Improving Executive Functions at School in Children With Special Needs by Educational Robotics

Maria Chiara Di Lieto, Emanuela Castro, Chiara Pecini, Emanuela Inguaggiato, Francesca Cecchi, Paolo Dario, Giovanni Cioni, Giuseppina Sgandurra, Maria Chiara Di Lieto, Emanuela Castro, Chiara Pecini, Emanuela Inguaggiato, Francesca Cecchi, Paolo Dario, Giovanni Cioni, Giuseppina Sgandurra

Abstract

Children with Special Needs represent a highly heterogeneous group in terms of neurofunctional, behavioral, and socio-cognitive characteristics, but they have in common a frequent impairment of Executive Functions. Educational Robotics is generally dedicated to study the effects of constructing and programming robots based on children's learning and academic achievement. Recently, we found that being engaged in progressively more challenging robot planning and monitoring (ER-Lab) promotes visual-spatial working memory and response inhibition in early childhood during typical development, and that an ER-Lab can be a feasible rehabilitative tool for children with Special Needs. The present study aimed to verify the efficacy of the ER-Lab on Executive Functions in children with Special Needs for the first time by using an RCT within their school environment. To pursue these aims, this study reports the results obtained in 42 first-grade children with Special Needs engaged in school Educational Robotics Laboratories (ER-Lab) to promote Executive Functions by means of enjoyable, intensive, and incrementally more challenging activities requiring them to program a bee-shaped robot called Bee-bot® (Campus Store). Several adaptations were done to meet different motor, cognitive, and social needs. All children were evaluated by means of standardized tests performed by each child before and at the end of the ER-Lab activities. Children with Special Needs had significantly improved inhibition skills, and children with attentional impairment had more benefits in their inhibition of motor responses tasks with respect to children with a language deficit. Results of the study and future perspectives on how ER-Lab programs could become a powerful tool in classrooms with children with special needs are discussed.

Keywords: children; educational robotics; executive functions; response inhibition; special needs; working memory.

Copyright © 2020 Di Lieto, Castro, Pecini, Inguaggiato, Cecchi, Dario, Cioni and Sgandurra.

Figures

FIGURE 1
FIGURE 1
The Bee-bot robot.
FIGURE 2
FIGURE 2
The carpets utilized with the Bee-bot robot.
FIGURE 3
FIGURE 3
(a) Switched on/off sensors of 65 mm diameter, Jelly Bean; (b) The adapted Bee-bot.
FIGURE 4
FIGURE 4
The study flow diagram.
FIGURE 5
FIGURE 5
The ER-Lab test.
FIGURE 6
FIGURE 6
Visual inspection of changing in ER-Lab test at the beginning, middle, and end sessions.

References

    1. Aksayli N. D., Sala G., Gobet F. (2019). The cognitive and academic benefits of Cogmed: a meta-analysis. Educ. Res. Rev. 27 229–243. 10.1016/j.edurev.2019.04.003
    1. Alimisis D. (2013). Educational robotics: open questions and new challenges. Themes Sci. Technol. Educ. 6 63–71.
    1. Astrea G., Battini R., Lenzi S., Frosini S., Bonetti S., Moretti E., et al. (2016). Learning disabilities in neuromuscular disorders: a springboard for adult life. Acta Myol. 35 90–95.
    1. Bandura A. (1962). “Social learning through imitation,” in Nebraska Symposium on Motivation, ed. Jones M. R., (Lincoln: University of Nebraska Press; ), 211–274.
    1. Bandura A., Grusec J. E., Menlove F. L. (1966). Observational learning as a function of symbolization and incentive set. Child Dev. 37 499–506. 10.1111/j.1467-8624.1966.tb04302.x
    1. Bargagna S., Castro E., Cecchi F., Cioni G., Dario P., Dell’Omo M., et al. (2018). Educational robotics in down syndrome: a feasibility study. Technol. Knowl. Learn. 24 315–323. 10.1007/s10758-018-9366-z
    1. Barker B. S., Ansorge J. (2007). Robotics as means to increase achievement scores in an informal learning environment. J. Res. Technol. Educ. 39 229–243. 10.1080/15391523.2007.10782481
    1. Battini R., Chieffo D., Bulgheroni S., Piccini G., Pecini C., Lucibello S., et al. (2018). Cognitive profile in Duchenne muscular dystrophy boys without intellectual disability: the role of executive functions. Neuromuscul. Disord. 28 122–128. 10.1016/j.nmd.2017.11.018
    1. Benitti F. B. V. (2012). Exploring the educational potential of robotics in schools: a systematic review. Comput. Educ. 58 978–988. 10.1016/j.compedu.2011.10.006
    1. Bisiacchi P. S., Cendron M., Gugliotta M., Tressoldi P. E., Vio C. (2005). BVN 5-11: Batteria di Valutazione Neuropsicologica per L’età Evolutiva. Trento: Centro Studi Edizioni Erickson.
    1. Borella E., Carretti B., Pelegrina S. (2010). the specific role of inhibition in reading comprehension in good and poor comprehenders. J. Learn. Disabil. 43 541–552. 10.1177/0022219410371676
    1. Bull R., Lee K. (2014). Executive functioning and mathematics achievement. Child Dev. Perspect. 8 36–41. 10.1111/cdep.12059
    1. Businaro N., Zecca L., Castiglioni M. (2014). Implicazioni psicologiche di un laboratorio di robotica educativa nella scuola primaria: riflessioni sul caso di un bambino con ritardo mentale. Psicol. Clin. Dello Sviluppo 18 311–318.
    1. Castellanos F. X., Sonuga-Barke E. J. S., Milham M. P., Tannock R. (2006). Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn. Sci. 10 117–123. 10.1016/j.tics.2006.01.011
    1. Caviola S., Mammarella I. C., Cornoldi C., Lucangeli D. (2012). The involvement of working memory in children’s exact and approximate mental addition. J. Exp. Child Psychol. 112 141–160. 10.1016/j.jecp.2012.02.005
    1. Cheng Y. W., Sun P. C., Chen N. S. (2018). The essential applications of educational robot: requirement analysis from the perspectives of experts, researchers and instructors. Comput. Educ. 126 399–416. 10.1016/j.compedu.2018.07.020
    1. Christopher M. E., Miyake A., Keenan J. M., Pennington B., DeFries J. C., Wadsworth S. J., et al. (2012). Predicting word reading and comprehension with executive function and speed measures across development: a latent variable analysis. J. Exp. Psychol. Gen. 141 470–488. 10.1037/a0027375
    1. Conchinha C., Osório P., De Freitas J. C. (2016). “Playful learning: educational robotics applied to students with learning disabilities,” in Proceedings of the 2015 International Symposium on Computers in Education, Setubal.
    1. Cook A., Encarnação P., Adams K. (2010). Robots: assistive technologies for play, learning and cognitive development. Technol. Disabil. 22 127–145. 10.3233/TAD20100297
    1. Cook A., Howery K., Gu J., Meng M. (2000). Robot enhanced interaction and learning for children with profound physical disabilities. Technol. Disabil. 13 1–8. 10.3233/tad-2000-13101
    1. Costescu C. A., Vanderborght B., David D. O. (2015). Reversal learning task in children with autism spectrum disorder: a robot-based approach. J. Autism Dev. Disord. 45 3715–3725. 10.1007/s10803-014-2319-z
    1. D’Amico A., Passolunghi M. C. (2009). Naming speed and effortful and automatic inhibition in children with arithmetic learning disabilities. Learn. Ind. Differ. 19 170–180. 10.1016/J.LINDIF.2009.01.001
    1. Di Lieto M. C., Brovedani P., Pecini C., Chilosi A. M., Belmonti V., Fabbro F., et al. (2017a). Spastic diplegia in preterm-born children: executive function impairment and neuroanatomical correlates. Res. Dev. Disabil. 61 116–126. 10.1016/j.ridd.2016.12.006
    1. Di Lieto M. C., Inguaggiato E., Castro E., Cecchi F., Cioni G., Dell’Omo M., et al. (2017b). Educational robotics intervention on executive functions in preschool children: a pilot study. Comput. Hum. Behav. 71 16–23. 10.1016/j.chb.2017.01.018
    1. Di Lieto M. C., Pecini C., Castro E., Inguaggiato E., Cecchi F., Dario P., et al. (2019). “Robot programming to empower higher cognitive functions in early childhood,” in Smart Learning with Educational Robotics, ed. Daniela L., (Cham: Springer; ).
    1. Diamond A. (2013). Executive functions. Ann. Rev. Psychol. 64 135–168. 10.1146/annurev-psych-113011-143750
    1. Diamond A., Lee C., Senften P., Lam A., Abbott D. (2019). Randomized control trial of tools of the mind: marked benefits to kindergarten children and their teachers. PLoS One 14:e0222447. 10.1371/journal.pone.0222447
    1. Diamond A., Lee K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science 333 959–964. 10.1126/science.1204529
    1. Diamond A., Ling D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 18 34–48. 10.1016/j.dcn.2015.11.005
    1. Dias N. M., Seabra A. G. (2015). Is it possible to promote executive functions in preschoolers? A case study in Brazil. Int. J. Child Care Educ. Policy 9:6.
    1. Diehl J. J., Schmitt L. M., Villano M., Crowell C. R. (2011). The clinical use of robots for individuals with autism spectrum disorder: a critical review. Res. Autism Spectr. Disord. 6 249–262. 10.1016/j.rasd.2011.05.006.The
    1. Duncan R. J., Schmitt S. A., Burke M., McClelland M. M. (2018). Combining a kindergarten readiness summer program with a self-regulation intervention improves school readiness. Early Child. Res. Q. 42 291–300. 10.1016/j.ecresq.2017.10.012
    1. Fridin M., Yaakobi Y. (2011). “Educational robots for children with ADHD/ADD architectural design,” in Proceedings from International Conference on Computational Vision and Robotics. Bhubaneswar: IPM Pvt. Ltd.
    1. Friedman N. P., Miyake A. (2017). Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex 86 186–204. 10.1016/j.cortex.2016.04.023
    1. Fuhs M. W., Day J. D. (2011). Verbal ability and executive functioning development in preschoolers at head start. Dev. Psychol. 47 404–416. 10.1037/a0021065
    1. Gandolfi E., Viterbori P., Traverso L., Carmen Usai M. (2014). Inhibitory processes in toddlers: a latent-variable approach. Front. Psychol. 5:381. 10.3389/fpsyg.2014.00381
    1. Gilmore C., Keeble S., Richardson S., Cragg L. (2015). The role of cognitive inhibition in different components of arithmetic. ZDM Math. Educ. 47 771–782. 10.1007/s11858-014-0659-y
    1. Howard S. J., Vasseleu E., Neilsen-Hewett C., Cliff K. (2018). Evaluation of the Preschool Situational Self-Regulation Toolkit (PRSIST) Program for Supporting children’s early self-regulation development: study protocol for a cluster randomized controlled trial. Trials 19:64.
    1. Hussain S., Lindh J., Shukur G. (2006). The effect of LEGO training on pupils’ school performance in mathematics, problem solving ability and attitude: swedish data. Educ. Technol. Soc. 9 182–194. 10.2307/jeductechsoci.9.3.182
    1. Janka P. (2008). “Using a programmable toy at preschool age: why and how,” in Proceedings of the 1st International Conference on Simulation, Modeling, and Programming for Autonomous Robots, 112–121. Available at:
    1. Kapa L. L., Plante E. (2015). Executive function in SLI: recent advances and future directions. Curr. Dev. Disord. Rep. 2 245–252. 10.1007/s40474-015-0050-x
    1. Kazakoff E. R., Bers M. U. (2014). Put your robot in, put your robot out: sequencing through programming robots in early childhood. J. Educ. Comput. Res. 50 553–573. 10.2190/EC.50.4.f
    1. Klingberg T., Fernell E., Olesen P. J., Johnson M., Gustafsson P., Dahlström K., et al. (2005). Computerized training of working memory in children with ADHD–a randomized, controlled trial. J. Am. Acad. Child Adolesc. Psychiatr. 44 177–186. 10.1097/00004583-200502000-00010
    1. Korkman M., Kirk U., Kemp S. (2007). NEPSY II: Clinical and Interpretive Manual. San Antonio, TX: PsychCorp.
    1. Krishnaswamy S., Shriber L., Srimathveeravalli G. (2014). The design and efficacy of a robot-mediated visual motor program for children learning disabilities. J. Comput. Assisted Learn. 30 121–131. 10.1111/jcal.12025
    1. La Paglia F., Rizzo R., La Barbera D. (2011). Use of robotics kits for the enhancement of metacognitive skills of mathematics: a possible approach. Ann. Rev. Cyberther. Telemed. 9 22–25. 10.3233/978-1-60750-766-6-26
    1. Lanfranchi S., Jerman O., Dal Pont E., Alberti A., Vianello R. (2010). Executive function in adolescents with Down syndrome. J. Intellect. Disabil. Res. 54 308–319. 10.1111/j.1365-2788.2010.01262.x
    1. Lanfranchi S., Mammarella I. C., Carretti B. (2015). Spatial-simultaneous working memory and selective interference in Down syndrome. Child Neuropsychol. 21 481–489. 10.1080/09297049.2014.913557
    1. Lei D., Du M., Wu M., Chen T., Huang X., Du X., et al. (2015). Functional MRI reveals different response inhibition between adults and children with ADHD. Neuropsychology 29 874. 10.1037/neu0000200
    1. Lindsay S., Hounsell K. G. (2017). Adapting a robotics program to enhance participation and interest in STEM among children with disabilities: a pilot study. Disabil. Rehabil. Assist. Technol. 12 694–704. 10.1080/17483107.2016.1229047
    1. Lott I., Dierssen M. (2010). Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol. 9 623–633. 10.1016/s1474-4422(10)70112-5
    1. Mammarella I. C., Toso C., Pazzaglia F., Cornoldi C. (2008). BVS-Corsi. Batteria per la Valutazione della Memoria Visiva e Spaziale. Con CD-ROM. Trento: Centro Studi Edizioni Erickson.
    1. Mammarella I. C., Lucangeli D., Cornoldi C. (2010). Spatial working memory and arithmetic deficits in children with nonverbal learning difficulties. J. Learn. Disabil. 43 455–468. 10.1177/0022219409355482
    1. Margari L., Craig F., Margari F., Legrottaglie A., Palumbi R., De Giambattista C. (2016). A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatric Dis. Treat. 12 1191–1202. 10.2147/NDT.S104620
    1. Marshall P. J., Drew A. R. (2014). What makes Simon says so difficult for young children? J. Exp. Child Psychol. 126 112–119. 10.1016/j.jecp.2014.03.011
    1. Marzocchi G. M., Re A. M., Cornoldi C. (2010). BIA. Batteria Italiana per l’ADHID per la Valutazione dei Bambini con Deficit di Attenzione-Iperattività. Con DVD e CD-ROM. Trento: Centro Studi Edizioni Erickson.
    1. McFarland J., Hussar B., Wang X., Zhang J., Wang K. (2018). The Condition of Education 2018 (NCES 2018-144). US Department of Education. Washington, DC: National Center for Education Statistics.
    1. MIUR – Ufficio Statistica e Studi (2018). I Principali Dati Relativi agli Alunni con Disabilità_a.s.2016_2017_def. Available at:
    1. Miyake A., Friedman N. P., Emerson M. J., Witzki A. H., Howerter A., Wager T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe”. Tasks: a latent variable analysis. Cogn. Psychol. 41 49–100. 10.1006/cogp.1999.0734
    1. Moll K., Landerl K., Göbel S. M., Snowling M. J., Gooch D. (2014). Cognitive risk factors for specific learning disorder. J. Learn. Disabil. 49 272–281. 10.1177/0022219414547221
    1. Morra S., Panesi S., Traverso L., Usai M. C. (2018). Which tasks measure what? reflections on executive function development and a commentary on Podjarny, Kamawar, and Andrews (2017). J. Exp. Child Psychol. 167 246–258. 10.1016/j.jecp.2017.11.004
    1. Noble K. G., McCandliss B. D., Farah M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev. Sci. 10 464–480. 10.1111/j.1467-7687.2007.00600.x
    1. Nugent G., Barker B., Grandgenett N. (2008). “The effect of 4-H robotics and geospatial technologies on science, technology, engineering, and mathematics learning and attitudes,” in Proceedings of the World Conference on Educational Multimedia, Hypermedia and Telecommunications 2008, Chesapeake, VA.
    1. Papert S., Harel I. (eds) (1991). “Situating constructionism,” in Constructionism, (Norwood, NJ: Ablex Publishing Corporation; ).
    1. Pellicano E. (2012). The development of executive function in autism. Autism Res. Treat. 2012 1–8. 10.1155/2012/146132
    1. Peng P., Fuchs D. (2016). A meta-analysis of working memory deficits in children with learning difficulties. J. Learn. Disabil. 49 3–20. 10.1177/0022219414521667
    1. Pennington B. F., Ozonoff S. (1996). Executive functions and developmental psychopathology. J. Child Psychol. Psychiatry 37 51–87. 10.1111/j.1469-7610.1996.tb01380.x
    1. Piaget J., Inhelder B. (1966). L’image Mentale Chez L’enfant. Paris: Presses Universitaires de France.
    1. Pirila S., Van Der Meere J. J., Rantanen K., Jokiluoma M., Eriksson K. (2011). Executive functions in youth with spastic cerebral palsy. J. Child Neurol. 26 817–821. 10.1177/0883073810392584
    1. Robins B., Dautenhahn K., Boekhorst R., Billard A. (2005). Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univer. Access Inf. Soc. 4 105–120. 10.1007/s10209-005-0116-3
    1. Robins B., Dautenhahn K., Ferrari E., Kronreif G., Prazak-Aram B., Marti P., et al. (2012). Scenarios of robot-assisted play for children with cognitive and physical disabilities. Inter. Stud. 13 189–234. 10.1075/is.13.2.03rob
    1. Robins B., Dickerson P., Stribling P., Dautenhahn K. (2004). Robot-mediated joint attention in children with autism: a case study in robot-human interaction. Inter. Stud. 5 161–198. 10.1075/is.5.2.02rob
    1. Rueda M. R., Rothbart M. K., McCandliss B. D., Saccomanno L., Posner M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Natl. Acad. Sci. 102 2–7. 10.1073/pnas.0506897102
    1. Scassellati B., Admoni H., Matariæ M. (2012). Robots for use in autism research. Ann. Rev. Biomed. Eng. 14 275–294. 10.1146/annurev-bioeng-071811-150036
    1. Shinaver C. S., Entwistle P. C., Söderqvist S. (2014). Cogmed WM training: reviewing the reviews. Appl. Neuropsychol. Child 3 163–172. 10.1080/21622965.2013.875314
    1. St Clair-Thompson H. L., Gathercole S. E. (2006). Executive functions and achievements in school: shifting, updating, inhibition, and working memory. Q. J. Exp. Psychol. 59 745–759. 10.1080/17470210500162854
    1. Swanson H. L., Zheng X., Jerman O. (2009). Working memory, short-term memory, and reading disabilities. J. Learn. Disabil. 42 260–287. 10.1177/0022219409331958
    1. Thorell L. B., Lindqvist S., Bergman Nutley S., Bohlin G., Klingberg T. (2009). Training and transfer effects of executive functions in preschool children. Dev. Sci. 12 106–113. 10.1111/j.1467-7687.2008.00745.x
    1. Traverso L., Viterbori P., Usai M. C. (2015). Improving executive function in childhood: evaluation of a training intervention for 5-year-old children. Front. Psychol. 6:525. 10.3389/fpsyg.2015.00525
    1. Urgesi C., Fabbro F. (2011). NEPSY-2: Contributo alla Taratura Italiana. Firenze: Giunti O.S. Organizzazioni Speciali.
    1. Usai M. C., Viterbori P., Traverso L., De Franchis V. (2014). Latent structure of executive function in five- and six-year-old children: a longitudinal study. Eur. J. Dev. Psychol. 11 447–462. 10.1080/17405629.2013.840578
    1. Vicari S., Di Vara S. (2017). Funzioni Esecutive e Disturbi dello Sviluppo. Diagnosi, Trattamento Clinico e Intervento Educativo. Trento: Centro Studi Edizioni Erickson.
    1. Vilgis V., Silk T. J., Vance A. (2015). Executive function and attention in children and adolescents with depressive disorders: a systematic review. Eur. Child Adolesc. Psychiatry 24 365–384. 10.1007/s00787-015-0675-7
    1. Viterbori P., Usai M. C., Traverso L., De Franchis V. (2015). How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: a longitudinal study. J. Exp. Child Psychol. 140 38–55. 10.1016/j.jecp.2015.06.014
    1. Vygotsky L. (1987). Zone of proximal development. Mind Soc. Dev. Higher Psychol. Process. 157:5291.
    1. Wass S., Porayska-Pomsta K., Johnson M. H. (2011). Training attentional control in infancy. Curr. Biol. 21 1543–1547. 10.1016/j.cub.2011.08.004
    1. Wiebe S. A., Espy K. A., Charak D. (2008). Using confirmatory factor analysis to understand executive control in preschool children: i. latent structure. Dev. Psychol. 44 575–587. 10.1037/0012-1649.44.2.575
    1. Wiebe S. A., Sheffield T., Nelson J. M., Clark C. A. C., Chevalier N., Espy K. A. (2011). The structure of executive function in 3-year-olds. J. Exp. Child Psychol. 108 436–452. 10.1016/j.jecp.2010.08.008
    1. Willoughby M. T., Blair C. B., Wirth R. J., Greenberg M. (2012). The measurement of executive function at age 5. Psychol. Assess. 24 226–239. 10.1037/a0025361

Source: PubMed

3
Subscribe