Immune responses to injury and their links to eye disease

Mary Ann Stepp, A Sue Menko, Mary Ann Stepp, A Sue Menko

Abstract

The eye is regarded as an immune privileged site. Since the presence of a vasculature would impair vision, the vasculature of the eye is located outside of the central light path. As a result, many regions of the eye evolved mechanisms to deliver immune cells to sites of dysgenesis, injury, or in response to the many age-related pathologies. While the purpose of these immune responses is reparative or protective, cytokines released by immune cells compromise visual acuity by inducing inflammation and fibrosis. The response to traumatic or pathological injury is distinct in different regions of the eye. Age-related diseases impact both the anterior and posterior segment and lead to reduced quality of life and blindness. Here we focus attention on the role that inflammation and fibrosis play in the progression of age-related pathologies of the cornea and the lens as well as in glaucoma, the formation of epiretinal membranes, and in proliferative vitreoretinopathy.

Keywords: 2ryERM; A T-helper cell that expresses high levels of IL-17 which can suppress T-regulatory cell function; A cytokine expressed early during inflammation that attracts neutrophils; A cytokine expressed early during inflammation that attracts neutrophils, sometimes referred to as monocyte chemoattractant protein-1 (MCP-1)); A mouse model that lacks functional T and B cells and used to study the immune response; A pigmented mouse strain used for research and known to mount a primarily Th1 response to infection; A protein encoded by the ADGRE1 gene that, in mice, is expressed primarily on macrophages; A strain of pigmented mice used in glaucoma research; ACAID; APCs; ASC; An albino mouse strain used for research and known to mount a primarily Th2 response to infection; Antigen Presenting Cells, this class includes dendritic cells and monocytes; BALB/c; BM; C57BL6; CCL2; CD45; CNS; CXCL1; Central Nervous System; Cluster of differentiation 45 antigen; DAMPs; DBA/2J; EBM; ECM; EMT; ERM; Epithelial Basement Membrane; F4/80; FGF2; HA =hyaluronic acid; HSK; HSP; HSPGs; HSV; ICN; IL-20; IL6; ILM; IOP; Inner (or internal) limiting membrane; Interleukin 6; Interleukin-20; MAGP1; MHC-II; Major histocompatibility complex type II, a class of MHC proteins typically found only on APCs; Microfibril-associated glycoprotein 1; N-cad; N-cadherin; NEI; NK; National Eye Institute; Natural killer T cells; PCO; PDGF; PDR; PVD; PVR; Platelet derived growth factor; Posterior capsular opacification; RGC; RPE; RRD; Rag1-/-; Retinal ganglion cells; Retinal pigment epithelial cells; SMAD; Sons of Mothers Against Decapentaplegic, SMADs are a class of molecules that mediate TGF and bone morphogenetic protein signaling; T-helper cell 1 response, proinflammatory adaptive response involving interferon gamma and associated with autoimmunity; T-helper cell 2 response involving IgE and interleukins 4,5, and 13, also induces the anti-inflammatory interleukin 10 family cytokines; T-regulatory cell; TG; TGF1; TM; TNF; Th1; Th17; Th2; Transforming growth factor 1; Treg; Tumor necrosis factor a cytokine produced during inflammation; VEGF; Vascular endothelial growth factor; WHO; World Health Organization; anterior chamber immune deviation; anterior subcapsular cataracts; basement membrane; damage-associated molecular patterns; epiretinal membrane; epiretinal membrane secondary to disease pathology; epithelial-mesenchymal transition; extracellular matrix; fibroblast growth factor 2, also referred to as basic FGF; heat shock protein; heparan sulfate proteoglycans; herpes simplex virus; herpes stromal keratitis; iERM; idiopathic epiretinal membrane; intraepithelial corneal nerves; intraocular pressure; mTOR; mechanistic target of rapamycin, a protein kinase encoded by the MTOR genes that regulates a variety of signal transduction events including cell growth, autophagy and actin cytoskeleton; posterior vitreous detachment; proliferative diabetic retinopathy; proliferative vitreoretinopathy; rhegmatogenous (rupture, tear) retinal detachment; trabecular meshwork; trigeminal ganglion; αSMA; α−Smooth muscle actin, a class of actin expressed in mesenchymal cells.

Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Figure 1.. Inflammation-induced pathologies in the immune…
Figure 1.. Inflammation-induced pathologies in the immune privileged eye.
Diagram showing the importance of immune privilege in the eye to prevention of ocular inflammation and when that privilege is compromised, and innate immunity activated, inflammation of the eye results in fibrogenic pathologies. Diagram is modified from Murakami et al., Progress in Retinal and Eye Research (2019) 74:100778 [232].
Figure 2.. Following corneal debridement wounding immune…
Figure 2.. Following corneal debridement wounding immune cells are located along MAGP1-rich fibrils in the cornea stroma at the limbus and corneal periphery.
A and D are cartoons showing the anatomical relationships between the limbus, peripheral cornea, iris, ciliary body and lens. Cryosections obtained from mouse eyes of unwounded (B,C) or one day post corneal debridement wounding (E, F) were imaged by confocal microscopy at the limbus (B,E) and the peripheral cornea (C, F). Sections were co-immunolabeled for Microfibril-associated glycoprotein 1 or MAGP1 (purple), the immune cell marker CD45 (green), and nuclei (blue). MAGP1 associates with fibrillin in the ciliary zonules. Magnification bars = 20 μm. CB= ciliary body, CZ= ciliary zonules. This figure is adapted from DeDreu et al., FASEB J. (2020) 34:9316 [163].
Figure 3.. Surveillance of the lens by…
Figure 3.. Surveillance of the lens by immune cells in response to wounding of the cornea.
(A) Model of immune cells (green) traveling between the ciliary body (CB) and the lens along ciliary zonules (CZ, red) that link to the equatorial (EQ) lens capsule and extend along the capsule surface under physiological conditions (left panel), and migrating to the anterior surface of the lens to surveille this tissue in response to corneal debridement wounding (right panel); (B) 3D surface structure rendering of a confocal Z-stack imaged at one day post-corneal wounding showing immune cells (CD45+, green) migrating along within ciliary zonule (CZ) fibrils (MAGP1, white) that extend along the surface of the matrix capsule that surrounds the lens (perlecan, red). Also seen are the ciliary zonules (white) that link the lens to the ciliary body (CB). Nuclei in both these lens and ciliary body are labeled blue. This figure is adapted from DeDreu et al., FASEB J. (2020) 34:9316 [163].
Figure 4.. Fibrotic changes seen in the…
Figure 4.. Fibrotic changes seen in the aging retina.
When chronic inflammation occurs in association with age-related idiopathic epiretinal membranes (iERMs) and posterior vitreous detachment (PVD) retinal pathologies involving fibrosis are promoted. ILL= inner limiting membrane, PVR= proliferative vitreoretinopathy, RRD= Rhegmatogenous (rupture, tear) Retinal Detachment.

References

    1. Friend J, Thoft RA. Functional competence of regenerating ocular surface epithelium. Invest Ophthalmol Vis Sci. 1978;17:134–9.
    1. Thoft RA. Role of the ocular surface in destructive corneal disease. Trans Ophthalmol Soc U K. 1978;98:339–42.
    1. Thoft RA, Friend J, Kenyon KR. Ocular surface response to trauma. Int Ophthalmol Clin. 1979;19:111–31.
    1. Hamrah P, Zhang Q, Liu Y, Dana MR. Novel characterization of MHC class II-negative population of resident corneal Langerhans cell-type dendritic cells. Invest Ophthalmol Vis Sci. 2002;43:639–46.
    1. Hamrah P, Liu Y, Zhang Q, Dana MR. The corneal stroma is endowed with a significant number of resident dendritic cells. Invest Ophthalmol Vis Sci. 2003;44:581–9.
    1. Chauhan SK, El Annan J, Ecoiffier T, Goyal S, Zhang Q, Saban DR, et al.Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J Immunol. 2009;182:1247–52.
    1. Saban DR. The chemokine receptor CCR7 expressed by dendritic cells: a key player in corneal and ocular surface inflammation. Ocul Surf. 2014;12:87–99.
    1. Kaji Y, Soya K, Amano S, Oshika T, Yamashita H. Relation between corneal haze and transforming growth factor-beta1 after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg. 2001;27:1840–6.
    1. Moller-Pedersen T Keratocyte reflectivity and corneal haze. Exp Eye Res. 2004;78:553–60.
    1. Torricelli AA, Santhanam A, Wu J, Singh V, Wilson SE. The corneal fibrosis response to epithelial-stromal injury. Exp Eye Res. 2016;142:110–8.
    1. Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr Eye Res. 1998;17:736–47.
    1. Tandon A, Tovey JC, Sharma A, Gupta R, Mohan RR. Role of transforming growth factor Beta in corneal function, biology and pathology. Curr Mol Med. 2010;10:565–78.
    1. Myrna KE, Mendonsa R, Russell P, Pot SA, Liliensiek SJ, Jester JV, et al.Substratum topography modulates corneal fibroblast to myofibroblast transformation. Invest Ophthalmol Vis Sci. 2012;53:811–6.
    1. Streilein JW. Immune regulation and the eye: a dangerous compromise. FASEB J. 1987;1:199–208.
    1. Streilein JW. Anterior chamber associated immune deviation: the privilege of immunity in the eye. Surv Ophthalmol. 1990;35:67–73.
    1. Singh RB, Marmalidou A, Amouzegar A, Chen Y, Dana R. Animal models of high-risk corneal transplantation: A comprehensive review. Exp Eye Res. 2020;198:108152.
    1. Streilein JW, Niederkorn JY. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J Exp Med. 1981;153:1058–67.
    1. Niederkorn JY. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol. 2006;7:354–9.
    1. Streilein JW. Ocular immune privilege and the Faustian dilemma. The Proctor lecture. Invest Ophthalmol Vis Sci. 1996;37:1940–50.
    1. Lemp MA, Baudouin C, Baum J The definition and classification of dry eye disease: Reprt of the definition and classification subcommitties of the International Dry EyeWorkshop. The ocular surface. 2007;5:75–92.
    1. Thomas PA, Geraldine P. Infectious keratitis. Curr Opin Infect Dis. 2007;20:129–41.
    1. Channa R, Zafar SN, Canner JK, Haring RS, Schneider EB, Friedman DS. Epidemiology of Eye-Related Emergency Department Visits. JAMA Ophthalmol. 2016;134:312–9.
    1. Chi C, Trinkaus-Randall V. New insights in wound response and repair of epithelium. J Cell Physiol. 2013;228:925–9.
    1. Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res. 2015;49:17–45.
    1. Stepp MA, Zieske JD, Trinkaus-Randall V, Kyne BM, Pal-Ghosh S, Tadvalkar G, et al.Wounding the cornea to learn how it heals. Exp Eye Res. 2014;121:178–93.
    1. Pal-Ghosh S, Pajoohesh-Ganji A, Tadvalkar G, Kyne BM, Guo X, Zieske JD, et al.Topical Mitomycin-C enhances subbasal nerve regeneration and reduces erosion frequency in the debridement wounded mouse cornea. Exp Eye Res. 2016;146:361–9.
    1. Stramer BM, Zieske JD, Jung JC, Austin JS, Fini ME. Molecular mechanisms controlling the fibrotic repair phenotype in cornea: implications for surgical outcomes. Invest Ophthalmol Vis Sci. 2003;44:4237–46.
    1. Netto MV, Mohan RR, Ambrosio R Jr., Hutcheon AE, Zieske JD, Wilson SE. Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea. 2005;24:509–22.
    1. Liu Q, Smith CW, Zhang W, Burns AR, Li Z. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am J Pathol. 2012;181:452–62.
    1. Hanlon SD, Smith CW, Sauter MN, Burns AR. Integrin-dependent neutrophil migration in the injured mouse cornea. Exp Eye Res. 2014;120:61–70.
    1. Pal-Ghosh S, Pajoohesh-Ganji A, Menko AS, Oh HY, Tadvalkar G, Saban DR, et al.Cytokine deposition alters leukocyte morphology and initial recruitment of monocytes and gammadeltaT cells after corneal injury. Invest Ophthalmol Vis Sci. 2014;55:2757–65.
    1. Zhang W, Magadi S, Li Z, Smith CW, Burns AR. IL-20 promotes epithelial healing of the injured mouse cornea. Exp Eye Res. 2017;154:22–9.
    1. Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, et al.Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res. 2021;80:100877.
    1. Sziksz E, Pap D, Lippai R, Beres NJ, Fekete A, Szabo AJ, et al.Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family. Mediators Inflamm. 2015;2015:764641.
    1. Lodyga M, Hinz B. TGF-β1 - A truly transforming growth factor in fibrosis and immunity. Semin Cell Dev Biol. 2020;101:123–39.
    1. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al.Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.
    1. Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, et al.Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci U S A. 1993;90:770–4.
    1. Christ M, McCartney-Francis NL, Kulkarni AB, Ward JM, Mizel DE, Mackall CL, et al.Immune dysregulation in TGF-beta 1-deficient mice. J Immunol. 1994;153:1936–46.
    1. de Oliveira RC, Tye G, Sampaio LP, Shiju TM, DeDreu J, Menko AS, et al.TGFbeta1 and TGFbeta2 proteins in corneas with and without stromal fibrosis: Delayed regeneration of apical epithelial growth factor barrier and the epithelial basement membrane in corneas with stromal fibrosis. Exp Eye Res. 2021;202:108325.
    1. Gupta A, Monroy D, Ji Z, Yoshino K, Huang A, Pflugfelder SC. Transforming growth factor beta-1 and beta-2 in human tear fluid. Curr Eye Res. 1996;15:605–14.
    1. Medeiros CS, Marino GK, Santhiago MR, Wilson SE. The Corneal Basement Membranes and Stromal Fibrosis. Invest Ophthalmol Vis Sci. 2018;59:4044–53.
    1. Pal-Ghosh S, Pajoohesh-Ganji A, Tadvalkar G, Stepp MA. Removal of the basement membrane enhances corneal wound healing. Exp Eye Res. 2011;93:927–36.
    1. Menko AS, Walker JL, Stepp MA. Fibrosis: Shared Lessons From the Lens and Cornea. Anat Rec (Hoboken). 2020;303:1689–702.
    1. Santhiago MR, Netto MV, Wilson SE. Mitomycin C: biological effects and use in refractive surgery. Cornea. 2012;31:311–21.
    1. Arranz-Marquez E, Katsanos A, Kozobolis VP, Konstas AGP, Teus MA. A Critical Overview of the Biological Effects of Mitomycin C Application on the Cornea Following Refractive Surgery. Adv Ther. 2019;36:786–97.
    1. Sriram S, Tran JA, Guo X, Hutcheon AEK, Kazlauskas A, Zieske JD. Development of wound healing models to study TGFβ3’s effect on SMA. Exp Eye Res. 2017;161:52–60.
    1. Guo X, Hutcheon AEK, Zieske JD. Molecular insights on the effect of TGF-β1/-β3 in human corneal fibroblasts. Exp Eye Res. 2016;146:233–41.
    1. Pal-Ghosh S, Tadvalkar G, Lieberman VR, Guo X, Zieske JD, Hutcheon A, et al.Transient Mitomycin C-treatment of human corneal epithelial cells and fibroblasts alters cell migration, cytokine secretion, and matrix accumulation. Sci Rep. 2019;9:13905.
    1. Anitua E, de la Fuente M, Muruzabal F, Riestra A, Merayo-Lloves J, Orive G. Plasma rich in growth factors (PRGF) eye drops stimulates scarless regeneration compared to autologous serum in the ocular surface stromal fibroblasts. Exp Eye Res. 2015;135:118–26.
    1. Anitua E, Sanchez M, Merayo-Lloves J, De la Fuente M, Muruzabal F, Orive G. Plasma rich in growth factors (PRGF-Endoret) stimulates proliferation and migration of primary keratocytes and conjunctival fibroblasts and inhibits and reverts TGF-beta1-Induced myodifferentiation. Invest Ophthalmol Vis Sci. 2011;52:6066–73.
    1. Meek KM, Boote C. The organization of collagen in the corneal stroma. Exp Eye Res. 2004;78:503–12.
    1. Meek KM, Boote C. The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res. 2009;28:369–92.
    1. de Oliveira RC, Wilson SE. Fibrocytes, Wound Healing, and Corneal Fibrosis. Invest Ophthalmol Vis Sci. 2020;61:28.
    1. Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol. 2020;16:11–31.
    1. Li Z, Burns AR, Han L, Rumbaut RE, Smith CW. IL-17 and VEGF are necessary for efficient corneal nerve regeneration. Am J Pathol. 2011;178:1106–16.
    1. Fan NW, Dohlman TH, Foulsham W, McSoley M, Singh RB, Chen Y, et al.The role of Th17 immunity in chronic ocular surface disorders. Ocul Surf. 2021;19:157–68.
    1. Chen X, Deng R, Chi W, Hua X, Lu F, Bian F, et -27 signaling deficiency develops Th17-enhanced Th2-dominant inflammation in murine allergic conjunctivitis model. Allergy. 2019;74:910–21.
    1. de Paiva CS, Pflugfelder SC. Mechanisms of Disease in Sjogren Syndrome-New Developments and Directions. Int J Mol Sci. 2020;21.
    1. Khader SA, Gaffen SL, Kolls JK. Th17 cells at the crossroads of innate and adaptive immunity against infectious diseases at the mucosa. Mucosal Immunol. 2009;2:403–11.
    1. Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8:523–32.
    1. Alroqi FJ, Chatila TA. T Regulatory Cell Biology in Health and Disease. Curr Allergy Asthma Rep. 2016;16:27.
    1. Hoyos-Bachiloglu R, Chou J. Autoimmunity and immunodeficiency. Curr Opin Rheumatol. 2020;32:168–74.
    1. Niederkorn JY. Cornea: Window to Ocular Immunology. Curr Immunol Rev. 2011;7:328–35.
    1. Coursey TG, Bian F, Zaheer M, Pflugfelder SC, Volpe EA, de Paiva CS. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017;10:743–56.
    1. Keino H, Horie S, Sugita S. Immune Privilege and Eye-Derived T-Regulatory Cells. J Immunol Res. 2018;2018:1679197.
    1. Hessen M, Akpek EK. Dry eye: an inflammatory ocular disease. J Ophthalmic Vis Res. 2014;9:240–50.
    1. Ansari Z, Miller D, Galor A. Current Thoughts in Fungal Keratitis: Diagnosis and Treatment. Curr Fungal Infect Rep. 2013;7:209–18.
    1. Austin A, Lietman T, Rose-Nussbaumer J. Update on the Management of Infectious Keratitis. Ophthalmology. 2017;124:1678–89.
    1. Hazlett LD, McClellan S, Kwon B, Barrett R. Increased severity of Pseudomonas aeruginosa corneal infection in strains of mice designated as Th1 versus Th2 responsive. Invest Ophthalmol Vis Sci. 2000;41:805–10.
    1. Hazlett LD. Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res. 2004;23:1–30.
    1. Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: a global perspective. Bull World Health Organ. 2001;79:214–21.
    1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.
    1. Farooq AV, Shukla D. Herpes simplex epithelial and stromal keratitis: an epidemiologic update. Surv Ophthalmol. 2012;57:448–62.
    1. Hamrah P, Sahin A, Dastjerdi MH, Shahatit BM, Bayhan HA, Dana R, et al.Cellular changes of the corneal epithelium and stroma in herpes simplex keratitis: an in vivo confocal microscopy study. Ophthalmology. 2012;119:1791–7.
    1. Sinani D, Cordes E, Workman A, Thunuguntia P, Jones C. Stress-induced cellular transcription factors expressed in trigeminal ganglionic neurons stimulate the herpes simplex virus 1 ICP0 promoter. J Virol. 2013;87:13042–7.
    1. Ren S, Chen X, Huang R, Zhou GG, Yuan Z. SOCS4 expressed by recombinant HSV protects against cytokine storm in a mouse model. Oncol Rep. 2019;41:1509–20.
    1. Tognarelli EI, Bueno SM, Gonzalez PA. Immune-Modulation by the Human Respiratory Syncytial Virus: Focus on Dendritic Cells. Front Immunol. 2019;10:810.
    1. Schmiedel D, Mandelboim O. Disarming Cellular Alarm Systems-Manipulation of Stress-Induced NKG2D Ligands by Human Herpesviruses. Front Immunol. 2017;8:390.
    1. Yun H, Yee MB, Lathrop KL, Kinchington PR, Hendricks RL, St Leger AJ. Production of the Cytokine VEGF-A by CD4(+) T and Myeloid Cells Disrupts the Corneal Nerve Landscape and Promotes Herpes Stromal Keratitis. Immunity. 2020;53:1050–62 e5.
    1. Chucair-Elliott AJ, Zheng M, Carr DJ. Degeneration and regeneration of corneal nerves in response to HSV-1 infection. Invest Ophthalmol Vis Sci. 2015;56:1097–107.
    1. Reynaud C, Rousseau A, Kaswin G, M’Garrech M, Barreau E, Labetoulle M. Persistent Impairment of Quality of Life in Patients with Herpes Simplex Keratitis. Ophthalmology. 2017;124:160–9.
    1. Miserocchi E, Waheed NK, Dios E, Christen W, Merayo J, Roque M, et al.Visual outcome in herpes simplex virus and varicella zoster virus uveitis: a clinical evaluation and comparison. Ophthalmology. 2002;109:1532–7.
    1. Karthikeyan RS, Leal SM Jr., Prajna NV, Dharmalingam K, Geiser DM, Pearlman E, et al.Expression of innate and adaptive immune mediators in human corneal tissue infected with Aspergillus or fusarium. J Infect Dis. 2011;204:942–50.
    1. Niu L, Liu X, Ma Z, Yin Y, Sun L, Yang L, et al.Fungal keratitis: Pathogenesis, diagnosis and prevention. Microb Pathog. 2020;138:103802.
    1. Rammhan R Fungal Infections of the Eye. Current Clinical Microbiology Reports. 2020;7:39–50.
    1. Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86:238–42.
    1. Quigley HA. Glaucoma. Lancet. 2011;377:1367–77.
    1. Du S, Huang W, Zhang X, Wang J, Wang W, Lam DSC. Multiplex cytokine levels of aqueous humor in acute primary angle-closure patients: fellow eye comparison. BMC Ophthalmol. 2016;16:6.
    1. Huang W, Chen S, Gao X, Yang M, Zhang J, Li X, et al.Inflammation-related cytokines of aqueous humor in acute primary angle-closure eyes. Invest Ophthalmol Vis Sci. 2014;55:1088–94.
    1. Wang Y, Chen S, Liu Y, Huang W, Li X, Zhang X. Inflammatory cytokine profiles in eyes with primary angle-closure glaucoma. Biosci Rep. 2018;38.
    1. Kuchtey J, Rezaei KA, Jaru-Ampornpan P, Sternberg P Jr., Kuchtey RW. Multiplex cytokine analysis reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor. Invest Ophthalmol Vis Sci. 2010;51:6441–7.
    1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311:1901–11.
    1. Yadav KS, Rajpurohit R, Sharma S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci. 2019;221:362–76.
    1. Nezu N, Usui Y, Saito A, Shimizu H, Asakage M, Yamakawa N, et al.Machine Learning Approach for Intraocular Disease Prediction Based on Aqueous Humor Immune Mediator Profiles. Ophthalmology. 2021.
    1. Yu DY, Morgan WH, Sun X, Su EN, Cringle SJ, Yu PK, et al.The critical role of the conjunctiva in glaucoma filtration surgery. Prog Retin Eye Res. 2009;28:303–28.
    1. Kozdon K, Caridi B, Duru I, Ezra DG, Phillips JB, Bailly M. A Tenon’s capsule/bulbar conjunctiva interface biomimetic to model fibrosis and local drug delivery. PLoS One. 2020;15:e0241569.
    1. Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X, Martin SE, et al.Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci U S A. 2013;110:4045–50.
    1. Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, et al.Vitamin B(3) modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756–60.
    1. Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res. 2018;65:50–76.
    1. Nucci C, Martucci A, Giannini C, Morrone LA, Bagetta G, Mancino R. Neuroprotective agents in the management of glaucoma. Eye (Lond). 2018;32:938–45.
    1. Welge-Lussen U, May CA, Neubauer AS, Priglinger S. Role of tissue growth factors in aqueous humor homeostasis. Curr Opin Ophthalmol. 2001;12:94–9.
    1. van Zyl T, Yan W, McAdams A, Peng YR, Shekhar K, Regev A, et al.Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species provides insight into glaucoma pathogenesis. Proc Natl Acad Sci U S A. 2020;117:10339–49.
    1. Aihara M, Lindsey JD, Weinreb RN. Aqueous humor dynamics in mice. Invest Ophthalmol Vis Sci. 2003;44:5168–73.
    1. Aspelund A, Tammela T, Antila S, Nurmi H, Leppanen VM, Zarkada G, et al.The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J Clin Invest. 2014;124:3975–86.
    1. Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21(st) Century: Novel Functional Roles in Homeostasis and Disease. Cell. 2020;182:270–96.
    1. Braakman ST, Moore JE Jr., Ethier CR, Overby DR. Transport across Schlemm’s canal endothelium and the blood-aqueous barrier. Exp Eye Res. 2016;146:17–21.
    1. Overby DR, Zhou EH, Vargas-Pinto R, Pedrigi RM, Fuchshofer R, Braakman ST, et al.Altered mechanobiology of Schlemm’s canal endothelial cells in glaucoma. Proc Natl Acad Sci U S A. 2014;111:13876–81.
    1. Pattabiraman PP, Maddala R, Rao PV. Regulation of plasticity and fibrogenic activity of trabecular meshwork cells by Rho GTPase signaling. J Cell Physiol. 2014;229:927–42.
    1. Wallace DM, Murphy-Ullrich JE, Downs JC, O’Brien CJ. The role of matricellular proteins in glaucoma. Matrix Biol. 2014;37:174–82.
    1. Wang K, Read AT, Sulchek T, Ethier CR. Trabecular meshwork stiffness in glaucoma. Exp Eye Res. 2017;158:3–12.
    1. Tellios N, Belrose JC, Tokarewicz AC, Hutnik C, Liu H, Leask A, et al.TGF-beta induces phosphorylation of phosphatase and tensin homolog: implications for fibrosis of the trabecular meshwork tissue in glaucoma. Sci Rep. 2017;7:812.
    1. Lutjen-Drecoll E Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Exp Eye Res. 2005;81:1–4.
    1. Fuchshofer R, Tamm ER. The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res. 2012;347:279–90.
    1. Nettesheim A, Shim MS, Hirt J, Liton PB. Transcriptome analysis reveals autophagy as regulator of TGFbeta/Smad-induced fibrogenesis in trabecular meshwork cells. Sci Rep. 2019;9:16092.
    1. Rao PV, Pattabiraman PP, Kopczynski C. Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp Eye Res. 2017;158:23–32.
    1. Tanna AP, Johnson M. Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension. Ophthalmology. 2018;125:1741–56.
    1. Honjo M, Igarashi N, Nishida J, Kurano M, Yatomi Y, Igarashi K, et al.Role of the Autotaxin-LPA Pathway in Dexamethasone-Induced Fibrotic Responses and Extracellular Matrix Production in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci. 2018;59:21–30.
    1. Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11:427–35.
    1. Huang X, He C, Hua X, Kan A, Mao Y, Sun S, et al.Oxidative stress induces monocyte-to-myofibroblast transdifferentiation through p38 in pancreatic ductal adenocarcinoma. Clin Transl Med. 2020;10:e41.
    1. Vannella KM, Wynn TA. Mechanisms of Organ Injury and Repair by Macrophages. Annu Rev Physiol. 2017;79:593–617.
    1. Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44:450–62.
    1. Sharma S, Bollinger KE, Kodeboyina SK, Zhi W, Patton J, Bai S, et al.Proteomic Alterations in Aqueous Humor From Patients With Primary Open Angle Glaucoma. Invest Ophthalmol Vis Sci. 2018;59:2635–43.
    1. Wang B, Kasper M, Laffer B, Meyer Zu Horste G, Wasmuth S, Busch M, et al.Increased Hydrostatic Pressure Promotes Primary M1 Reaction and Secondary M2 Polarization in Macrophages. Front Immunol. 2020;11:573955.
    1. Sung VC, Barton K. Management of inflammatory glaucomas. Curr Opin Ophthalmol. 2004;15:136–40.
    1. Yamanaka O, Kitano-Izutani A, Tomoyose K, Reinach PS. Pathobiology of wound healing after glaucoma filtration surgery. BMC Ophthalmol. 2015;15Suppl 1:157.
    1. Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med. 2014;4.
    1. Williams PA, Marsh-Armstrong N, Howell GR. Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res. 2017;157:20–7.
    1. Melik Parsadaniantz S, Reaux-le Goazigo A, Sapienza A, Habas C, Baudouin C. Glaucoma: A Degenerative Optic Neuropathy Related to Neuroinflammation? Cells. 2020;9.
    1. Shinozaki Y, Koizumi S. Potential roles of astrocytes and Müller cells in the pathogenesis of glaucoma. J Pharmacol Sci. 2021;145:262–7.
    1. Inman DM, Horner PJ. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia. 2007;55:942–53.
    1. Murakami Y, Matsumoto H, Roh M, Giani A, Kataoka K, Morizane Y, et al.Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 2014;21:270–7.
    1. Qu J, Jakobs TC. The Time Course of Gene Expression during Reactive Gliosis in the Optic Nerve. PLoS One. 2013;8:e67094.
    1. Sun D, Qu J, Jakobs TC. Reversible reactivity by optic nerve astrocytes. Glia. 2013;61:1218–35.
    1. Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH. Microglia-blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol. 2016;131:347–63.
    1. Howell GR, Soto I, Zhu X, Ryan M, Macalinao DG, Sousa GL, et al.Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J Clin Invest. 2012;122:1246–61.
    1. Harder JM, Braine CE, Williams PA, Zhu X, MacNicoll KH, Sousa GL, et al.Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A. 2017;114:E3839–E48.
    1. Wei X, Cho KS, Thee EF, Jager MJ, Chen DF. Neuroinflammation and microglia in glaucoma: time for a paradigm shift. J Neurosci Res. 2019;97:70–6.
    1. Wilson GN, Inman DM, Dengler Crish CM, Smith MA, Crish SD. Early pro-inflammatory cytokine elevations in the DBA/2J mouse model of glaucoma. J Neuroinflammation. 2015;12:176.
    1. Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res. 2020:100916.
    1. Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest. 2012;122:1164–71.
    1. Ransohoff RM, Kivisakk P, Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 2003;3:569–81.
    1. Kezic JM, Chrysostomou V, Trounce IA, McMenamin PG, Crowston JG. Effect of anterior chamber cannulation and acute IOP elevation on retinal macrophages in the adult mouse. Invest Ophthalmol Vis Sci. 2013;54:3028–36.
    1. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al.Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–40.
    1. Wakefield D, Lloyd A. The role of cytokines in the pathogenesis of inflammatory eye disease. Cytokine. 1992;4:1–5.
    1. Yuan L, Neufeld AH. Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 2000;32:42–50.
    1. Yang X, Luo C, Cai J, Powell DW, Yu D, Kuehn MH, et al.Neurodegenerative and inflammatory pathway components linked to TNF-alpha/TNFR1 signaling in the glaucomatous human retina. Invest Ophthalmol Vis Sci. 2011;52:8442–54.
    1. Tezel G TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res. 2008;173:409–21.
    1. Perez VL, Caspi RR. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 2015;36:354–63.
    1. Ivanova E, Alam NM, Prusky GT, Sagdullaev BT. Blood-retina barrier failure and vision loss in neuron-specific degeneration. JCI Insight. 2019;5.
    1. Gramlich OW, Beck S, von Thun Und Hohenstein-Blaul N, Boehm N, Ziegler A, Vetter JM, et al.Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One. 2013;8:e57557.
    1. Callahan MK, Ransohoff RM. Analysis of leukocyte extravasation across the blood-brain barrier: conceptual and technical aspects. Curr Allergy Asthma Rep. 2004;4:65–73.
    1. Jiang S, Kametani M, Chen DF. Adaptive Immunity: New Aspects of Pathogenesis Underlying Neurodegeneration in Glaucoma and Optic Neuropathy. Front Immunol. 2020;11:65.
    1. Chen H, Cho KS, Vu THK, Shen CH, Kaur M, Chen G, et al.Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018;9:3209.
    1. Gramlich OW, Godwin CR, Heuss ND, Gregerson DS, Kuehn MH. T and B Lymphocyte Deficiency in Rag1−/− Mice Reduces Retinal Ganglion Cell Loss in Experimental Glaucoma. Invest Ophthalmol Vis Sci. 2020;61:18.
    1. Williams PA, Braine CE, Foxworth NE, Cochran KE, John SWM. GlyCAM1 negatively regulates monocyte entry into the optic nerve head and contributes to radiation-based protection in glaucoma. J Neuroinflammation. 2017;14:93.
    1. Williams PA, Braine CE, Kizhatil K, Foxworth NE, Tolman NG, Harder JM, et al.Inhibition of monocyte-like cell extravasation protects from neurodegeneration in DBA/2J glaucoma. Mol Neurodegener. 2019;14:6.
    1. Jones W, Rodriguez J, Bassnett S. Targeted deletion of fibrillin-1 in the mouse eye results in ectopia lentis and other ocular phenotypes associated with Marfan syndrome. Dis Model Mech. 2019;12.
    1. Wang K, Pierscionek BK. Biomechanics of the human lens and accommodative system: Functional relevance to physiological states. Prog Retin Eye Res. 2019;71:114–31.
    1. Land M Focusing by shape change in the lens of the eye: a commentary on Young (1801) ‘On the mechanism of the eye’. Philos Trans R Soc Lond B Biol Sci. 2015;370.
    1. Tholozan FM, Quinlan RA. Lens cells: more than meets the eye. Int J Biochem Cell Biol. 2007;39:1754–9.
    1. DeDreu J, Walker JL, Menko AS. Dynamics of the lens basement membrane capsule and its interaction with connective tissue-like extracapsular matrix proteins. Matrix Biol. 2021;96:18–46.
    1. Mousa HM, Saban DR, Perez VL. The cornea IV immunology, infection, neovascularization, and surgery chapter 1: Corneal immunology. Exp Eye Res. 2021;205:108502.
    1. DeDreu J, Bowen CJ, Logan CM, Pal-Ghosh S, Parlanti P, Stepp MA, et immune response to the avascular lens following wounding of the cornea involves ciliary zonule fibrils. FASEB J. 2020;34:9316–36.
    1. Logan CM, Bowen CJ, Menko AS. Induction of Immune Surveillance of the Dysmorphogenic Lens. Sci Rep. 2017;7:16235.
    1. Menko AS, DeDreu J, Logan CM, Paulson H, Levin AV, Walker JL. Resident immune cells of the avascular lens: Mediators of the injury and fibrotic response of the lens. Faseb j. 2021;35:e21341.
    1. Logan CM, Rajakaruna S, Bowen C, Radice GL, Robinson ML, Menko AS. N-cadherin regulates signaling mechanisms required for lens fiber cell elongation and lens morphogenesis. Dev Biol. 2017;428:118–34.
    1. Caputa G, Castoldi A, Pearce EJ. Metabolic adaptations of tissue-resident immune cells. Nat Immunol. 2019;20:793–801.
    1. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14:986–95.
    1. Heath WR, Carbone FR. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol. 2013;14:978–85.
    1. Hamrah P, Huq SO, Liu Y, Zhang Q, Dana MR. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J Leukoc Biol. 2003;74:172–8.
    1. Caudros MA, Martin C, Rios A, Martin-Partido G and Navascues. Macrophages of hemangioblastic lineage invade the lens vesicle-ectoderm interspace during closure and detachment of the avain embryonic lens. . Cell Tissue Res. 1991;266:117–27.
    1. Nishitani K, Sasaki K. Macrophage localization in the developing lens primordium of the mouse embryo - an immunohistochemical study. Exp Eye Res. 2006;83:223–8.
    1. Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: What’s in the bag? Prog Retin Eye Res. 2020:100905.
    1. Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res. 2017;60:44–65.
    1. Shirai K, Tanaka SI, Lovicu FJ, Saika S. The murine lens: A model to investigate in vivo epithelial-mesenchymal transition. Dev Dyn. 2018;247:340–5.
    1. Eldred JA, Dawes LJ, Wormstone IM. The lens as a model for fibrotic disease. Philos Trans R Soc Lond B Biol Sci. 2011;366:1301–19.
    1. Saika S, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Sumioka T, et al.Epithelial-mesenchymal transition as a therapeutic target for prevention of ocular tissue fibrosis. Endocr Metab Immune Disord Drug Targets. 2008;8:69–76.
    1. Mamuya FA, Wang Y, Roop VH, Scheiblin DA, Zajac JC, Duncan MK. The roles of alphaV integrins in lens EMT and posterior capsular opacification. J Cell Mol Med. 2014;18:656–70.
    1. Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFbeta-signaling prevents lens EMT leading to cataract. Exp Eye Res. 2016;142:92–101.
    1. Taiyab A, Holms J, West-Mays JA. beta-Catenin/Smad3 Interaction Regulates Transforming Growth Factor-beta-Induced Epithelial to Mesenchymal Transition in the Lens. Int J Mol Sci. 2019;20.
    1. Korol A, Pino G, Dwivedi D, Robertson JV, Deschamps PA, West-Mays JA. Matrix metalloproteinase-9-null mice are resistant to TGF-beta-induced anterior subcapsular cataract formation. Am J Pathol. 2014;184:2001–12.
    1. Gupta M, Korol A, West-Mays JA. Nuclear translocation of myocardin-related transcription factor-A during transforming growth factor beta-induced epithelial to mesenchymal transition of lens epithelial cells. Mol Vis. 2013;19:1017–28.
    1. Taiyab A, Korol A, Deschamps PA, West-Mays JA. beta-Catenin/CBP-Dependent Signaling Regulates TGF-beta-Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells. Invest Ophthalmol Vis Sci. 2016;57:5736–47.
    1. Shihan MH, Kanwar M, Wang Y, Jackson EE, Faranda AP, Duncan MK. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol. 2020;90:79–108.
    1. Nam MH, Nagaraj RH. Matrix-bound AGEs enhance TGFbeta2-mediated mesenchymal transition of lens epithelial cells via the noncanonical pathway: implications for secondary cataract formation. Biochem J. 2018;475:1427–40.
    1. Shu DY, Wojciechowski M, Lovicu FJ. ERK1/2-mediated EGFR-signaling is required for TGFbeta-induced lens epithelial-mesenchymal transition. Exp Eye Res. 2019;178:108–21.
    1. Boswell BA, Korol A, West-Mays JA, Musil LS. Dual function of TGFbeta in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell. 2017;28:907–21.
    1. Parreno J, Amadeo MB, Kwon EH, Fowler VM. Tropomyosin 3.1 Association With Actin Stress Fibers is Required for Lens Epithelial to Mesenchymal Transition. Invest Ophthalmol Vis Sci. 2020;61:2.
    1. Walker JL, Bleaken BM, Romisher AR, Alnwibit AA, Menko AS. In wound repair vimentin mediates the transition of mesenchymal leader cells to a myofibroblast phenotype. Mol Biol Cell. 2018;29:1555–70.
    1. Hecht I, Karesvuo P, Achiron A, Elbaz U, Laine I, Tuuminen R. Anti-inflammatory Medication After Cataract Surgery and Posterior Capsular Opacification. Am J Ophthalmol. 2020;215:104–11.
    1. Jiang J, Shihan MH, Wang Y, Duncan MK. Lens Epithelial Cells Initiate an Inflammatory Response Following Cataract Surgery. Invest Ophthalmol Vis Sci. 2018;59:4986–97.
    1. van den Berg TK, Kraal G. A function for the macrophage F4/80 molecule in tolerance induction. Trends Immunol. 2005;26:506–9.
    1. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117:1137–46.
    1. Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, et al.Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci. 2003;23:2284–93.
    1. Lutty GA, McLeod DS. Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Prog Retin Eye Res. 2018;62:58–76.
    1. Drinkwater JJ, Davis WA, Davis TME. A systematic review of risk factors for cataract in type 2 diabetes. Diabetes Metab Res Rev. 2019;35:e3073.
    1. Choi J, Hawley DP, Ashworth J, Edelsten C, Bossuyt A. An update on the modern management of paediatric uveitis. Br J Ophthalmol. 2019;103:1685–9.
    1. Xiao W, Chen X, Li W, Ye S, Wang W, Luo L, et al.Quantitative analysis of injury-induced anterior subcapsular cataract in the mouse: a model of lens epithelial cells proliferation and epithelial-mesenchymal transition. Sci Rep. 2015;5:8362.
    1. Mölzer C, Heissigerova J, Wilson HM, Kuffova L, Forrester JV. Immune Privilege: The Microbiome and Uveitis. Front Immunol. 2020;11:608377.
    1. Burkholder BM, Jabs DA. Uveitis for the non-ophthalmologist. Bmj. 2021;372:m4979.
    1. Caspi RR. A look at autoimmunity and inflammation in the eye. J Clin Invest. 2010;120:3073–83.
    1. Richardson RB, Ainsbury EA, Prescott CR, Lovicu FJ. Etiology of posterior subcapsular cataracts based on a review of risk factors including aging, diabetes, and ionizing radiation. Int J Radiat Biol. 2020;96:1339–61.
    1. Ozates S, Berker N, Cakar Ozdal P, Ozdamar Erol Y. Phacoemulsification in patients with uveitis: long-term outcomes. BMC Ophthalmol. 2020;20:109.
    1. Llop SM, Papaliodis GN. Cataract Surgery Complications in Uveitis Patients: A Review Article. Semin Ophthalmol. 2018;33:64–9.
    1. Pålsson S, Andersson Grönlund M, Skiljic D, Zetterberg M. Phacoemulsification with primary implantation of an intraocular lens in patients with uveitis. Clin Ophthalmol. 2017;11:1549–55.
    1. Steel DH, Lotery AJ. Idiopathic vitreomacular traction and macular hole: a comprehensive review of pathophysiology, diagnosis, and treatment. Eye (Lond). 2013;27Suppl 1:S1–21.
    1. Frisina R, Tessarolo F, Marchesoni I, Piccoli F, Bonomi E, Caciagli P, et al.Microscopic Observation of Proliferative Membranes in Fibrocontractive Retinal Disorders. J Ophthalmol. 2019;2019:9647947.
    1. Bok D Retinal photoreceptor-pigment epithelium interactions. Friedenwald lecture. Invest Ophthalmol Vis Sci. 1985;26:1659–94.
    1. Bazan NG. Homeostatic regulation of photoreceptor cell integrity: significance of the potent mediator neuroprotectin D1 biosynthesized from docosahexaenoic acid: the Proctor Lecture. Invest Ophthalmol Vis Sci. 2007;48:4866–81; biography 4–5.
    1. Steinberg RH. Interactions between the retinal pigment epithelium and the neural retina. Doc Ophthalmol. 1985;60:327–46.
    1. Murthy KR, Goel R, Subbannayya Y, Jacob HK, Murthy PR, Manda SS, et al.Proteomic analysis of human vitreous humor. Clin Proteomics. 2014;11:29.
    1. Peng Y, Yu Y, Lin L, Liu X, Zhang X, Wang P, et al.Glycosaminoglycans from bovine eye vitreous humour and interaction with collagen type II. Glycoconj J. 2018;35:119–28.
    1. Peynshaert K, Devoldere J, Minnaert AK, De Smedt SC, Remaut K. Morphology and Composition of the Inner Limiting Membrane: Species-Specific Variations and Relevance toward Drug Delivery Research. Curr Eye Res. 2019;44:465–75.
    1. Arjmand P, Hurley B. Flashes and floaters: a survey of Canadian ophthalmology residents’ practice patterns. Can J Ophthalmol. 2017;52:453–7.
    1. Karahan E, Karti O, Er D, Cam D, Aydin R, Zengin MO, et al.Risk factors for multiple retinal tears in patients with acute posterior vitreous detachment. Int Ophthalmol. 2018;38:257–63.
    1. Los LI, van der Worp RJ, van Luyn MJ, Hooymans JM. Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Invest Ophthalmol Vis Sci. 2003;44:2828–33.
    1. Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ. Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci. 2004;45:1041–6.
    1. Sebag J Anatomy and pathology of the vitreo-retinal interface. Eye (Lond). 1992;6 (Pt 6):541–52.
    1. Candiello J, Cole GJ, Halfter W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 2010;29:402–10.
    1. de Smet MD, Gad Elkareem AM, Zwinderman AH. The vitreous, the retinal interface in ocular health and disease. Ophthalmologica. 2013;230:165–78.
    1. Haugstad M, Moosmayer S, Bragadomicronttir R. Primary rhegmatogenous retinal detachment - surgical methods and anatomical outcome. Acta Ophthalmol. 2017;95:247–51.
    1. Coltrini D, Belleri M, Gambicorti E, Romano D, Morescalchi F, Krishna Chandran AM, et al.Gene expression analysis identifies two distinct molecular clusters of idiopatic epiretinal membranes. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165938.
    1. Nam KY, Kim JY. Effect of internal limiting membrane peeling on the development of epiretinal membrane after pars plana vitrectomy for primary rhegmatogenous retinal detachment. Retina. 2015;35:880–5.
    1. Feist RM Jr., King JL, Morris R, Witherspoon CD, Guidry C. Myofibroblast and extracellular matrix origins in proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 2014;252:347–57.
    1. Chen Z, Shao Y, Li X. The roles of signaling pathways in epithelial-to-mesenchymal transition of PVR. Mol Vis. 2015;21:706–10.
    1. Bochaton-Piallat ML, Kapetanios AD, Donati G, Redard M, Gabbiani G, Pournaras CJ. TGF-beta1, TGF-beta receptor II and ED-A fibronectin expression in myofibroblast of vitreoretinopathy. Invest Ophthalmol Vis Sci. 2000;41:2336–42.
    1. Heffer AM, Wang V, Libby RT, Feldon SE, Woeller CF, Kuriyan AE. Salinomycin inhibits proliferative vitreoretinopathy formation in a mouse model. PLoS One. 2020;15:e0243626.
    1. Idrees S, Sridhar J, Kuriyan AE. Proliferative Vitreoretinopathy: A Review. Int Ophthalmol Clin. 2019;59:221–40.
    1. Planck SR, Andresevic J, Chen JC, Holmes DL, Rodden W, Westra I, et al.Expression of growth factor mRNA in rabbit PVR model systems. Curr Eye Res. 1992;11:1031–9.
    1. Zhang W, Tan J, Liu Y, Li W, Gao Q, Lehmann PV. Assessment of the innate and adaptive immune system in proliferative vitreoretinopathy. Eye (Lond). 2012;26:872–81.
    1. Roybal CN, Velez G, Toral MA, Tsang SH, Bassuk AG, Mahajan VB. Personalized Proteomics in Proliferative Vitreoretinopathy Implicate Hematopoietic Cell Recruitment and mTOR as a Therapeutic Target. Am J Ophthalmol. 2018;186:152–63.
    1. Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res. 2020;74:100778.

Source: PubMed

3
Subscribe