school age of children born to mothers with gestational diabetes. Arch. Dis. Childhood. Fetal Neonatal Ed. 1999;81:F10–F14. doi: 10.1136/fn.81.1.F10.
    1. Walsh J.M., McAuliffe F.M. Prediction and prevention of the macrosomic fetus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012;162:125–130. doi: 10.1016/j.ejogrb.2012.03.005.
    1. Pham M.T., Brubaker K., Pruett K., Caughey A.B. Risk of childhood obesity in the toddler offspring of mothers with gestational diabetes. Obstet. Gynecol. 2013;121:976–982. doi: 10.1097/AOG.0b013e31828bf70d.
    1. Battarbee A.N., Venkatesh K.K., Aliaga S., Boggess K.A. The association of pregestational and gestational diabetes with severe neonatal morbidity and mortality. J. Perinatol. 2020;40:232–239. doi: 10.1038/s41372-019-0516-5.
    1. Smith G.C. Predicting antepartum stillbirth. Curr. Opin. Obstet. Gynecol. 2006;18:625–630. doi: 10.1097/GCO.0b013e32801062ff.
    1. Mackin S.T., Nelson S.M., Kerssens J.J., Wood R., Wild S., Colhoun H.M., Leese G.P., Philip S., Lindsay R.S. Diabetes and pregnancy: National trends over a 15 year period. Diabetologia. 2018;61:1081–1088. doi: 10.1007/s00125-017-4529-3.
    1. Dudley D.J. Diabetic-associated stillbirth: Incidence, pathophysiology, and prevention. Clin. Perinatol. 2007;34:611–626. doi: 10.1016/j.clp.2007.09.003.
    1. Syed M., Javed H., Yakoob M.Y., Bhutta Z.A. Effect of screening and management of diabetes during pregnancy on stillbirths. BMC Public Health. 2011;11(Suppl. 3):S2. doi: 10.1186/1471-2458-11-S3-S2.
    1. Reddy U.M., Laughon S.K., Sun L., Troendle J., Willinger M., Zhang J. Prepregnancy risk factors for antepartum stillbirth in the United States. Obstet. Gynecol. 2010;116:1119–1126. doi: 10.1097/AOG.0b013e3181f903f8.
    1. Bradley R.J., Brudenell J.M., Nicolaides K.H. Fetal acidosis and hyperlacticaemia diagnosed by cordocentesis in pregnancies complicated by maternal diabetes mellitus. Diabet. Med. 1991;8:464–468. doi: 10.1111/j.1464-5491.1991.tb01633.x.
    1. Macrosomia: ACOG Practice Bulletin Summary, Number 216. Obstet. Gynecol. 2020;135:246–248. doi: 10.1097/AOG.0000000000003607.
    1. Chen L., Wang W.J., Auger N., Xiao L., Torrie J., McHugh N.G., Luo Z.C. Diabetes in pregnancy in associations with perinatal and postneonatal mortality in First Nations and non-Indigenous populations in Quebec, Canada: Population-based linked birth cohort study. BMJ Open. 2019;9:e025084. doi: 10.1136/bmjopen-2018-025084.
    1. ACOG Committee Opinion No. 764 Summary: Medically Indicated Late-Preterm and Early-Term Deliveries. Obstet. Gynecol. 2019;133:400–403. doi: 10.1097/aog.0000000000003084.
    1. Harper L.M., Tita A.T.N., Biggio J.R., Jr., Chang J.J. Gestational Age of Delivery in Pregnancies Complicated by Diabetes. Ochsner J. 2020;20:373–380. doi: 10.31486/toj.20.0019.
    1. Dude A.M., Grobman W.A., Yee L.M. Association between Sonographic Estimated Fetal Weight and the Risk of Cesarean Delivery among Nulliparous Women with Diabetes in Pregnancy. Am. J. Perinatol. 2018;35:1297–1302. doi: 10.1055/s-0038-1649482.
    1. Abdelaal A.M., Alqahtani A.S. Mode of Delivery in the Setting of Repeated Vitreous Hemorrhages in Proliferative Diabetic Retinopathy: A Case Report and Review of the Literature. Cureus. 2020;12:e11239. doi: 10.7759/cureus.11239.
    1. Moraitis A.A., Shreeve N., Sovio U., Brocklehurst P., Heazell A.E.P., Thornton J.G., Robson S.C., Papageorghiou A., Smith G.C. Universal third-trimester ultrasonic screening using fetal macrosomia in the prediction of adverse perinatal outcome: A systematic review and meta-analysis of diagnostic test accuracy. PLoS Med. 2020;17:e1003190. doi: 10.1371/journal.pmed.1003190.
    1. Shah B.R., Sharifi F. Perinatal outcomes for untreated women with gestational diabetes by IADPSG criteria: A population-based study. BJOG Int. J. Obstet. Gynaecol. 2020;127:116–122. doi: 10.1111/1471-0528.15964.
    1. Egan A.M., Danyliv A., Carmody L., Kirwan B., Dunne F.P. A Prepregnancy Care Program for Women with Diabetes: Effective and Cost Saving. J. Clin. Endocrinol. Metab. 2016;101:1807–1815. doi: 10.1210/jc.2015-4046.
    1. Kekäläinen P., Juuti M., Walle T., Laatikainen T. Pregnancy planning in type 1 diabetic women improves glycemic control and pregnancy outcomes. J. Matern. Fetal Neonatal Med. 2016;29:2252–2258. doi: 10.3109/14767058.2015.1081888.
    1. Berger H., Melamed N., Davis B.M., Hasan H., Mawjee K., Barrett J., McDonald S.D., Geary M., Ray J.G. Impact of diabetes, obesity and hypertension on preterm birth: Population-based study. PLoS ONE. 2020;15:e0228743. doi: 10.1371/journal.pone.0228743.
    1. Riskin A., Itzchaki O., Bader D., Iofe A., Toropine A., Riskin-Mashiah S. Perinatal Outcomes in Infants of Mothers with Diabetes in Pregnancy. Isr. Med. Assoc. J. 2020;22:569–575.
    1. Soliman A., Salama H., Al Rifai H., De Sanctis V., Al-Obaidly S., Al Qubasi M., Olukade T. The effect of different forms of dysglycemia during pregnancy on maternal and fetal outcomes in treated women and comparison with large cohort studies. Acta Bio-Med. Atenei Parm. 2018;89:11–21. doi: 10.23750/abm.v89iS4.7356.
    1. Antoniou M.C., Gilbert L., Gross J., Rossel J.B., Fischer Fumeaux C.J., Vial Y., Puder J.J. Potentially modifiable predictors of adverse neonatal and maternal outcomes in pregnancies with gestational diabetes mellitus: Can they help for future risk stratification and risk-adapted patient care? BMC Pregnancy Childbirth. 2019;19:469. doi: 10.1186/s12884-019-2610-2.
    1. Kawakita T., Bowers K., Hazrati S., Zhang C., Grewal J., Chen Z., Sun L., Grantz K.L. Increased Neonatal Respiratory Morbidity Associated with Gestational and Pregestational Diabetes: A Retrospective Study. Am. J. Perinatol. 2017;34:1160–1168. doi: 10.1055/s-0037-1604414.
    1. Hitaka D., Morisaki N., Miyazono Y., Piedvache A., Nagafuji M., Takeuchi S., Kajikawa D., Kanai Y., Saito M., Takada H. Neonatal outcomes of very low birthweight infants born to mothers with hyperglycaemia in pregnancy: A retrospective cohort study in Japan. BMJ Paediatr. Open. 2019;3:e000491. doi: 10.1136/bmjpo-2019-000491.
    1. Grandi C., Tapia J.L., Cardoso V.C. Impact of maternal diabetes mellitus on mortality and morbidity of very low birth weight infants: A multicenter Latin America study. J. Pediatr. 2015;91:234–241. doi: 10.1016/j.jped.2014.08.007.
    1. Opara C.N., Akintorin M., Byrd A., Cirignani N., Akintorin S., Soyemi K. Maternal diabetes mellitus as an independent risk factor for clinically significant retinopathy of prematurity severity in neonates less than 1500 g. PLoS ONE. 2020;15:e0236639. doi: 10.1371/journal.pone.0236639.
    1. Tunay Z., Özdemir Ö., Acar D.E., Öztuna D., Uraş N. Maternal Diabetes as an Independent Risk Factor for Retinopathy of Prematurity in Infants With Birth Weight of 1500 g or More. Am. J. Ophthalmol. 2016;168:201–206. doi: 10.1016/j.ajo.2016.05.022.
    1. Piper J.M., Xenakis E.M., Langer O. Delayed appearance of pulmonary maturation markers is associated with poor glucose control in diabetic pregnancies. J. Matern. Fetal Med. 1998;7:148–153. doi: 10.1002/(SICI)1520-6661(199805/06)7:3<148::AID-MFM9>;2-K.
    1. McGillick E.V., Morrison J.L., McMillen I.C., Orgeig S. Intrafetal glucose infusion alters glucocorticoid signaling and reduces surfactant protein mRNA expression in the lung of the late-gestation sheep fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014;307:R538–R545. doi: 10.1152/ajpregu.00053.2014.
    1. Miakotina O.L., Goss K.L., Snyder J.M. Insulin utilizes the PI 3-kinase pathway to inhibit SP-A gene expression in lung epithelial cells. Respir. Res. 2002;3:27. doi: 10.1186/rr191.
    1. Depla A.L., de Wit L., Steenhuis T.J., Slieker M.G., Voormolen D.N., Scheffer P.G., de Heus R., van Rijn B.B., Bekker M.N. Effects of maternal diabetes on fetal heart function at echocardiography: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2020 doi: 10.1002/uog.22163.
    1. Paauw N.D., Stegeman R., de Vroede M., Termote J.U.M., Freund M.W., Breur J. Neonatal cardiac hypertrophy: The role of hyperinsulinism-a review of literature. Eur. J. Pediatr. 2020;179:39–50. doi: 10.1007/s00431-019-03521-6.
    1. El-Ganzoury M.M., El-Masry S.A., El-Farrash R.A., Anwar M., Abd Ellatife R.Z. Infants of diabetic mothers: Echocardiographic measurements and cord blood IGF-I and IGFBP-1. Pediatr. Diabetes. 2012;13:189–196. doi: 10.1111/j.1399-5448.2011.00811.x.
    1. Topcuoglu S., Karatekin G., Yavuz T., Arman D., Kaya A., Gursoy T., Ovalı F. The relationship between the oxidative stress and the cardiac hypertrophy in infants of diabetic mothers. Diabetes Res. Clin. Pract. 2015;109:104–109. doi: 10.1016/j.diabres.2015.04.022.
    1. Peixoto A.B., Bravo-Valenzuela N.J.M., Martins W.P., Słodki M., Mattar R., Moron A.F., Araujo Júnior E. Impact of type I and type II maternal diabetes mellitus on fetal cardiac function assessment parameters using spectral and tissue Doppler. Int. J. Cardiovasc. Imaging. 2020;36:1237–1247. doi: 10.1007/s10554-020-01821-9.
    1. Patey O., Carvalho J.S., Thilaganathan B. Perinatal changes in fetal cardiac geometry and function in diabetic pregnancy at term. Ultrasound Obstet. Gynecol. 2019;54:634–642. doi: 10.1002/uog.20187.
    1. Blais S., Patenaude J., Doyon M., Bouchard L., Perron P., Hivert M.F., Dallaire F. Effect of gestational diabetes and insulin resistance on offspring’s myocardial relaxation kinetics at three years of age. PLoS ONE. 2018;13:e0207632. doi: 10.1371/journal.pone.0207632.
    1. Rijpert M., Breur J.M., Evers I.M., de Valk H.W., Heijnen C.J., Meijboom F.J., Visser G.H. Cardiac function in 7-8-year-old offspring of women with type 1 diabetes. Exp. Diabetes Res. 2011;2011:564316. doi: 10.1155/2011/564316.
    1. Castelijn B., Hollander K., Hensbergen J.F., RG I.J., Valkenburg-van den Berg A.W., Twisk J., De Groot C., Wouters M. Peripartum fetal distress in diabetic women: A retrospective case-cohort study. BMC Pregnancy Childbirth. 2018;18:228. doi: 10.1186/s12884-018-1880-4.
    1. Cnattingius S., Lindam A., Persson M. Risks of asphyxia-related neonatal complications in offspring of mothers with type 1 or type 2 diabetes: The impact of maternal overweight and obesity. Diabetologia. 2017;60:1244–1251. doi: 10.1007/s00125-017-4279-2.
    1. Xie W., Dai P., Qin Y., Wu M., Yang B., Yu X. Effectiveness of telemedicine for pregnant women with gestational diabetes mellitus: An updated meta-analysis of 32 randomized controlled trials with trial sequential analysis. BMC Pregnancy Childbirth. 2020;20:198. doi: 10.1186/s12884-020-02892-1.
    1. Yu L., Zeng X.L., Cheng M.L., Yang G.Z., Wang B., Xiao Z.W., Luo X., Zhang B.F., Xiao D.W., Zhang S., et al. Quantitative assessment of the effect of pre-gestational diabetes and risk of adverse maternal, perinatal and neonatal outcomes. Oncotarget. 2017;8:61048–61056. doi: 10.18632/oncotarget.17824.
    1. Wahabi H.A., Fayed A., Esmaeil S., Elmorshedy H., Titi M.A., Amer Y.S., Alzeidan R.A., Alodhayani A.A., Saeed E., Bahkali K.H., et al. Systematic review and meta-analysis of the effectiveness of pre-pregnancy care for women with diabetes for improving maternal and perinatal outcomes. PLoS ONE. 2020;15:e0237571. doi: 10.1371/journal.pone.0237571.
    1. Feig D.S., Donovan L.E., Corcoy R., Murphy K.E., Amiel S.A., Hunt K.F., Asztalos E., Barrett J.F.R., Sanchez J.J., de Leiva A., et al. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): A multicentre international randomised controlled trial. Lancet. 2017;390:2347–2359. doi: 10.1016/S0140-6736(17)32400-5.
    1. Stogianni A., Lendahls L., Landin-Olsson M., Thunander M. Obstetric and perinatal outcomes in pregnancies complicated by diabetes, and control pregnancies, in Kronoberg, Sweden. BMC Pregnancy Childbirth. 2019;19:159. doi: 10.1186/s12884-019-2269-8.
    1. Koivunen S., Viljakainen M., Männistö T., Gissler M., Pouta A., Kaaja R., Eriksson J., Laivuori H., Kajantie E., Vääräsmäki M. Pregnancy outcomes according to the definition of gestational diabetes. PLoS ONE. 2020;15:e0229496. doi: 10.1371/journal.pone.0229496.
    1. Morikawa M., Kato-Hirayama E., Mayama M., Saito Y., Nakagawa K., Umazume T., Chiba K., Kawaguchi S., Okuyama K., Watari H. Glycemic control and fetal growth of women with diabetes mellitus and subsequent hypertensive disorders of pregnancy. PLoS ONE. 2020;15:e0230488. doi: 10.1371/journal.pone.0230488.
    1. Fernández-Alba J.J., Soto Pazos E., Moreno Cortés R., Vilar Sánchez Á., González Macías C., Castillo Lara M., Moreno Corral L., Sainz Bueno J.A. INTERGROWTH21st vs customized fetal growth curves in the assessment of the neonatal nutritional status: A retrospective cohort study of gestational diabetes. BMC Pregnancy Childbirth. 2020;20:139. doi: 10.1186/s12884-020-2845-y.
    1. Teramo K., Kari M.A., Eronen M., Markkanen H., Hiilesmaa V. High amniotic fluid erythropoietin levels are associated with an increased frequency of fetal and neonatal morbidity in type 1 diabetic pregnancies. Diabetologia. 2004;47:1695–1703. doi: 10.1007/s00125-004-1515-3.
    1. Foster W., Myllynen P., Winn L.M., Ornoy A., Miller R.K. Reactive oxygen species, diabetes and toxicity in the placenta—A workshop report. Placenta. 2008;29:S105–S107. doi: 10.1016/j.placenta.2007.10.014.
    1. Aylward G.P. Neurodevelopmental outcomes of infants born prematurely. J. Dev. Behav. Pediatr. 2014;35:394–407. doi: 10.1097/01.DBP.0000452240.39511.d4.
    1. Torres-Espinola F.J., Berglund S.K., García-Valdés L.M., Segura M.T., Jerez A., Campos D., Moreno-Torres R., Rueda R., Catena A., Pérez-García M., et al. Maternal Obesity, Overweight and Gestational Diabetes Affect the Offspring Neurodevelopment at 6 and 18 Months of Age--A Follow Up from the PREOBE Cohort. PLoS ONE. 2015;10:e0133010. doi: 10.1371/journal.pone.0133010.
    1. Persson B., Gentz J. Follow-up of children of insulin-dependent and gestational diabetic mothers. Neuropsychological outcome. Acta Paediatr. Scand. 1984;73:349–358. doi: 10.1111/j.1651-2227.1994.tb17747.x.
    1. Ornoy A., Zaken V., Abir R., Yaffe P., Raz I. Effects on rat embryos of culture in serum of women with gestational diabetes. Toxicol. Vitr. Int. J. Publ. Assoc. Bibra. 1995;9:643–651. doi: 10.1016/0887-2333(95)00067-I.
    1. Churchill J.A., Berendes H.W., Nemore J. Neuropsychological deficits in children of diabetic mothers. A report from the Collaborative Sdy of Cerebral Palsy. Am. J. Obs. Gynecol. 1969;105:257–268. doi: 10.1016/0002-9378(69)90067-2.
    1. Stehbens J.A., Baker G.L., Kitchell M. Outcome at ages 1, 3, and 5 years of children born to diabetic women. Am. J. Obs. Gynecol. 1977;127:408–413. doi: 10.1016/0002-9378(77)90499-9.
    1. Petersen M.B., Pedersen S.A., Greisen G., Pedersen J.F., Mølsted-Pedersen L. Early growth delay in diabetic pregnancy: Relation to psychomotor development at age 4. Br. Med. J. 1988;296:598–600. doi: 10.1136/bmj.296.6622.598.
    1. Petersen M.B. Status at 4–5 Years in 90 Children of Insulin-Dependent Diabetic Mothers. In: Stowers S.H., editor. Carbohydrate Metabolism in Pregnancy and the Newborn. Springer; New York, NY, USA: 1989. pp. 354–361.
    1. Kimmerle R., Zass R.P., Cupisti S., Somville T., Bender R., Pawlowski B., Berger M. Pregnancies in women with diabetic nephropathy: Long-term outcome for mother and child. Diabetologia. 1995;38:227–235. doi: 10.1007/BF00400099.
    1. Hod M., Levy-Shiff R., Lerman M., Schindel B., Ben-Rafael Z., Bar J. Developmental outcome of offspring of pregestational diabetic mothers. J. Pediatr. Endocrinol. Metab. 1999;12:867–872. doi: 10.1515/JPEM.1999.12.6.867.
    1. Nelson C.A., Wewerka S.S., Borscheid A.J., Deregnier R.A., Georgieff M.K. Electrophysiologic evidence of impaired cross-modal recognition memory in 8-month-old infants of diabetic mothers. J. Pediatr. 2003;142:575–582. doi: 10.1067/mpd.2003.210.
    1. Takeuchi A., Yorifuji T., Takahashi K., Nakamura M., Kageyama M., Kubo T., Ogino T., Doi H. Neurodevelopment in full-term small for gestational age infants: A nationwide Japanese population-based study. Brain Dev. 2016;38:529–537. doi: 10.1016/j.braindev.2015.12.013.
    1. Camprubi Robles M., Campoy C., Garcia Fernandez L., Lopez-Pedrosa J.M., Rueda R., Martin M.J. Maternal Diabetes and Cognitive Performance in the Offspring: A Systematic Review and Meta-Analysis. PLoS ONE. 2015;10:e0142583. doi: 10.1371/journal.pone.0142583.
    1. Cummins M., Norrish M. Follow-up of children of diabetic mothers. Arch. Dis. Child. 1980;55:259–264. doi: 10.1136/adc.55.4.259.
    1. Sells C.J., Robinson N.M., Brown Z., Knopp R.H. Long-term developmental follow-up of infants of diabetic mothers. J. Pediatr. 1994;125:S9–S17. doi: 10.1016/S0022-3476(94)70170-9.
    1. Nomura Y., Marks D.J., Grossman B., Yoon M., Loudon H., Stone J., Halperin J.M. Exposure to gestational diabetes mellitus and low socioeconomic status: Effects on neurocognitive development and risk of attention-deficit/hyperactivity disorder in offspring. Arch. Pediatr. Adolesc. Med. 2012;166:337–343. doi: 10.1001/archpediatrics.2011.784.
    1. Xiang A.H., Wang X., Martinez M.P., Page K., Buchanan T.A., Feldman R.K. Maternal Type 1 Diabetes and Risk of Autism in Offspring. JAMA. 2018;320:89–91. doi: 10.1001/jama.2018.7614.
    1. Kong L., Norstedt G., Schalling M., Gissler M., Lavebratt C. The Risk of Offspring Psychiatric Disorders in the Setting of Maternal Obesity and Diabetes. Pediatrics. 2018;142 doi: 10.1542/peds.2018-0776.
    1. Li M., Fallin M.D., Riley A., Landa R., Walker S.O., Silverstein M., Caruso D., Pearson C., Kiang S., Dahm J.L., et al. The Association of Maternal Obesity and Diabetes With Autism and Other Developmental Disabilities. Pediatrics. 2016;137:e20152206. doi: 10.1542/peds.2015-2206.
    1. Xu G., Jing J., Bowers K., Liu B., Bao W. Maternal diabetes and the risk of autism spectrum disorders in the offspring: A systematic review and meta-analysis. J. Autism Dev. Disord. 2014;44:766–775. doi: 10.1007/s10803-013-1928-2.
    1. Lyall K., Pauls D.L., Spiegelman D., Ascherio A., Santangelo S.L. Pregnancy complications and obstetric suboptimality in association with autism spectrum disorders in children of the Nurses’ Health Study II. Autism Res. Off. J. Int. Soc. Autism Res. 2012;5:21–30. doi: 10.1002/aur.228.
    1. Gardener H., Spiegelman D., Buka S.L. Prenatal risk factors for autism: Comprehensive meta-analysis. Br. J. Psychiatry J. Ment. Sci. 2009;195:7–14. doi: 10.1192/bjp.bp.108.051672.
    1. Fraser A., Almqvist C., Larsson H., Långström N., Lawlor D.A. Maternal diabetes in pregnancy and offspring cognitive ability: Sibling study with 723,775 men from 579,857 families. Diabetologia. 2014;57:102–109. doi: 10.1007/s00125-013-3065-z.
    1. Ornoy A., Weinstein-Fudim L., Ergaz Z. Genetic Syndromes, Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD) Front. Neurosci. 2016;10:316. doi: 10.3389/fnins.2016.00316.
    1. Nahum Sacks K., Friger M., Shoham-Vardi I., Abokaf H., Spiegel E., Sergienko R., Landau D., Sheiner E. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am. J. Obs. Gynecol. 2016;215:380-e1. doi: 10.1016/j.ajog.2016.03.030.
    1. Hultman C.M., Sparén P., Cnattingius S. Perinatal risk factors for infantile autism. Epidemiology. 2002;13:417–423. doi: 10.1097/00001648-200207000-00009.
    1. Xiang A.H., Wang X., Martinez M.P., Walthall J.C., Curry E.S., Page K., Buchanan T.A., Coleman K.J., Getahun D. Association of maternal diabetes with autism in offspring. JAMA. 2015;313:1425–1434. doi: 10.1001/jama.2015.2707.
    1. Guinchat V., Thorsen P., Laurent C., Cans C., Bodeau N., Cohen D. Pre-, peri- and neonatal risk factors for autism. Acta Obs. Gynecol. Scand. 2012;91:287–300. doi: 10.1111/j.1600-0412.2011.01325.x.

Source: PubMed

3
Subscribe