International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data

Daniel A Arber, Attilio Orazi, Robert P Hasserjian, Michael J Borowitz, Katherine R Calvo, Hans-Michael Kvasnicka, Sa A Wang, Adam Bagg, Tiziano Barbui, Susan Branford, Carlos E Bueso-Ramos, Jorge E Cortes, Paola Dal Cin, Courtney D DiNardo, Hervé Dombret, Eric J Duncavage, Benjamin L Ebert, Elihu H Estey, Fabio Facchetti, Kathryn Foucar, Naseema Gangat, Umberto Gianelli, Lucy A Godley, Nicola Gökbuget, Jason Gotlib, Eva Hellström-Lindberg, Gabriela S Hobbs, Ronald Hoffman, Elias J Jabbour, Jean-Jacques Kiladjian, Richard A Larson, Michelle M Le Beau, Mignon L-C Loh, Bob Löwenberg, Elizabeth Macintyre, Luca Malcovati, Charles G Mullighan, Charlotte Niemeyer, Olatoyosi M Odenike, Seishi Ogawa, Alberto Orfao, Elli Papaemmanuil, Francesco Passamonti, Kimmo Porkka, Ching-Hon Pui, Jerald P Radich, Andreas Reiter, Maria Rozman, Martina Rudelius, Michael R Savona, Charles A Schiffer, Annette Schmitt-Graeff, Akiko Shimamura, Jorge Sierra, Wendy A Stock, Richard M Stone, Martin S Tallman, Jürgen Thiele, Hwei-Fang Tien, Alexandar Tzankov, Alessandro M Vannucchi, Paresh Vyas, Andrew H Wei, Olga K Weinberg, Agnieszka Wierzbowska, Mario Cazzola, Hartmut Döhner, Ayalew Tefferi, Daniel A Arber, Attilio Orazi, Robert P Hasserjian, Michael J Borowitz, Katherine R Calvo, Hans-Michael Kvasnicka, Sa A Wang, Adam Bagg, Tiziano Barbui, Susan Branford, Carlos E Bueso-Ramos, Jorge E Cortes, Paola Dal Cin, Courtney D DiNardo, Hervé Dombret, Eric J Duncavage, Benjamin L Ebert, Elihu H Estey, Fabio Facchetti, Kathryn Foucar, Naseema Gangat, Umberto Gianelli, Lucy A Godley, Nicola Gökbuget, Jason Gotlib, Eva Hellström-Lindberg, Gabriela S Hobbs, Ronald Hoffman, Elias J Jabbour, Jean-Jacques Kiladjian, Richard A Larson, Michelle M Le Beau, Mignon L-C Loh, Bob Löwenberg, Elizabeth Macintyre, Luca Malcovati, Charles G Mullighan, Charlotte Niemeyer, Olatoyosi M Odenike, Seishi Ogawa, Alberto Orfao, Elli Papaemmanuil, Francesco Passamonti, Kimmo Porkka, Ching-Hon Pui, Jerald P Radich, Andreas Reiter, Maria Rozman, Martina Rudelius, Michael R Savona, Charles A Schiffer, Annette Schmitt-Graeff, Akiko Shimamura, Jorge Sierra, Wendy A Stock, Richard M Stone, Martin S Tallman, Jürgen Thiele, Hwei-Fang Tien, Alexandar Tzankov, Alessandro M Vannucchi, Paresh Vyas, Andrew H Wei, Olga K Weinberg, Agnieszka Wierzbowska, Mario Cazzola, Hartmut Döhner, Ayalew Tefferi

Abstract

The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.

References

    1. World Health Organization . World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopietic and Lymphoid Tissues, 3rd ed. Lyon, France: IARC Press; 2001.
    1. World Health Organization . Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC; 2008.
    1. Swerdlow SH, Campo E, Harris NL, et al., eds. WHO Classification fo Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC; 2017.
    1. Harris NL, Jaffe ES, Diebold J, et al. . World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol. 1999;17(12):3835-3849.
    1. Vardiman JW, Thiele J, Arber DA, et al. . The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937-951.
    1. Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117(19):5019-5032.
    1. Swerdlow SH, Campo E, Pileri SA, et al. . The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20): 2375-2390.
    1. Arber DA, Orazi A, Hasserjian R, et al. . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-2405.
    1. Arber DA, Hasserjian RP, Orazi A, et al. . Classification of myeloid neoplasms/acute leukemia: global perspectives and the international consensus classification approach. Am J Hematol. 2022;97(5): 514-518.
    1. Barbui T, Thiele J, Gisslinger H, et al. . The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15.
    1. Barbui T, De Stefano V, Falanga A, et al. . Addressing and proposing solutions for unmet clinical needs in the management of myeloproliferative neoplasm-associated thrombosis: a consensus-based position paper. Blood Cancer J. 2019;9(8):61.
    1. Deininger MW, Shah NP, Altman JK, et al. . Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2020;18(10):1385-1415.
    1. Lauseker M, Bachl K, Turkina A, et al. . Prognosis of patients with chronic myeloid leukemia presenting in advanced phase is defined mainly by blast count, but also by age, chromosomal aberrations and hemoglobin. Am J Hematol. 2019;94(11):1236-1243.
    1. How J, Venkataraman V, Hobbs GS. Blast and accelerated phase CML: room for improvement. Hematology (Am Soc Hematol Educ Program). 2021;2021(1): 122-128.
    1. Kumar R, Krause DS. Recent advances in understanding chronic myeloid leukemia: where do we stand? Fac Rev. 2021;10:35.
    1. Schmidt M, Rinke J, Schäfer V, et al. . Molecular-defined clonal evolution in patients with chronic myeloid leukemia independent of the BCR-ABL status. Leukemia. 2014;28(12):2292-2299.
    1. Hidalgo-Lopez JE, Kanagal-Shamanna R, Quesada AE, et al. . Bone marrow core biopsy in 508 consecutive patients with chronic myeloid leukemia: assessment of potential value. Cancer. 2018;124(19): 3849-3855.
    1. El Rassi F, Bergsagel JD, Arellano M, et al. . Predicting early blast transformation in chronic-phase chronic myeloid leukemia: is immunophenotyping the missing link? Cancer. 2015;121(6):872-875.
    1. Speck B, Bortin MM, Champlin R, et al. . Allogeneic bone-marrow transplantation for chronic myelogenous leukaemia. Lancet. 1984;1(8378):665-668.
    1. Cortes JE, Talpaz M, O’Brien S, et al. . Staging of chronic myeloid leukemia in the imatinib era: an evaluation of the World Health Organization proposal. Cancer. 2006;106(6):1306-1315.
    1. Hochhaus A, Baccarani M, Silver RT, et al. . European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966-984.
    1. Kvasnicka HM. WHO classification of myeloproliferative neoplasms (MPN): a critical update. Curr Hematol Malig Rep. 2013;8(4):333-341.
    1. Guglielmelli P, Pacilli A, Rotunno G, et al. ; AGIMM Group . Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129(24):3227-3236.
    1. Gisslinger H, Jeryczynski G, Gisslinger B, et al. . Clinical impact of bone marrow morphology for the diagnosis of essential thrombocythemia: comparison between the BCSH and the WHO criteria. Leukemia. 2016;30(5):1126-1132.
    1. Finazzi G, Vannucchi AM, Barbui T. Prefibrotic myelofibrosis: treatment algorithm 2018. Blood Cancer J. 2018; 8(11):104.
    1. Jeryczynski G, Thiele J, Gisslinger B, et al. . Pre-fibrotic/early primary myelofibrosis vs. WHO-defined essential thrombocythemia: the impact of minor clinical diagnostic criteria on the outcome of the disease. Am J Hematol. 2017;92(9):885-891.
    1. Thiele J, Kvasnicka HM, Müllauer L, Buxhofer-Ausch V, Gisslinger B, Gisslinger H. Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood. 2011;117(21):5710-5718.
    1. Rumi E, Boveri E, Bellini M, et al. ; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators . Clinical course and outcome of essential thrombocythemia and prefibrotic myelofibrosis according to the revised WHO 2016 diagnostic criteria. Oncotarget. 2017;8(60):101735-101744.
    1. Barbui T, Thiele J, Passamonti F, et al. . Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J Clin Oncol. 2011;29(23):3179-3184.
    1. Loscocco GG, Coltro G, Guglielmelli P, Vannucchi AM. Integration of molecular information in risk assessment of patients with myeloproliferative neoplasms. Cells. 2021;10(8):1962.
    1. Jovanovic JV, Ivey A, Vannucchi AM, et al. . Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: a joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia. 2013;27(10):2032-2039.
    1. Guglielmelli P, Loscocco GG, Mannarelli C, et al. . JAK2V617F variant allele frequency >50% identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J. 2021;11(12):199.
    1. Szuber N, Finke CM, Lasho TL, et al. . CSF3R-mutated chronic neutrophilic leukemia: long-term outcome in 19 consecutive patients and risk model for survival. Blood Cancer J. 2018;8(2):21.
    1. Ouyang Y, Qiao C, Chen Y, Zhang SJ. Clinical significance of CSF3R, SRSF2 and SETBP1 mutations in chronic neutrophilic leukemia and chronic myelomonocytic leukemia. Oncotarget. 2017;8(13): 20834-20841.
    1. Maxson JE, Tyner JW. Genomics of chronic neutrophilic leukemia. Blood. 2017;129(6):715-722.
    1. Dao KT, Tyner JW, Gotlib J. Recent progress in chronic neutrophilic leukemia and atypical chronic myeloid leukemia. Curr Hematol Malig Rep. 2017;12(5): 432-441.
    1. Pardanani A, Lasho TL, Laborde RR, et al. . CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. 2013;27(9):1870-1873.
    1. Szuber N, Tefferi A. Current management of chronic neutrophilic leukemia. Curr Treat Options Oncol. 2021;22(7):59.
    1. Pardanani A, Lasho T, Wassie E, et al. . Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia. 2016; 30(9):1924-1926.
    1. Wang SA, Tam W, Tsai AG, et al. . Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod Pathol. 2016;29(8):854-864.
    1. Lee JS, Seo H, Im K, et al. . Idiopathic hypereosinophilia is clonal disorder? Clonality identified by targeted sequencing. PLoS One. 2017;12(10):e0185602.
    1. Cross NCP, Hoade Y, Tapper WJ, et al. . Recurrent activating STAT5B N642H mutation in myeloid neoplasms with eosinophilia. Leukemia. 2019;33(2): 415-425.
    1. Wang SA, Hasserjian RP, Tam W, et al. . Bone marrow morphology is a strong discriminator between chronic eosinophilic leukemia, not otherwise specified and reactive idiopathic hypereosinophilic syndrome. Haematologica. 2017;102(8):1352-1360.
    1. Kelemen K, Saft L, Craig FE, et al. . Eosinophilia/hypereosinophilia in the setting of reactive and idiopathic causes, well-defined myeloid or lymphoid leukemias, or germline disorders. Am J Clin Pathol. 2021;155(2):179-210.
    1. Valent P, Degenfeld-Schonburg L, Sadovnik I, et al. . Eosinophils and eosinophil-associated disorders: immunological, clinical, and molecular complexity. Semin Immunopathol. 2021; 43(3):423-438.
    1. Carpentier C, Schandené L, Dewispelaere L, Heimann P, Cogan E, Roufosse F. CD3-CD4+ lymphocytic variant hypereosinophilic syndrome: diagnostic tools revisited. J Allergy Clin Immunol Pract. 2021;9(6):2426-2439.e7.
    1. Fang H, Ketterling RP, Hanson CA, et al. . A test utilization approach to the diagnostic workup of isolated eosinophilia in otherwise morphologically unremarkable bone marrow: a single institutional experience. Am J Clin Pathol. 2018;150(5):421-431.
    1. Gianelli U, Cattaneo D, Bossi A, et al. . The myeloproliferative neoplasms, unclassifiable: clinical and pathological considerations. Mod Pathol. 2017;30(2):169-179.
    1. Deschamps P, Moonim M, Radia D, et al. . Clinicopathological characterisation of myeloproliferative neoplasm-unclassifiable (MPN-U): a retrospective analysis from a large UK tertiary referral centre. Br J Haematol. 2021;193(4):792-797.
    1. Yun J, Kim JA, Park J, et al. . Reclassification of subtypes in Philadelphia chromosome-negative myeloproliferative neoplasm by 2016 WHO diagnostic criteria: focus on the cases classified as myeloproliferative neoplasm, unclassifiable by the 2008 version. Leuk Lymphoma. 2020;61(14):3498-3502.
    1. Boiocchi L, Espinal-Witter R, Geyer JT, et al. . Development of monocytosis in patients with primary myelofibrosis indicates an accelerated phase of the disease. Mod Pathol. 2013;26(2):204-212.
    1. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704-714.
    1. Pozdnyakova O, Orazi A, Kelemen K, et al. . Myeloid/lymphoid neoplasms associated with eosinophilia and rearrangements of PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2. Am J Clin Pathol. 2021;155(2):160-178.
    1. Tang G, Sydney Sir Philip JK, Weinberg O, et al. . Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study. Mod Pathol. 2019;32(4):490-498.
    1. Schwaab J, Naumann N, Luebke J, et al. . Response to tyrosine kinase inhibitors in myeloid neoplasms associated with PCM1-JAK2, BCR-JAK2 and ETV6-ABL1 fusion genes. Am J Hematol. 2020;95(7):824-833.
    1. Chen JA, Hou Y, Roskin KM, et al. . Lymphoid blast transformation in an MPN with BCR-JAK2 treated with ruxolitinib: putative mechanisms of resistance. Blood Adv. 2021;5(17):3492-3496.
    1. Heiss S, Erdel M, Gunsilius E, Nachbaur D, Tzankov A. Myelodysplastic/myeloproliferative disease with erythropoietic hyperplasia (erythroid preleukemia) and the unique translocation (8;9)(p23;p24): first description of a case. Hum Pathol. 2005;36(10):1148-1151.
    1. Chung A, Hou Y, Ohgami RS, et al. . A novel TRIP11-FLT3 fusion in a patient with a myeloid/lymphoid neoplasm with eosinophilia. Cancer Genet. 2017;216-217:10-15.
    1. Jawhar M, Naumann N, Knut M, et al. . Cytogenetically cryptic ZMYM2-FLT3 and DIAPH1-PDGFRB gene fusions in myeloid neoplasms with eosinophilia. Leukemia. 2017;31(10):2271-2273.
    1. Troadec E, Dobbelstein S, Bertrand P, et al. . A novel t(3;13)(q13;q12) translocation fusing FLT3 with GOLGB1: toward myeloid/lymphoid neoplasms with eosinophilia and rearrangement of FLT3? Leukemia. 2017;31(2):514-517.
    1. Tang G, Tam W, Short NJ, et al. . Myeloid/lymphoid neoplasms with FLT3 rearrangement. Mod Pathol. 2021;34(9):1673-1685.
    1. Xie W, Wang SA, Hu S, Xu J, Medeiros LJ, Tang G. Myeloproliferative neoplasm with ABL1/ETV6 rearrangement mimics chronic myeloid leukemia and responds to tyrosine kinase inhibitors. Cancer Genet. 2018; 228-229:41-46.
    1. Yao J, Xu L, Aypar U, et al. . Myeloid/lymphoid neoplasms with eosinophilia/ basophilia and ETV6-ABL1 fusion: cell-of-origin and response to tyrosine kinase inhibition. Haematologica. 2021;106(2):614-618.
    1. Ernst T, Score J, Deininger M, et al. . Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia. Br J Haematol. 2011;153(1):43-46.
    1. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 2017;130(19):2064-2072.
    1. De Braekeleer E, Douet-Guilbert N, Basinko A, et al. . Conventional cytogenetics and breakpoint distribution by fluorescent in situ hybridization in patients with malignant hemopathies associated with inv(3)(q21;q26) and t(3;3)(q21;q26). Anticancer Res. 2011;31(10):3441-3448.
    1. Valent P, Akin C, Metcalfe DD. Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts. Blood. 2017;129(11):1420-1427.
    1. Alvarez-Twose I, Zanotti R, González-de-Olano D, et al. ; Italian Network on Mastocytosis (RIMA) . Nonaggressive systemic mastocytosis (SM) without skin lesions associated with insect-induced anaphylaxis shows unique features versus other indolent SM. J Allergy Clin Immunol. 2014;133(2):520-528.
    1. Zanotti R, Bonifacio M, Lucchini G, et al. . Refined diagnostic criteria for bone marrow mastocytosis: a proposal of the European competence network on mastocytosis. Leukemia. 2022;36(2):516-524.
    1. Pardanani A. Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am J Hematol. 2019;94(3):363-377.
    1. Valent P, Akin C, Hartmann K, et al. . Updated diagnostic criteria and classification of mast cell disorders: a consensus proposal. HemaSphere. 2021; 5(11):e646.
    1. Pardanani A, Ketterling RP, Brockman SR, et al. . CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood. 2003;102(9):3093-3096.
    1. Pardanani A, Brockman SR, Paternoster SF, et al. . FIP1L1-PDGFRA fusion: prevalence and clinicopathologic correlates in 89 consecutive patients with moderate to severe eosinophilia. Blood. 2004;104(10):3038-3045.
    1. Florian S, Esterbauer H, Binder T, et al. . Systemic mastocytosis (SM) associated with chronic eosinophilic leukemia (SM-CEL): detection of FIP1L1/PDGFRalpha, classification by WHO criteria, and response to therapy with imatinib. Leuk Res. 2006;30(9):1201-1205.
    1. Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22(11):1999-2010.
    1. Chang K, Liu JH, Yu SC, Lin CW. FGFR1 translocation with concurrent myeloproliferative neoplasm, systemic mastocytosis, and lymphoblastic lymphoma: a case report. Hum Pathol. 2018;74:114-121.
    1. Duffield AS, Webster J, Smith BD, Necciai JS, McCuiston A, Ware AD. Myeloid neoplasm with PDGFRA rearrangement manifesting as a retromolar pad mass. Head Neck Pathol. 2021;15(4):1399-1403.
    1. Valent P, Sotlar K, Sperr WR, et al. . Refined diagnostic criteria and classification of mast cell leukemia (MCL) and myelomastocytic leukemia (MML): a consensus proposal. Ann Oncol. 2014;25(9):1691-1700.
    1. Sotlar K, Colak S, Bache A, et al. . Variable presence of KITD816V in clonal haematological non-mast cell lineage diseases associated with systemic mastocytosis (SM-AHNMD). J Pathol. 2010;220(5):586-595.
    1. Wang SA, Hutchinson L, Tang G, et al. . Systemic mastocytosis with associated clonal hematological non-mast cell lineage disease: clinical significance and comparison of chomosomal abnormalities in SM and AHNMD components. Am J Hematol. 2013;88(3):219-224.
    1. Orazi A, Germing U. The myelodysplastic/myeloproliferative neoplasms: myeloproliferative diseases with dysplastic features. Leukemia. 2008;22(7):1308-1319.
    1. Greenberg PL, Tuechler H, Schanz J, et al. . Cytopenia levels for aiding establishment of the diagnosis of myelodysplastic syndromes. Blood. 2016;128(16): 2096-2097.
    1. Cargo C, Cullen M, Taylor J, et al. . The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis. Blood. 2019; 133(12):1325-1334.
    1. Schuler E, Schroeder M, Neukirchen J, et al. . Refined medullary blast and white blood cell count based classification of chronic myelomonocytic leukemias. Leuk Res. 2014;38(12):1413-1419.
    1. Xicoy B, Triguero A, Such E, et al. . The division of chronic myelomonocytic leukemia (CMML)-1 into CMML-0 and CMML-1 according to 2016 World Health Organization (WHO) classification has no impact in outcome in a large series of patients from the Spanish group of MDS. Leuk Res. 2018;70:34-36.
    1. Loghavi S, Sui D, Wei P, et al. . Validation of the 2017 revision of the WHO chronic myelomonocytic leukemia categories. Blood Adv. 2018;2(15):1807-1816.
    1. Foucar K, Hsi ED, Wang SA, et al. ; Bone Marrow Pathology Group . Concordance among hematopathologists in classifying blasts plus promonocytes: a bone marrow pathology group study. Int J Lab Hematol. 2020;42(4):418-422.
    1. Meggendorfer M, Roller A, Haferlach T, et al. . SRSF2 mutations in 275 cases with chronic myelomonocytic leukemia (CMML). Blood. 2012;120(15):3080-3088.
    1. Elena C, Gallì A, Such E, et al. . Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128(10):1408-1417.
    1. Palomo L, Meggendorfer M, Hutter S, et al. . Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms. Blood. 2020;136(16):1851-1862.
    1. Such E, Germing U, Malcovati L, et al. . Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121(15):3005-3015.
    1. Itzykson R, Kosmider O, Renneville A, et al. . Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31(19):2428-2436.
    1. Patnaik MM, Itzykson R, Lasho TL, et al. . ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014; 28(11):2206-2212.
    1. Vallapureddy R, Lasho TL, Hoversten K, et al. . Nucleophosmin 1 (NPM1) mutations in chronic myelomonocytic leukemia and their prognostic relevance. Am J Hematol. 2017;92(10):E614-E618.
    1. Geyer JT, Tam W, Liu YC, et al. . Oligomonocytic chronic myelomonocytic leukemia (chronic myelomonocytic leukemia without absolute monocytosis) displays a similar clinicopathologic and mutational profile to classical chronic myelomonocytic leukemia. Mod Pathol. 2017;30(9):1213-1222.
    1. Calvo X, Garcia-Gisbert N, Parraga I, et al. . Oligomonocytic and overt chronic myelomonocytic leukemia show similar clinical, genomic, and immunophenotypic features. Blood Adv. 2020;4(20):5285-5296.
    1. Gallì A, Todisco G, Catamo E, et al. . Relationship between clone metrics and clinical outcome in clonal cytopenia. Blood. 2021;138(11):965-976.
    1. Wang SA, Hasserjian RP, Fox PS, et al. . Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood. 2014;123(17): 2645-2651.
    1. Fend F, Horn T, Koch I, Vela T, Orazi A. Atypical chronic myeloid leukemia as defined in the WHO classification is a JAK2 V617F negative neoplasm. Leuk Res. 2008;32(12):1931-1935.
    1. Broséus J, Alpermann T, Wulfert M, et al. ; MPN and MPNr-EuroNet (COST Action BM0902) . Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia. 2013;27(9):1826-1831.
    1. Malcovati L, Stevenson K, Papaemmanuil E, et al. . SF3B1-mutant MDS as a distinct disease subtype: a proposal from the International Working Group for the Prognosis of MDS. Blood. 2020;136(2): 157-170.
    1. Montalban-Bravo G, Kanagal-Shamanna R, Darbaniyan F, et al. . Clinical, genomic, and transcriptomic differences between myelodysplastic syndrome/myeloproliferative neoplasm with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) and myelodysplastic syndrome with ring sideroblasts (MDS-RS). Am J Hematol. 2021;96(7):E246-E249.
    1. Kanagal-Shamanna R, Orazi A, Hasserjian RP, et al. . Myelodysplastic/myeloproliferative neoplasms-unclassifiable with isolated isochromosome 17q represents a distinct clinico-biologic subset: a multi-institutional collaborative study from the Bone Marrow Pathology Group. Mod Pathol. 2021.
    1. Jaiswal S, Fontanillas P, Flannick J, et al. . Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488-2498.
    1. Valent P, Orazi A, Steensma DP, et al. . Proposed minimal diagnostic criteria for myelodysplastic syndromes (MDS) and potential pre-MDS conditions. Oncotarget. 2017;8(43):73483-73500.
    1. Yoshizato T, Dumitriu B, Hosokawa K, et al. . Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373(1):35-47.
    1. Malcovati L, Gallì A, Travaglino E, et al. . Clinical significance of somatic mutation in unexplained blood cytopenia. Blood. 2017;129(25):3371-3378.
    1. van Zeventer IA, de Graaf AO, Wouters HJCM, et al. . Mutational spectrum and dynamics of clonal hematopoiesis in anemia of older individuals. Blood. 2020;135(14):1161-1170.
    1. Hasserjian RP, Steensma DP, Graubert TA, Ebert BL. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood. 2020; 135(20):1729-1738.
    1. Beck DB, Ferrada MA, Sikora KA, et al. . Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N Engl J Med. 2020;383(27):2628-2638.
    1. Matsuda A, Germing U, Jinnai I, et al. . Improvement of criteria for refractory cytopenia with multilineage dysplasia according to the WHO classification based on prognostic significance of morphological features in patients with refractory anemia according to the FAB classification. Leukemia. 2007;21(4): 678-686.
    1. Della Porta MG, Travaglino E, Boveri E, et al. ; Rete Ematologica Lombarda (REL) Clinical Network . Minimal morphological criteria for defining bone marrow dysplasia: a basis for clinical implementation of WHO classification of myelodysplastic syndromes. Leukemia. 2015;29(1):66-75.
    1. Wang SA, Ok CY, Kim AS, et al. . Myelodysplastic syndromes with no somatic mutations detected by next-generation sequencing display similar features to myelodysplastic syndromes with detectable mutations. Am J Hematol. 2021;96(11):E420-E423.
    1. Zhang MY, Keel SB, Walsh T, et al. . Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity. Haematologica. 2015;100(1):42-48.
    1. Pastor V, Hirabayashi S, Karow A, et al. . Mutational landscape in children with myelodysplastic syndromes is distinct from adults: specific somatic drivers and novel germline variants. Leukemia. 2017;31(3):759-762.
    1. Schwartz JR, Ma J, Lamprecht T, et al. . The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun. 2017;8(1):1557.
    1. Hasegawa D, Chen X, Hirabayashi S, et al. . Clinical characteristics and treatment outcome in 65 cases with refractory cytopenia of childhood defined according to the WHO 2008 classification. Br J Haematol. 2014;166(5):758-766.
    1. Yoshimi A, van den Heuvel-Eibrink MM, Baumann I, et al. . Comparison of horse and rabbit antithymocyte globulin in immunosuppressive therapy for refractory cytopenia of childhood. Haematologica. 2014;99(4):656-663.
    1. Bernard E, Nannya Y, Hasserjian RP, et al. . Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26(10):1549-1556.
    1. Weinberg OK, Siddon A, Madanat YF, et al. . TP53 mutation defines a unique subgroup within complex karyotype de novo and therapy-related MDS/AML. Blood Adv. 2022;6(9):2847-2853.
    1. Greenberg PL, Tuechler H, Schanz J, et al. . Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120(12):2454-2465.
    1. Margolskee E, Hasserjian RP, Hassane D, et al. . Myelodysplastic syndrome, unclassifiable (MDS-U) with 1% blasts is a distinct subgroup of MDS-U with a poor prognosis. Am J Clin Pathol. 2017;148(1):49-57.
    1. Font P, Loscertales J, Soto C, et al. . Interobserver variance in myelodysplastic syndromes with less than 5 % bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2 % blasts. Ann Hematol. 2015;94(4):565-573.
    1. Nagata Y, Zhao R, Awada H, et al. . Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes. Blood. 2020;136(20):2249-2262.
    1. Bersanelli M, Travaglino E, Meggendorfer M, et al. . Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes. J Clin Oncol. 2021;39(11):1223-1233.
    1. Estey E, Hasserjian RP, Döhner H. Distinguishing AML from MDS: a fixed blast percentage may no longer be optimal. Blood. 2022;139(3):323-332.
    1. Grob T, Al Hinai ASA, Sanders MA, et al. . Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome. Blood. 2022;139(15):2347-2354.
    1. Haase D, Stevenson KE, Neuberg D, et al. ; International Working Group for MDS Molecular Prognostic Committee . TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia. 2019;33(7):1747-1758.
    1. Wang SA, Galili N, Cerny J, et al. . Chronic myelomonocytic leukemia evolving from preexisting myelodysplasia shares many features with de novo disease. Am J Clin Pathol. 2006;126(5):789-797.
    1. Selimoglu-Buet D, Badaoui B, Benayoun E, et al. ; Groupe Francophone des Myélodysplasies . Accumulation of classical monocytes defines a subgroup of MDS that frequently evolves into CMML. Blood. 2017;130(6):832-835.
    1. Valencia-Martinez A, Sanna A, Masala E, et al. . Mutated ASXL1 and number of somatic mutations as possible indicators of progression to chronic myelomonocytic leukemia of myelodysplastic syndromes with single or multilineage dysplasia. Haematologica. 2017;102(9):e332-e335.
    1. Kuendgen A, Nomdedeu M, Tuechler H, et al. . Therapy-related myelodysplastic syndromes deserve specific diagnostic sub-classification and risk-stratification-an approach to classification of patients with t-MDS. Leukemia. 2021;35(3):835-849.
    1. Takahashi K, Wang F, Kantarjian H, et al. . Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017; 18(1):100-111.
    1. Niemeyer CM, Arico M, Basso G, et al. ; European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS) . Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood. 1997;89(10):3534-3543.
    1. Niemeyer CM, Flotho C. Juvenile myelomonocytic leukemia: who’s the driver at the wheel? Blood. 2019;133(10): 1060-1070.
    1. Wintering A, Dvorak CC, Stieglitz E, Loh ML. Juvenile myelomonocytic leukemia in the molecular era: a clinician’s guide to diagnosis, risk stratification, and treatment. Blood Adv. 2021;5(22):4783-4793.
    1. Calvo KR, Price S, Braylan RC, et al. . JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood. 2015;125(18):2753-2758.
    1. Röttgers S, Gombert M, Teigler-Schlegel A, et al. . ALK fusion genes in children with atypical myeloproliferative leukemia. Leukemia. 2010;24(6):1197-1200.
    1. Murakami N, Okuno Y, Yoshida K, et al. . Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood. 2018;131(14):1576-1586.
    1. Buijs A, Bruin M. Fusion of FIP1L1 and RARA as a result of a novel t(4;17)(q12;q21) in a case of juvenile myelomonocytic leukemia. Leukemia. 2007;21(5):1104-1108.
    1. Miltiadous O, Petrova-Drus K, Kaicker S, et al. . Successful treatment and integrated genomic analysis of an infant with FIP1L1-RARA fusion-associated myeloid neoplasm. Blood Adv. 2022;6(4):1137-1142.
    1. Bown N, Yule SM, Evans J, Kernahan J, Reid MM. Chronic myelomonocytic leukemia with t(13;14) in a child. Cancer Genet Cytogenet. 1992;60(2):190-192.
    1. Chao AK, Meyer JA, Lee AG, et al. . Fusion driven JMML: a novel CCDC88C-FLT3 fusion responsive to sorafenib identified by RNA sequencing. Leukemia. 2020;34(2):662-666.
    1. Strullu M, Caye A, Lachenaud J, et al. . Juvenile myelomonocytic leukaemia and Noonan syndrome. J Med Genet. 2014; 51(10):689-697.
    1. Baumann I, Führer M, Behrendt S, et al. . Morphological differentiation of severe aplastic anaemia from hypocellular refractory cytopenia of childhood: reproducibility of histopathological diagnostic criteria. Histopathology. 2012;61(1):10-17.
    1. Hasegawa D. The current perspective of low-grade myelodysplastic syndrome in children. Int J Hematol. 2016;103(4): 360-364.
    1. Yoshimi A, Niemeyer C, Baumann I, et al. . High incidence of Fanconi anaemia in patients with a morphological picture consistent with refractory cytopenia of childhood. Br J Haematol. 2013;160(1): 109-111.
    1. Karow A, Flotho C, Schneider M, Fliegauf M, Niemeyer CM. European Working Group of Myelodysplastic Syndromes in C. Mutations of the Shwachman-Bodian-Diamond syndrome gene in patients presenting with refractory cytopenia–do we have to screen? Haematologica. 2010; 95(4):689-690.
    1. Wlodarski MW, Hirabayashi S, Pastor V, et al. ; EWOG-MDS . Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387-1397, quiz 1518.
    1. Sahoo SS, Pastor VB, Goodings C, et al. ; European Working Group of MDS in Children (EWOG-MDS) . Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 2021;27(10): 1806-1817.
    1. Moriwaki K, Manabe A, Taketani T, Kikuchi A, Nakahata T, Hayashi Y. Cytogenetics and clinical features of pediatric myelodysplastic syndrome in Japan. Int J Hematol. 2014;100(5):478-484.
    1. Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133(10): 1071-1085.
    1. Thomas ME III, Abdelhamed S, Hiltenbrand R, et al. . Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. Leukemia. 2021;35(11):3232-3244.
    1. Kobayashi S, Kobayashi A, Osawa Y, et al. . Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation. Leukemia. 2017;31(4):1020-1022.
    1. Galera P, Hsu AP, Wang W, et al. . Donor-derived MDS/AML in families with germline GATA2 mutation. Blood. 2018;132(18):1994-1998.
    1. Xiao H, Shi J, Luo Y, et al. . First report of multiple CEBPA mutations contributing to donor origin of leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood. 2011;117(19): 5257-5260.
    1. Owen CJ, Toze CL, Koochin A, et al. . Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood. 2008;112(12):4639-4645.
    1. Bougeard G, Renaux-Petel M, Flaman JM, et al. . Revisiting Li-Fraumeni syndrome from TP53 mutation carriers. J Clin Oncol. 2015;33(21):2345-2352.
    1. Guha T, Malkin D. Inherited TP53 mutations and the Li-Fraumeni syndrome. Cold Spring Harb Perspect Med. 2017;7(4):a026187.
    1. Swaminathan M, Bannon SA, Routbort M, et al. . Hematologic malignancies and Li-Fraumeni syndrome. Cold Spring Harb Mol Case Stud. 2019;5(1):a003210.
    1. Qian M, Cao X, Devidas M, et al. . TP53 germline variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukemia in children. J Clin Oncol. 2018;36(6):591-599.
    1. Holmfeldt L, Wei L, Diaz-Flores E, et al. . The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242-252.
    1. Zaninetti C, Santini V, Tiniakou M, Barozzi S, Savoia A, Pecci A. Inherited thrombocytopenia caused by ANKRD26 mutations misdiagnosed and treated as myelodysplastic syndrome: report on two cases. J Thromb Haemost. 2017;15(12):2388-2392.
    1. Chisholm KM, Denton C, Keel S, et al. . Bone marrow morphology associated with germline RUNX1 mutations in patients with familial platelet disorder with associated myeloid malignancy. Pediatr Dev Pathol. 2019;22(4):315-328.
    1. Sahoo SS, Kozyra EJ, Wlodarski MW. Germline predisposition in myeloid neoplasms: unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol. 2020;33(3):101197.
    1. Churchman ML, Qian M, Te Kronnie G, et al. . Germline genetic IKZF1 variation and predisposition to childhood acute lymphoblastic leukemia. Cancer Cell. 2018;33(5):937-948.e8.
    1. Shah S, Schrader KA, Waanders E, et al. . A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45(10):1226-1231.
    1. Auer F, Rüschendorf F, Gombert M, et al. . Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A. Leukemia. 2014;28(5): 1136-1138.
    1. Cunniff C, Bassetti JA, Ellis NA. Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017;8(1):4-23.
    1. Vasen HF, Ghorbanoghli Z, Bourdeaut F, et al. ; EU-Consortium Care for CMMR-D (C4CMMR-D) . Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium “Care for CMMR-D” (C4CMMR-D). J Med Genet. 2014;51(5):283-293.
    1. Lavoine N, Colas C, Muleris M, et al. . Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J Med Genet. 2015;52(11):770-778.
    1. Ferris MA, Smith AM, Heath SE, et al. . DNMT3A overgrowth syndrome is associated with the development of hematopoietic malignancies in children and young adults. Blood. 2022;139(3):461-464.
    1. Douglas SPM, Siipola P, Kovanen PE, et al. . ERCC6L2 defines a novel entity within inherited acute myeloid leukemia. Blood. 2019;133(25):2724-2728.
    1. Sanders MA, Chew E, Flensburg C, et al. . MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood. 2018;132(14):1526-1534.
    1. Sarasin A, Quentin S, Droin N, et al. . Familial predisposition to TP53/complex karyotype MDS and leukemia in DNA repair-deficient xeroderma pigmentosum. Blood. 2019;133(25):2718-2724.
    1. Trottier AM, Druhan LJ, Kraft IL, et al. . Heterozygous germ line CSF3R variants as risk alleles for development of hematologic malignancies. Blood Adv. 2020;4(20): 5269-5284.
    1. Ripperger T, Hofmann W, Koch JC, et al. . MDS1 and EVI1 complex locus (MECOM): a novel candidate gene for hereditary hematological malignancies. Haematologica. 2018;103(2):e55-e58.
    1. Kirwan M, Walne AJ, Plagnol V, et al. . Exome sequencing identifies autosomal-dominant SRP72 mutations associated with familial aplasia and myelodysplasia. Am J Hum Genet. 2012;90(5):888-892.
    1. Kaasinen E, Kuismin O, Rajamäki K, et al. . Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans. Nat Commun. 2019;10(1):1252.
    1. Duployez N, Goursaud L, Fenwarth L, et al. . Familial myeloid malignancies with germline TET2 mutation. Leukemia. 2020;34(5):1450-1453.
    1. Kennedy AL, Myers KC, Bowman J, et al. . Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nat Commun. 2021;12(1):1334.
    1. Weinberg OK, Pozdnyakova O, Campigotto F, et al. . Reproducibility and prognostic significance of morphologic dysplasia in de novo acute myeloid leukemia. Mod Pathol. 2015;28(7):965-976.
    1. Falini B, Macijewski K, Weiss T, et al. . Multilineage dysplasia has no impact on biologic, clinicopathologic, and prognostic features of AML with mutated nucleophosmin (NPM1). Blood. 2010; 115(18):3776-3786.
    1. Díaz-Beyá M, Rozman M, Pratcorona M, et al. . The prognostic value of multilineage dysplasia in de novo acute myeloid leukemia patients with intermediate-risk cytogenetics is dependent on NPM1 mutational status. Blood. 2010;116(26):6147-6148.
    1. Bacher U, Schnittger S, Macijewski K, et al. . Multilineage dysplasia does not influence prognosis in CEBPA-mutated AML, supporting the WHO proposal to classify these patients as a unique entity. Blood. 2012;119(20):4719-4722.
    1. Rücker FG, Schlenk RF, Bullinger L, et al. . TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome. Blood. 2012;119(9):2114-2121.
    1. Papaemmanuil E, Gerstung M, Bullinger L, et al. . Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209-2221.
    1. Ohgami RS, Ma L, Merker JD, et al. . Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations. Mod Pathol. 2015;28(5):706-714.
    1. Taskesen E, Havermans M, van Lom K, et al. . Two splice-factor mutant leukemia subgroups uncovered at the boundaries of MDS and AML using combined gene expression and DNA-methylation profiling. Blood. 2014;123(21):3327-3335.
    1. Lindsley RC, Mar BG, Mazzola E, et al. . Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125(9):1367-1376.
    1. Gardin C, Pautas C, Fournier E, et al. . Added prognostic value of secondary AML-like gene mutations in ELN intermediate-risk older AML: ALFA-1200 study results. Blood Adv. 2020;4(9):1942-1949.
    1. van der Werf I, Wojtuszkiewicz A, Meggendorfer M, et al. . Splicing factor gene mutations in acute myeloid leukemia offer additive value if incorporated in current risk classification. Blood Adv. 2021;5(17):3254-3265.
    1. Gao Y, Jia M, Mao Y, et al. . Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia-related changes and de novo acute myeloid leukemia. Am J Clin Pathol. 2021.
    1. Forghieri F, Nasillo V, Paolini A, et al. . NPM1-mutated myeloid neoplasms with <20% blasts: a really distinct clinico-pathologic entity? Int J Mol Sci. 2020; 21(23):E8975.
    1. Patel SS, Ho C, Ptashkin RN, et al. . Clinicopathologic and genetic characterization of nonacute NPM1-mutated myeloid neoplasms. Blood Adv. 2019;3(9):1540-1545.
    1. Montalban-Bravo G, Kanagal-Shamanna R, Sasaki K, et al. . NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019;3(6):922-933.
    1. Rogers HJ, Vardiman JW, Anastasi J, et al. . Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica. 2014;99(5):821-829.
    1. Haferlach C, Bacher U, Haferlach T, et al. . The inv(3)(q21q26)/t(3;3)(q21;q26) is frequently accompanied by alterations of the RUNX1, KRAS and NRAS and NF1 genes and mediates adverse prognosis both in MDS and in AML: a study in 39 cases of MDS or AML. Leukemia. 2011; 25(5):874-877.
    1. Cui W, Sun J, Cotta CV, Medeiros LJ, Lin P. Myelodysplastic syndrome with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) has a high risk for progression to acute myeloid leukemia. Am J Clin Pathol. 2011;136(2):282-288.
    1. Fang H, Yabe M, Zhang X, et al. . Myelodysplastic syndrome with t(6;9)(p22;q34.1)/DEK-NUP214 better classified as acute myeloid leukemia? A multicenter study of 107 cases. Mod Pathol. 2021;34(6):1143-1152.
    1. Duhoux FP, Ameye G, Montano-Almendras CP, et al. ; Belgian Cytogenetic Group for Haematology and Oncology (BCG-HO) . PRDM16 (1p36) translocations define a distinct entity of myeloid malignancies with poor prognosis but may also occur in lymphoid malignancies. Br J Haematol. 2012;156(1):76-88.
    1. Arber DA, Chang KL, Lyda MH, Bedell V, Spielberger R, Slovak ML. Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia. Hum Pathol. 2003;34(8):809-813.
    1. Kayser S, Hills RK, Langova R, et al. . Characteristics and outcome of patients with acute myeloid leukaemia and t(8;16)(p11;p13): results from an International Collaborative Study. Br J Haematol. 2021;192(5):832-842.
    1. Estey E, Thall P, Beran M, Kantarjian H, Pierce S, Keating M. Effect of diagnosis (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood. 1997;90(8):2969-2977.
    1. DiNardo CD, Garcia-Manero G, Pierce S, et al. . Interactions and relevance of blast percentage and treatment strategy among younger and older patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Am J Hematol. 2016;91(2):227-232.
    1. Chen X, Othus M, Wood BL, et al. . Comparison of myeloid blast counts and variant allele frequencies of gene mutations in myelodysplastic syndrome with excess blasts and secondary acute myeloid leukemia. Leuk Lymphoma. 2021;62(5):1226-1233.
    1. Toth LN, Green D, Peterson J, Deharvengt SJ, de Abreu FB, Loo EY. Variant allele frequencies do not correlate well with myeloblast counts in a clinically validated gene sequencing panel for routine acute myeloid leukemia workup. Leuk Lymphoma. 2019;60(10):2415-2422.
    1. Taube F, Georgi JA, Kramer M, et al. ; Study Alliance Leukemia (SAL) . CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood. 2022;139(1):87-103.
    1. Wakita S, Sakaguchi M, Oh I, et al. . Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv. 2022;6(1):238-247.
    1. Tarlock K, Lamble AJ, Wang YC, et al. . CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children’s Oncology Group. Blood. 2021;138(13):1137-1147.
    1. Chen Z, Hu S, Wang SA, et al. . Chronic myeloid leukemia presenting in lymphoblastic crisis, a differential diagnosis with Philadelphia-positive B-lymphoblastic leukemia. Leuk Lymphoma. 2020;61(12):2831-2838.
    1. Hovorkova L, Zaliova M, Venn NC, et al. . Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood. 2017;129(20):2771-2781.
    1. Kamoda Y, Izumi K, Iioka F, et al. . Philadelphia chromosome-positive acute lymphoblastic leukemia is separated into two subgroups associated with survival by BCR-ABL fluorescence in situ hybridization of segmented cell nuclei: report from a single institution. Acta Haematol. 2016;136(3):157-166.
    1. Cazzaniga G, De Lorenzo P, Alten J, et al. . Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica. 2018;103(1):107-115.
    1. Tanasi I, Ba I, Sirvent N, et al. . Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood. 2019;134(16):1351-1355.
    1. Roberts KG, Janke LJ, Zhao Y, et al. . ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood. 2018;132(8):861-865.
    1. Wagener R, López C, Kleinheinz K, et al. . IG-MYC + neoplasms with precursor B-cell phenotype are molecularly distinct from Burkitt lymphomas. Blood. 2018;132(21):2280-2285.
    1. Moench L, Sachs Z, Aasen G, Dolan M, Dayton V, Courville EL. Double- and triple-hit lymphomas can present with features suggestive of immaturity, including TdT expression, and create diagnostic challenges. Leuk Lymphoma. 2016;57(11): 2626-2635.
    1. Bhavsar S, Liu YC, Gibson SE, Moore EM, Swerdlow SH. Mutational landscape of TdT+ large b-cell lymphomas supports their distinction from B-lymphoblastic neoplasms: a multiparameter study of a rare and aggressive entity. Am J Surg Pathol. 2022;46(1):71-82.
    1. Nie K, Redmond D, Eng KW, et al. . Mutation landscape, clonal evolution pattern, and potential pathogenic pathways in B-lymphoblastic transformation of follicular lymphoma. Leukemia. 2021;35(4):1203-1208.
    1. Zhang J, McCastlain K, Yoshihara H, et al. ; St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project . Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48(12):1481-1489.
    1. Yasuda T, Tsuzuki S, Kawazu M, et al. . Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48(5):569-574.
    1. Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A, et al. . Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun. 2016;7(1):11790.
    1. Siegele BJ, Stemmer-Rachamimov AO, Lilljebjorn H, et al. . N-terminus DUX4-immunohistochemistry is a reliable methodology for the diagnosis of DUX4-fused B-lymphoblastic leukemia/lymphoma (N-terminus DUX4 IHC for DUX4-fused B-ALL). Genes Chromosomes Cancer. 2022;61(8):449-458.
    1. Schinnerl D, Mejstrikova E, Schumich A, et al. . CD371 cell surface expression: a unique feature of DUX4-rearranged acute lymphoblastic leukemia. Haematologica. 2019;104(8):e352-e355.
    1. Gu Z, Churchman M, Roberts K, et al. . Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun. 2016;7:13331.
    1. Ohki K, Kiyokawa N, Saito Y, et al. ; Tokyo Children’s Cancer Study Group (TCCSG) . Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica. 2019;104(1):128-137.
    1. Alexander TB, Gu Z, Iacobucci I, et al. . The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562(7727):373-379.
    1. Shago M, Abla O, Hitzler J, Weitzman S, Abdelhaleem M. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr Blood Cancer. 2016;63(11):1915-1921.
    1. Hirabayashi S, Butler ER, Ohki K, et al. . Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia. 2021;35(11):3272-3277.
    1. Janet NB, Kulkarni U, Arun AK, et al. . Systematic application of fluorescence in situ hybridization and immunophenotype profile for the identification of ZNF384 gene rearrangements in B cell acute lymphoblastic leukemia. Int J Lab Hematol. 2021;43(4):658-663.
    1. Zaliova M, Winkowska L, Stuchly J, et al. . A novel class of ZNF384 aberrations in acute leukemia. Blood Adv. 2021;5(21):4393-4397.
    1. Hirabayashi S, Ohki K, Nakabayashi K, et al. ; Tokyo Children’s Cancer Study Group (TCCSG) . ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017;102(1):118-129.
    1. Boer JM, Valsecchi MG, Hormann FM, et al. . Favorable outcome of NUTM1-rearranged infant and pediatric B cell precursor acute lymphoblastic leukemia in a collaborative international study. Leukemia. 2021;35(10):2978-2982.
    1. Hormann FM, Hoogkamer AQ, Beverloo HB, et al. . NUTM1 is a recurrent fusion gene partner in B-cell precursor acute lymphoblastic leukemia associated with increased expression of genes on chromosome band 10p12.31-12.2. Haematologica. 2019;104(10):e455-e459.
    1. Fischer U, Forster M, Rinaldi A, et al. . Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015;47(9):1020-1029.
    1. Mouttet B, Vinti L, Ancliff P, et al. . Durable remissions in TCF3-HLF positive acute lymphoblastic leukemia with blinatumomab and stem cell transplantation. Haematologica. 2019;104(6):e244-e247.
    1. Passet M, Kim R, Gachet S, et al. . Concurrent CDX2 cis-deregulation and UBTF:ATXN7L3 fusion define a novel high-risk subtype of B-cell ALL. Blood. 2022;139(24):3505-3518.
    1. Kimura S, Montefiori L, Iacobucci I, et al. . Enhancer retargeting of CDX2 and UBTF:ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood. 2022;139(24):3519-3531.
    1. Yasuda T, Sanada M, Kawazu M, et al. . Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. Blood. 2021.
    1. Gu Z, Churchman ML, Roberts KG, et al. . PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296-307.
    1. Passet M, Boissel N, Sigaux F, et al. ; Group for Research on Adult ALL (GRAALL) . PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood. 2019;133(3):280-284.
    1. Zaliova M, Kotrova M, Bresolin S, et al. . ETV6/RUNX1-like acute lymphoblastic leukemia: a novel B-cell precursor leukemia subtype associated with the CD27/CD44 immunophenotype. Genes Chromosomes Cancer. 2017;56(8):608-616.
    1. Li JF, Dai YT, Lilljebjörn H, et al. . Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci USA. 2018; 115(50):E11711-E11720.
    1. Bastian L, Schroeder MP, Eckert C, et al. . PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia. Leukemia. 2019;33(8):1895-1909.
    1. Zaliova M, Potuckova E, Lukes J, et al. . Frequency and prognostic impact of ZEB2 H1038 and Q1072 mutations in childhood B-other acute lymphoblastic leukemia. Haematologica. 2021;106(3):886-890.
    1. Montefiori LE, Bendig S, Gu Z, et al. . Enhancer hijacking drives oncogenic BCL11B expression in lineage-ambiguous stem cell leukemia. Cancer Discov. 2021;11(11):2846-2867.
    1. Di Giacomo D, La Starza R, Gorello P, et al. . 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood. 2021;138(9):773-784.
    1. Fang H, Wang W, El Hussein S, et al. . B-cell lymphoma/leukaemia 11B (BCL11B) expression status helps distinguish early T-cell precursor acute lymphoblastic leukaemia/lymphoma (ETP-ALL/LBL) from other subtypes of T-cell ALL/LBL. Br J Haematol. 2021;194(6):1034-1038.
    1. Morita K, Jain N, Kantarjian H, et al. . Outcome of T-cell acute lymphoblastic leukemia/lymphoma: focus on near-ETP phenotype and differential impact of nelarabine. Am J Hematol. 2021;96(5):589-598.
    1. Liu Y, Easton J, Shao Y, et al. . The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211-1218.
    1. Iacobucci I, Kimura S, Mullighan CG. Biologic and therapeutic implications of genomic alterations in acute lymphoblastic leukemia. J Clin Med. 2021;10(17):3792.
    1. Chang YH, Yu CH, Jou ST, et al. . Targeted sequencing to identify genetic alterations and prognostic markers in pediatric T-cell acute lymphoblastic leukemia. Sci Rep. 2021;11(1):769.
    1. Chen B, Jiang L, Zhong ML, et al. . Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2018;115(2):373-378.
    1. Cordo’ V, van der Zwet JCG, Canté-Barrett K, Pieters R, Meijerink JPP. T-cell acute lymphoblastic leukemia: a roadmap to targeted therapies. Blood Cancer Discov. 2020;2(1):19-31.
    1. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113-1123.
    1. van der Zwet JCG, Cordo’ V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul. 2019;74:100647.
    1. Bardelli V, Arniani S, Pierini V, et al. . T-cell acute lymphoblastic leukemia: biomarkers and their clinical usefulness. Genes (Basel). 2021;12(8):1118.
    1. Tran TH, Langlois S, Meloche C, et al. . Whole-transcriptome analysis in acute lymphoblastic leukemia: a report from the DFCI ALL Consortium Protocol 16-001. Blood Adv. 2022;6(4):1329-1341.
    1. Valent P, Orazi A, Savona MR, et al. . Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica. 2019;104(10):1935-1949.
    1. O’Halloran K, Ritchey AK, Djokic M, Friehling E. Transient juvenile myelomonocytic leukemia in the setting of PTPN11 mutation and Noonan syndrome with secondary development of monosomy 7. Pediatr Blood Cancer. 2017;64(7):e26408.
    1. Hofmans M, Schröder R, Lammens T, et al. . Noonan syndrome-associated myeloproliferative disorder with somatically acquired monosomy 7: impact on clinical decision making. Br J Haematol. 2019;187(4): E83-E86.
    1. Jung M, Schieck M, Hofmann W, et al. . Frequency and prognostic impact of PAX5 p.P80R in pediatric acute lymphoblastic leukemia patients treated on an AIEOP-BFM acute lymphoblastic leukemia protocol. Genes Chromosomes Cancer. 2020; 59(11):667-671.

Source: PubMed

3
Subscribe