Sarcopenia and Cardiovascular Diseases

Abdulla A Damluji, Maha Alfaraidhy, Noora AlHajri, Namit N Rohant, Manish Kumar, Christina Al Malouf, Samira Bahrainy, Min Ji Kwak, Wayne B Batchelor, Daniel E Forman, Michael W Rich, James Kirkpatrick, Ashok Krishnaswami, Karen P Alexander, Gary Gerstenblith, Peggy Cawthon, Christopher R deFilippi, Parag Goyal, Abdulla A Damluji, Maha Alfaraidhy, Noora AlHajri, Namit N Rohant, Manish Kumar, Christina Al Malouf, Samira Bahrainy, Min Ji Kwak, Wayne B Batchelor, Daniel E Forman, Michael W Rich, James Kirkpatrick, Ashok Krishnaswami, Karen P Alexander, Gary Gerstenblith, Peggy Cawthon, Christopher R deFilippi, Parag Goyal

Abstract

Sarcopenia is the loss of muscle strength, mass, and function, which is often exacerbated by chronic comorbidities including cardiovascular diseases, chronic kidney disease, and cancer. Sarcopenia is associated with faster progression of cardiovascular diseases and higher risk of mortality, falls, and reduced quality of life, particularly among older adults. Although the pathophysiologic mechanisms are complex, the broad underlying cause of sarcopenia includes an imbalance between anabolic and catabolic muscle homeostasis with or without neuronal degeneration. The intrinsic molecular mechanisms of aging, chronic illness, malnutrition, and immobility are associated with the development of sarcopenia. Screening and testing for sarcopenia may be particularly important among those with chronic disease states. Early recognition of sarcopenia is important because it can provide an opportunity for interventions to reverse or delay the progression of muscle disorder, which may ultimately impact cardiovascular outcomes. Relying on body mass index is not useful for screening because many patients will have sarcopenic obesity, a particularly important phenotype among older cardiac patients. In this review, we aimed to: (1) provide a definition of sarcopenia within the context of muscle wasting disorders; (2) summarize the associations between sarcopenia and different cardiovascular diseases; (3) highlight an approach for a diagnostic evaluation; (4) discuss management strategies for sarcopenia; and (5) outline key gaps in knowledge with implications for the future of the field.

Keywords: body mass index; cardiovascular diseases; older adults; sarcopenia.

Conflict of interest statement

Disclosures None.

Figures

Figure 1.
Figure 1.
Pathophysiologic mechanisms for development of sarcopenia in patients with cardiovascular disease.
Figure 2.
Figure 2.
Algorithm providing a screening and diagnostic approach for sarcopenia and potential therapeutic interventions associated with improvement in patients with cardiovascular disease. CVD indicates cardiovascular disease; and TUG, Timed Up and Go.

References

    1. He W, Sengupta M, Velkoff V, DeBarros K. In; 65+ in the United States: 2005, Current Population Reports. 2005:P23–209. Accessed April 28, 2023.
    1. Damluji AA, Forman DE, van Diepen S, Alexander KP, Page RL, Hummel SL, Menon V, Katz JN, Albert NM, Afilalo J, et al. ; American Heart Association Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing. Older adults in the cardiac intensive care unit: factoring geriatric syndromes in the management, prognosis, and process of care: a scientific statement from the American Heart Association. Circulation. 2020;141:e6–e32. doi: 10.1161/CIR.0000000000000741
    1. Damluji AA, Forman DE, Wang TY, Chikwe J, Kunadian V, Rich MW, Young BA, Page RL, DeVon HA, Alexander KP; American Heart Association Cardiovascular Disease in Older Populations Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Radiology and Intervention; and Council on Lifestyle and Cardiometabolic Health. Management of acute coronary syndrome in the older adult population: a scientific statement from the American Heart Association. Circulation. 2023;147:e32–e62. doi: 10.1161/CIR.0000000000001112
    1. Beaudart C, Zaaria M, Pasleau F, Reginster J-Y, Bruyère O. Health outcomes of sarcopenia: a systematic review and meta-analysis. PLoS One. 2017;12:e0169548. doi: 10.1371/journal.pone.0169548
    1. Gao K, Cao LF, Ma WZ, Gao YJ, Luo MS, Zhu J, Li T, Zhou D. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: findings from the China health and retirement longitudinal study. EClinicalMedicine. 2022;44:101264. doi: 10.1016/j.eclinm.2021.101264
    1. He N, Zhang Y, Zhang L, Zhang S, Ye H. Relationship between sarcopenia and cardiovascular diseases in the elderly: an overview. Front Cardiovasc Med. 2021;8:743710. doi: 10.3389/fcvm.2021.743710
    1. Sasaki K-I, Kakuma T, Sasaki M, Ishizaki Y, Fukami A, Enomoto M, Adachi H, Matsuse H, Shiba N, Ueno T, et al. . The prevalence of sarcopenia and subtypes in cardiovascular diseases, and a new diagnostic approach. J Cardiol. 2020;76:266–272. doi: 10.1016/j.jjcc.2020.03.004
    1. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127:990S–991S. doi: 10.1093/jn/127.5.990S
    1. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147:755–763. doi: 10.1093/oxfordjournals.aje.a009520
    1. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (1985). 2003;95:1851–1860. doi: 10.1152/japplphysiol.00246.2003
    1. Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci. 2006;61:72–77. doi: 10.1093/gerona/61.1.72
    1. Sanchez-Rodriguez D, Marco E, Cruz-Jentoft AJ. Defining sarcopenia: some caveats and challenges. Curr Opin Clin Nutr Metab Care. 2020;23:127–132. doi: 10.1097/MCO.0000000000000621
    1. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel J-P, Rolland Y, Schneider SM, et al. ; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, et al. ; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. doi: 10.1093/ageing/afy169
    1. Muscaritoli M, Anker SD, Argilés J, Aversa Z, Bauer JM, Biolo G, Boirie Y, Bosaeus I, Cederholm T, Costelli P, et al. . Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr. 2010;29:154–159. doi: 10.1016/j.clnu.2009.12.004
    1. Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, et al. . Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249–256. doi: 10.1016/j.jamda.2011.01.003
    1. Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Stewart Coats AJ, Cummings SR, Evans WJ, et al. . Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12:403–409. doi: 10.1016/j.jamda.2011.04.014
    1. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, et al. . The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69:547–558. doi: 10.1093/gerona/glu010
    1. Chen L-K, Liu L-K, Woo J, Assantachai P, Auyeung T-W, Bahyah KS, Chou M-Y, Chen L-Y, Hsu P-S, Krairit O, et al. . Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15:95–101. doi: 10.1016/j.jamda.2013.11.025
    1. Chen LK, Woo J, Assantachai P, Auyeung T-W, Chou M-Y, Iijima K, Jang HC, Kang L, Kim M, Kim S, et al. . Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21:300–307.e2. doi: 10.1016/j.jamda.2019.12.012
    1. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, Magaziner JM, Newman AB, Kiel DP, Cooper C, et al. . Sarcopenia definition: the position statements of the Sarcopenia Definition and Outcomes Consortium. J Am Geriatr Soc. 2020;68:1410–1418. doi: 10.1111/jgs.16372
    1. Cawthon PM, Manini T, Patel SM, Newman A, Travison T, Kiel DP, Santanasto AJ, Ensrud KE, Xue QL, Shardell M, et al. . Putative cut-points in sarcopenia components and incident adverse health outcomes: an SDOC analysis. J Am Geriatr Soc. 2020;68:1429–1437. doi: 10.1111/jgs.16517
    1. Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar D, Maria Batsis A, Bauer M, Juergen Boirie Y, Cruz-Jentoft J, Alfonso Dicker D, et al. . Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes Facts. 2022;1:15. doi: 10.1159/000521241
    1. Kirk B, Zanker J, Bani Hassan E, Bird S, Brennan-Olsen S, Duque G. Sarcopenia Definitions and Outcomes Consortium (SDOC) criteria are strongly associated with malnutrition, depression, falls, and fractures in high-risk older persons. J Am Med Dir Assoc. 2021;22:741–745. doi: 10.1016/j.jamda.2020.06.050
    1. Severin R, Berner PM, Miller KL, Mey J. The crossroads of aging: an intersection of malnutrition, frailty, and sarcopenia. Topics Geriatr Rehab. 2019;35:79–87. doi: 10.1097/tgr.0000000000000218
    1. Ali S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology. 2014;60:294–305.doi: 10.1159/000356760
    1. Fryar CD, C M, Afful J. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. 2020. Accessed April 28, 2023.
    1. Stephen WC, Janssen I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging. 2009;13:460–466. doi: 10.1007/s12603-009-0084-z
    1. Farmer RE, Mathur R, Schmidt AF, Bhaskaran K, Fatemifar G, Eastwood SV, Finan C, Denaxas S, Smeeth L, Chaturvedi N. Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: a cohort study and Mendelian randomization analysis using the UK Biobank. J Am Heart Assoc. 2019;8:e011638. doi: 10.1161/JAHA.118.011638
    1. Abete I, Konieczna J, Zulet MA, Galmés-Panades AM, Ibero-Baraibar I, Babio N, Estruch R, Vidal J, Toledo E, Razquin C, et al. ; PREDIMED-PLUS Investigators. Association of lifestyle factors and inflammation with sarcopenic obesity: data from the PREDIMED-Plus trial. J Cachexia Sarcopenia Muscle. 2019;10:974–984. doi: 10.1002/jcsm.12442
    1. Clark BC, Manini TM. What is dynapenia? Nutrition. 2012;28:495–503. doi: 10.1016/j.nut.2011.12.002
    1. Clark BC. Neuromuscular changes with aging and sarcopenia. J Frailty Aging. 2019;8:7–9. doi: 10.14283/jfa.2018.35
    1. Clark BC, Carson RG. Sarcopenia and neuroscience: learning to communicate. J Gerontol A Biol Sci Med Sci. 2021;76:1882–1890. doi: 10.1093/gerona/glab098
    1. Fukunishi S, Asai A, Yokohama K, Nishiguchi S, Higuchi K. Pathophysiology and mechanisms of primary sarcopenia (review). Int J Mol Med. 2021;48:156. doi: 10.3892/ijmm.2021.4989
    1. Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines. Cells. 2022;11:160. doi: 10.3390/cells11010160
    1. Wilkinson DJ, Piasecki M, Atherton PJ. The age-related loss of skeletal muscle mass and function: measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res Rev. 2018;47:123–132. doi: 10.1016/j.arr.2018.07.005
    1. Cretoiu D, Pavelescu L, Duica F, Radu M, Suciu N, Cretoiu SM. Myofibers. In: Advances in Experimental Medicine and Biology. Springer Singapore, 2018:23–46.
    1. Schiaffino S, Reggiani C, Murgia M. Fiber type diversity in skeletal muscle explored by mass spectrometry-based single fiber proteomics. Histol Histopathol. 2020;35:239–246. doi: 10.14670/HH-18-170
    1. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Aging-related loss of muscle mass and function. Physiol Rev. 2019;99:427–511. doi: 10.1152/physrev.00061.2017
    1. Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93:23–67. doi: 10.1152/physrev.00043.2011
    1. Csete ME. Basic science of frailty-biological mechanisms of age-related sarcopenia. Anesth Analg. 2021;132:293–304. doi: 10.1213/ANE.0000000000005096
    1. Correa-de-Araujo R, Addison O, Miljkovic I, Goodpaster BH, Bergman BC, Clark RV, Elena JW, Esser KA, Ferrucci L, Harris-Love MO, et al. . Myosteatosis in the context of skeletal muscle function deficit: an interdisciplinary workshop at the National Institute on Aging. Front Physiol. 2020;11:963. doi: 10.3389/fphys.2020.00963
    1. Beavers KM, Beavers DP, Houston DK, Harris TB, Hue TF, Koster A, Newman AB, Simonsick EM, Studenski SA, Nicklas BJ, et al. . Associations between body composition and gait-speed decline: results from the Health, Aging, and Body Composition study. Am J Clin Nutr. 2013;97:552–560. doi: 10.3945/ajcn.112.047860
    1. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2006;904:437–448. doi: 10.1111/j.1749-6632.2000.tb06498.x
    1. Ali S, Garcia JM. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options - a mini-review. Gerontology. 2014;60:294–305. doi: 10.1159/000356760
    1. Dao T, Green AE, Kim YA, Bae SJ, Ha KT, Gariani K, Lee MR, Menzies KJ, Ryu D. Sarcopenia and muscle aging: a brief overview. Endocrinol Metab (Seoul). 2020;35:716–732. doi: 10.3803/EnM.2020.405
    1. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19:422–424. doi: 10.1096/fj.04-2640fje
    1. Lee EJ, Neppl RL. Influence of age on skeletal muscle hypertrophy and atrophy signaling: established paradigms and unexpected links. Genes (Basel). 2021;12:688. doi: 10.3390/genes12050688
    1. Banks NF, Rogers EM, Church DD, Ferrando AA, Jenkins NDM. The contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia Muscle. 2022;13:114–127. doi: 10.1002/jcsm.12898
    1. Ohara M, Kohara K, Tabara Y, Ochi M, Nagai T, Igase M, Miki T. Sarcopenic obesity and arterial stiffness, pressure wave reflection and central pulse pressure: the J-SHIPP study. Int J Cardiol. 2014;174:214–217. doi: 10.1016/j.ijcard.2014.03.194
    1. Zhang L, Guo Q, Feng B-L, Wang C-Y, Han P-P, Hu J, Sun X-D, Zeng W-F, Zheng Z-X, Li H-S, et al. . A cross-sectional study of the association between arterial stiffness and sarcopenia in Chinese community-dwelling elderly using the Asian Working Group for Sarcopenia Criteria. J Nutr Health Aging. 2019;23:195–201. doi: 10.1007/s12603-018-1147-9
    1. Tap L, Kirkham FA, Mattace-Raso F, Joly L, Rajkumar C, Benetos A. Unraveling the links underlying arterial stiffness, bone demineralization, and muscle loss. Hypertension. 2020;76:629–639. doi: 10.1161/HYPERTENSIONAHA.120.15184
    1. Jeon YK, Shin MJ, Saini SK, Custodero C, Aggarwal M, Anton SD, Leeuwenburgh C, Mankowski RT. Vascular dysfunction as a potential culprit of sarcopenia. Exp Gerontol. 2021;145:111220. doi: 10.1016/j.exger.2020.111220
    1. Rasmussen BB, Fujita S, Wolfe RR, Mittendorfer B, Roy M, Rowe VL, Volpi E. Insulin resistance of muscle protein metabolism in aging. FASEB J. 2006;20:768–769. doi: 10.1096/fj.05-4607fje
    1. Timmerman KL, Volpi E. Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr Metab Cardiovasc Dis. 2013;23:S44–S50. doi: 10.1016/j.numecd.2012.03.013
    1. Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: the potential role of an aged immune system. Ageing Res Rev. 2017;36:1–10. doi: 10.1016/j.arr.2017.01.006
    1. Nishikawa H, Fukunishi S, Asai A, Yokohama K, Nishiguchi S, Higuchi K. Pathophysiology and mechanisms of primary sarcopenia (review). Int J Mol Med. 2021;48:156. doi: 10.3892/ijmm.2021.4989
    1. Buchmann N, Fielitz J, Spira D, König M, Norman K, Pawelec G, Goldeck D, Demuth I, Steinhagen-Thiessen E. Muscle mass and inflammation in older adults: impact of the metabolic syndrome. Gerontology. 2022;68:989–998. doi: 10.1159/000520096
    1. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2
    1. Yin J, Lu X, Qian Z, Xu W, Zhou X. New insights into the pathogenesis and treatment of sarcopenia in chronic heart failure. Theranostics. 2019;9:4019–4029. doi: 10.7150/thno.33000
    1. Sandri M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol. 2013;45:2121–2129. doi: 10.1016/j.biocel.2013.04.023
    1. von Haehling S, Schefold JC, Lainscak M, Doehner W, Anker SD. Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail Clin. 2009;5:549–560. doi: 10.1016/j.hfc.2009.04.001
    1. Bouzid MA, Filaire E, McCall A, Fabre C. Radical oxygen species, exercise and aging: an update. Sports Med. 2015;45:1245–1261. doi: 10.1007/s40279-015-0348-1
    1. Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A. 2001;98:9306–9311. doi: 10.1073/pnas.151270098
    1. Bossone E, Arcopinto M, Iacoviello M, Triggiani V, Cacciatore F, Maiello C, Limongelli G, Masarone D, Perticone F, Sciacqua A, et al. ; TOSCA Investigators. Multiple hormonal and metabolic deficiency syndrome in chronic heart failure: rationale, design, and demographic characteristics of the . Registry. Intern Emerg Med. 2018;13:661–671. doi: 10.1007/s11739-018-1844-8
    1. Storer TW, Magliano L, Woodhouse L, Lee ML, Dzekov C, Dzekov J, Casaburi R, Bhasin S. Testosterone dose-dependently increases maximal voluntary strength and leg power, but does not affect fatigability or specific tension. J Clin Endocrinol Metab. 2003;88:1478–1485. doi: 10.1210/jc.2002-021231
    1. Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, Batterham RL, Benoit SC, Bowers CY, Broglio F, et al. . Ghrelin. Mol Metab. 2015;4:437–460. doi: 10.1016/j.molmet.2015.03.005
    1. Onder G, Liperoti R, Russo A, Soldato M, Capoluongo E, Volpato S, Cesari M, Ameglio F, Bernabei R, Landi F. Body mass index, free insulin-like growth factor I, and physical function among older adults: results from the ilSIRENTE study. Am J Physiol Endocrinol Metab. 2006;291:E829–E834. doi: 10.1152/ajpendo.00138.2006
    1. I͘lhan B, Bahat G, Erdog˘an T, Kiliç C, Karan MA. Anorexia is independently associated with decreased muscle mass and strength in community dwelling older adults. J Nutr Health Aging. 2019;23:202–206. doi: 10.1007/s12603-018-1119-0
    1. Russ DW, Gregg-Cornell K, Conaway MJ, Clark BC. Evolving concepts on the age-related changes in “muscle quality.” J Cachexia Sarcopenia Muscle. 2012;3:95–109. doi: 10.1007/s13539-011-0054-2
    1. Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, Der G, Gale CR, Inskip HM, Jagger C, et al. . Grip strength across the life course: normative data from twelve British studies. PLoS One. 2014;9:e113637. doi: 10.1371/journal.pone.0113637
    1. Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA, Hurley BF. Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol. 1997;83:1581–1587. doi: 10.1152/jappl.1997.83.5.1581
    1. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB. The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–1064. doi: 10.1093/gerona/61.10.1059
    1. Evans WJ, Lexell J. Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci. 1995;50A:11–16. doi: 10.1093/gerona/50A.Special_Issue.11
    1. Gustafsson T, Sarcopenia UB. What is the origin of this aging-induced disorder? Front Genet. 2021;12:688526.
    1. Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y. Sarcopenia. Joint Bone Spine. 2019;86:309–314. doi: 10.1016/j.jbspin.2018.08.001
    1. Kim JW, Kim R, Choi H, Lee SJ, Bae GU. Understanding of sarcopenia: from definition to therapeutic strategies. Arch Pharm Res. 2021;44:876–889. doi: 10.1007/s12272-021-01349-z
    1. Lutski M, Weinstein G, Tanne D, Goldbourt U. Overweight, obesity, and late-life sarcopenia among men with cardiovascular disease, Israel. Prev Chronic Dis. 2020;17:E164. doi: 10.5888/pcd17.200167
    1. Atkins JL, Whincup PH, Morris RW, Lennon LT, Papacosta O, Wannamethee SG. Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based cohort study of older men. J Am Geriatr Soc. 2014;62:253–260. doi: 10.1111/jgs.12652
    1. Stenvinkel P, Larsson TE. Chronic kidney disease: a clinical model of premature aging. Am J Kidney Dis. 2013;62:339–351. doi: 10.1053/j.ajkd.2012.11.051
    1. Fahal IH, Bell GM, Bone JM, Edwards RH. Physiological abnormalities of skeletal muscle in dialysis patients. Nephrol Dial Transplant. 1997;12:119–127. doi: 10.1093/ndt/12.1.119
    1. Johansen KL, Shubert T, Doyle J, Soher B, Sakkas GK, Kent-Braun JA. Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int. 2003;63:291–297. doi: 10.1046/j.1523-1755.2003.00704.x
    1. Shachar SS, Williams GR, Muss HB, Nishijima TF. Prognostic value of sarcopenia in adults with solid tumours: a meta-analysis and systematic review. Eur J Cancer. 2016;57:58–67. doi: 10.1016/j.ejca.2015.12.030
    1. Anjanappa M, Corden M, Green A, Roberts D, Hoskin P, McWilliam A, Choudhury A. Sarcopenia in cancer: risking more than muscle loss. Tech Innov Patient Support Radiat Oncol. 2020;16:50–57. doi: 10.1016/j.tipsro.2020.10.001
    1. Zhang Y, Zhang J, Ni W, Yuan X, Zhang H, Li P, Xu J, Zhao Z. Sarcopenia in heart failure: a systematic review and meta-analysis. ESC Heart Fail. 2021;8:1007–1017. doi: 10.1002/ehf2.13255
    1. Attaway A, Bellar A, Dieye F, Wajda D, Welch N, Dasarathy S. Clinical impact of compound sarcopenia in hospitalized older adult patients with heart failure. J Am Geriatr Soc. 2021;69:1815–1825. doi: 10.1111/jgs.17108
    1. Onoue Y, Izumiya Y, Hanatani S, Tanaka T, Yamamura S, Kimura Y, Araki S, Sakamoto K, Tsujita K, Yamamoto E, et al. . A simple sarcopenia screening test predicts future adverse events in patients with heart failure. Int J Cardiol. 2016;215:301–306. doi: 10.1016/j.ijcard.2016.04.128
    1. Del Buono MG, Arena R, Borlaug BA, Carbone S, Canada JM, Kirkman DL, Garten R, Rodriguez-Miguelez P, Guazzi M, Lavie CJ, et al. . Exercise intolerance in patients with heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73:2209–2225. doi: 10.1016/j.jacc.2019.01.072
    1. Emami A, Saitoh M, Valentova M, Sandek A, Evertz R, Ebner N, Loncar G, Springer J, Doehner W, Lainscak M, et al. . Comparison of sarcopenia and cachexia in men with chronic heart failure: results from the Studies Investigating Co-Morbidities Aggravating Heart Failure (SICA-HF). Eur J Heart Fail. 2018;20:1580–1587. doi: 10.1002/ejhf.1304
    1. Zhang N, Zhu WL, Liu XH, Chen W, Zhu ML, Kang L, Tian R. Prevalence and prognostic implications of sarcopenia in older patients with coronary heart disease. J Geriatr Cardiol. 2019;16:756–763. doi: 10.11909/j.issn.1671-5411.2019.10.002
    1. Kang DO, Park SY, Choi BG, Na JO, Choi CU, Kim EJ, Rha SW, Park CG, Hong SJ, Seo HS. Prognostic impact of low skeletal muscle mass on major adverse cardiovascular events in coronary artery disease: a propensity score-matched analysis of a single center all-comer cohort. J Clin Med. 2019;8:712. doi: 10.3390/jcm8050712
    1. Okamura H, Kimura N, Mieno M Yuri K Yamaguchi A. Preoperative sarcopenia is associated with late mortality after off-pump coronary artery bypass grafting. Eur J Cardiothorac Surg. 2020;58:121–129. doi: 10.1093/ejcts/ezz378
    1. Ko BJ, Chang Y, Jung HS, Yun KE, Kim CW, Park HS, Chung EC, Shin H, Ryu S. Relationship between low relative muscle mass and coronary artery calcification in healthy adults. Arterioscler Thromb Vasc Biol. 2016;36:1016–1021. doi: 10.1161/ATVBAHA.116.307156
    1. Jun JE, Choi MS, Park SW, Kim G, Jin SM, Kim K, Hwang YC, Ahn KJ, Chung HY, Jeong IK, et al. . Low skeletal muscle mass is associated with the presence, incidence, and progression of coronary artery calcification. Can J Cardiol. 2021;37:1480–1488. doi: 10.1016/j.cjca.2021.04.002
    1. Xia MF, Chen LY, Wu L, Ma H, Li XM, Li Q, Aleteng Q, Hu Y, He WY, Gao J, et al. . Sarcopenia, sarcopenic overweight/obesity and risk of cardiovascular disease and cardiac arrhythmia: a cross-sectional study. Clin Nutr. 2021;40:571–580. doi: 10.1016/j.clnu.2020.06.003
    1. Pizzimenti M, Meyer A, Charles A-L, Giannini M, Chakfé N, Lejay A, Geny B. Sarcopenia and peripheral arterial disease: a systematic review. J Cachexia Sarcopenia Muscle. 2020;11:866–886. doi: 10.1002/jcsm.12587
    1. Pottecher J, Adamopoulos C, Lejay A, Bouitbir J, Charles AL, Meyer A, Singer M, Wolff V, Diemunsch P, Laverny G, et al. . Diabetes worsens skeletal muscle mitochondrial function, oxidative stress, and apoptosis after lower-limb ischemia-reperfusion: implication of the RISK and SAFE pathways? Front Physiol. 2018;9:579. doi: 10.3389/fphys.2018.00579
    1. Taniguchi R, Deguchi J, Hashimoto T, Sato O. Sarcopenia as a possible negative predictor of limb salvage in patients with chronic limb-threatening ischemia. Ann Vasc Dis. 2019;12:194–199. doi: 10.3400/avd.oa.18-00167
    1. Shimazoe H, Mii S, Koyanagi Y, Ishida M. Impact of low activity of daily living on the prognosis of patients with critical limb ischemia and sarcopenia. Ann Vasc Surg. 2019;61:156–164. doi: 10.1016/j.avsg.2019.03.019
    1. Bertschi D, Kiss CM, Schoenenberger AW, Stuck AE, Kressig RW. Sarcopenia in patients undergoing transcatheter aortic valve implantation (TAVI): a systematic review of the literature. J Nutr Health Aging. 2021;25:64–70. doi: 10.1007/s12603-020-1448-7
    1. Mok M, Allende R, Leipsic J, Altisent OA, Del Trigo M, Campelo-Parada F, DeLarochellière R, Dumont E, Doyle D, Côté M, et al. . Prognostic value of fat mass and skeletal muscle mass determined by computed tomography in patients who underwent transcatheter aortic valve implantation. Am J Cardiol. 2016;117:828–833. doi: 10.1016/j.amjcard.2015.12.015
    1. Nemec U, Heidinger B, Sokas C, Chu L, Eisenberg RL. Diagnosing sarcopenia on thoracic computed tomography: quantitative assessment of skeletal muscle mass in patients undergoing transcatheter aortic valve replacement. Acad Radiol. 2017;24:1154–1161. doi: 10.1016/j.acra.2017.02.008
    1. Tokuda T, Yamamoto M, Kagase A, Koyama Y, Otsuka T, Tada N, Naganuma T, Araki M, Yamanaka F, Shirai S, et al. ; OCEAN-TAVI Investigators. Importance of combined assessment of skeletal muscle mass and density by computed tomography in predicting clinical outcomes after transcatheter aortic valve replacement. Int J Cardiovasc Imaging. 2020;36:929–938. doi: 10.1007/s10554-020-01776-x
    1. Damluji AA, Rodriguez G, Noel T, Davis L, Dahya V, Tehrani B, Epps K, Sherwood M, Sarin E, Walston J, et al. . Sarcopenia and health-related quality of life in older adults after transcatheter aortic valve replacement. Am Heart J. 2020;224:171–181. doi: 10.1016/j.ahj.2020.03.021
    1. Tzeng YH, Wei J, Tsao TP, Lee YT, Lee KC, Liou HR, Sung HJ, Huang KC, Hsiung MC, Yin WH. Computed tomography-determined muscle quality rather than muscle quantity is a better determinant of prolonged hospital length of stay in patients undergoing transcatheter aortic valve implantation. Acad Radiol. 2020;27:381–388. doi: 10.1016/j.acra.2019.05.007
    1. Garg L, Agrawal S, Pew T, Hanzel GS, Abbas AE, Gallagher MJ, Shannon FL, Hanson ID. Psoas muscle area as a predictor of outcomes in transcatheter aortic valve implantation. Am J Cardiol. 2017;119:457–460. doi: 10.1016/j.amjcard.2016.10.019
    1. Lee SA, Jang IY, Park SY, Kim KW, Park DW, Kim HJ, Kim JB, Jung SH, Choo SJ, Chung CH, et al. . Benefit of sarcopenia screening in older patients undergoing surgical aortic valve replacement. Ann Thorac Surg. 2021;113:2018–2026. doi: 10.1016/j.athoracsur.2021.06.067
    1. Mamane S, Mullie L, Lok Ok Choo W, Piazza N, Martucci G, Morais JA, Kim DH, Lauck S, Webb JG, Afilalo J; FRAILTY-AVR Investigators. Sarcopenia in older adults undergoing transcatheter aortic valve replacement. J Am Coll Cardiol. 2019;74:3178–3180. doi: 10.1016/j.jacc.2019.10.030
    1. Sakuyama A, Saitoh M, Iwai K, Kon K, Hori K, Nagayama M. Psoas muscle volume and attenuation are better predictors than muscle area for hospital readmission in older patients after transcatheter aortic valve implantation. Phys Ther Res. 2021;24:128–135. doi: 10.1298/ptr.E10079
    1. Furzan A, Quraishi SA, Brovman E, Weintraub A, Connors A, Allen D, Patel PA, Cobey FC. Skeletal muscle characteristics may inform preprocedural risk stratification in transcatheter aortic valve replacement patients. J Cardiothorac Vasc Anesth. 2021;35:2618–2625. doi: 10.1053/j.jvca.2020.12.024
    1. Arnold SV, Cohen DJ, Dai D, Jones PG, Li F, Thomas L, Baron SJ, Frankel NZ, Strong S, Matsouaka RA, et al. . Predicting quality of life at 1 year after transcatheter aortic valve replacement in a real-world population. Circ Cardiovasc Qual Outcomes. 2018;11:e004693. doi: 10.1161/CIRCOUTCOMES.118.004693
    1. Hill A, Arora RC, Engelman DT, Stoppe C. Preoperative treatment of malnutrition and sarcopenia in cardiac surgery: new frontiers. Crit Care Clin. 2020;36:593–616. doi: 10.1016/j.ccc.2020.06.002
    1. Okamura H, Kimura N Tanno K Mieno M Matsumoto H Yamaguchi A Adachi H. The impact of preoperative sarcopenia, defined based on psoas muscle area, on long-term outcomes of heart valve surgery. J Thorac Cardiovasc Surg. 2019;157:1071–1079.e3. doi: 10.1016/j.jtcvs.2018.06.098
    1. Hawkins RB, Mehaffey JH, Charles EJ, Kern JA, Lim DS, Teman NR, Ailawadi G. Psoas muscle size predicts risk-adjusted outcomes after surgical aortic valve replacement. Ann Thorac Surg. 2018;106:39–45. doi: 10.1016/j.athoracsur.2018.02.010
    1. Hulzebos EH, van Meeteren NL. Making the elderly fit for surgery. Br J Surg. 2016;103:e12–e15. doi: 10.1002/bjs.10033
    1. Alsadany MA, Sanad HT, Elbanouby MH, Ali S. Detecting a valid screening method for sarcopenia in acute care setting. J Frailty Sarcopenia Falls. 2021;6:111–118. doi: 10.22540/JFSF-06-111
    1. Knowles R, Carter J, Jebb SA, Bennett D, Lewington S, Piernas C. Associations of skeletal muscle mass and fat mass with incident cardiovascular disease and all-cause mortality: a prospective cohort study of UK Biobank participants. J Am Heart Assoc. 2021;10:e019337. doi: 10.1161/jaha.120.019337
    1. Batsis JA, Mackenzie TA, Bartels SJ, Sahakyan KR, Somers VK, Lopez-Jimenez F. Diagnostic accuracy of body mass index to identify obesity in older adults: NHANES 1999–2004. Int J Obes. 2016;40:761–767. doi: 10.1038/ijo.2015.243
    1. Wannamethee SG, Atkins JL. Muscle loss and obesity: the health implications of sarcopenia and sarcopenic obesity. Proc Nutr Soc. 2015;74:405–412. doi: 10.1017/s002966511500169x
    1. Sharma S Batsis JA, Coutinho T Somers VK Hodge DO Carter RE Sochor O Kragelund C Kanaya AM Zeller M et al. . Normal-weight central obesity and mortality risk in older adults with coronary artery disease. Mayo Clin Proc. 2016;91:343–351. doi: 10.1016/j.mayocp.2015.12.007
    1. de Hollander EL, Bemelmans WJ, Boshuizen HC, Friedrich N, Wallaschofski H, Guallar-Castillón P, Walter S, Zillikens MC, Rosengren A, Lissner L, et al. ; WC Elderly Collaborators. The association between waist circumference and risk of mortality considering body mass index in 65- to 74-year-olds: a meta-analysis of 29 cohorts involving more than 58 000 elderly persons. Int J Epidemiol. 2012;41:805–817. doi: 10.1093/ije/dys008
    1. Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, Del Grande F, Sconfienza LM. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY). 2022;47:3205–3216. doi: 10.1007/s00261-021-03294-3
    1. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998;85:115–122. doi: 10.1152/jappl.1998.85.1.1151152/jappl.1151998.11585
    1. Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB. Attenuation of skeletal muscle and strength in the elderly: the Health ABC Study. J Appl Physiol. 2001;90:2157–2165. doi: 10.1152/jappl.2001.90.6.2157
    1. Perkisas S, Baudry S, Bauer J, Beckwée D, De Cock AM, Hobbelen H, Jager-Wittenaar H, Kasiukiewicz A, Landi F, Marco E, et al. . Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements. Eur Geriatr Med. 2018;9:739–757. doi: 10.1007/s41999-018-0104-9
    1. Abe T, Loenneke JP, Young KC, Thiebaud RS, Nahar VK, Hollaway KM, Stover CD, Ford MA, Bass MA, Loftin M. Validity of ultrasound prediction equations for total and regional muscularity in middle-aged and older men and women. Ultrasound Med Biol. 2015;41:557–564. doi: 10.1016/j.ultrasmedbio.2014.09.007
    1. Manini TM, Clark BC. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012;67:28–40. doi: 10.1093/gerona/glr010
    1. Evans WJ, Hellerstein M, Orwoll E, Cummings S, Cawthon PM. D(3) -creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2019;10:14–21. doi: 10.1002/jcsm.12390
    1. Sergi G, De Rui M, Stubbs B, Veronese N, Manzato E. Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res. 2017;29:591–597. doi: 10.1007/s40520-016-0622-6
    1. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, White HD; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth universal definition of myocardial infarction (2018). Circulation. 2018;138:e618–e651. doi: 10.1161/CIR.0000000000000617
    1. Evans WJ, Hellerstein M, Orwoll E, Cummings S, Cawthon PM. D3-creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J Cachexia Sarcopenia Muscle. 2019;10:14–21. doi: 10.1002/jcsm.12390
    1. Bozkurt B, Coats AJ, Tsutsui H, Abdelhamid M, Adamopoulos S, Albert N, Anker SD, Atherton J, Böhm M, Butler J, et al. . Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. J Card Fail. 2021;S1071-9164(21)00050-6. doi: 10.1016/j.cardfail.2021.01.022
    1. Clark RV, Walker AC, O’Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol. 2014;116:1605–1613. doi: 10.1152/japplphysiol.00045.2014
    1. Cawthon P, Orwoll E, Peters K, Ensrud K, Cauley J, Kado D, Stefanick M, Shikany J, Strotmeyer E, Glynn N. Osteoporotic G fractures in men study research, strong relation between muscle mass determined by D3-creatine dilution, physical performance and incidence of falls and mobility limitations in a prospective cohort of older men. J Gerontol A Biol Sci Med Sci. 2018;74:844–852.
    1. Kim SW, Jung HW, Kim CH, Kim KI, Chin HJ, Lee H. A new equation to estimate muscle mass from creatinine and cystatin C. PLoS One. 2016;11:e0148495. doi: 10.1371/journal.pone.0148495
    1. Tang T, Zhuo Y, Xie L, Wang H, Yang M. Sarcopenia index based on serum creatinine and cystatin C is associated with 3-year mortality in hospitalized older patients. Sci Rep. 2020;10:1–9.
    1. Lee HS, Park KW, Kang J, Ki Y-J, Chang M, Han J-K, Yang H-M, Kang H-J, Koo B-K, Kim H-S. Sarcopenia index as a predictor of clinical outcomes in older patients with coronary artery disease. J Clin Med. 2020;9:3121. doi: 10.3390/jcm9103121
    1. Amado CA, Ruiz de Infante MM. Sarcopenia index: more than an marker of muscle mass. Clin Nutr. 2019;38:1479. doi: 10.1016/j.clnu.2019.02.043
    1. Trevisan C, Vetrano DL, Calvani R, Picca A, Welmer AK. Twelve-year sarcopenia trajectories in older adults: results from a population-based study. J Cachexia Sarcopenia Muscle. 2022;13:254–263. doi: 10.1002/jcsm.12875
    1. Goodpaster BH, Chomentowski P, Ward BK, Rossi A, Glynn NW, Delmonico MJ, Kritchevsky SB, Pahor M, Newman AB. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol (1985). 2008;105:1498–1503. doi: 10.1152/japplphysiol.90425.2008
    1. Taaffe DR, Duret C, Wheeler S, Marcus R. Once-weekly resistance exercise improves muscle strength and neuromuscular performance in older adults. J Am Geriatr Soc. 1999;47:1208–1214. doi: 10.1111/j.1532-5415.1999.tb05201.x
    1. Liang Y Wang R, Jiang J Tan L Yang M. A randomized controlled trial of resistance and balance exercise for sarcopenic patients aged 80-99 years. Sci Rep. 2020;10:18756. doi: 10.1038/s41598-020-75872-2
    1. Snijders T, Nederveen JP Bell KE Lau SW Mazara N Kumbhare DA Phillips SM Parise G. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. J Physiol. 2019;597:105–119. doi: 10.1113/JP276260
    1. Moro T, Brightwell CR, Volpi E, Rasmussen BB, Fry CS. Resistance exercise training promotes fiber type-specific myonuclear adaptations in older adults. J Appl Physiol (1985). 2020;128:795–804. doi: 10.1152/japplphysiol.00723.2019
    1. Roth SM, Martel GF, Ivey FM, Lemmer JT, Tracy BL, Metter EJ, Hurley BF, Rogers MA. Skeletal muscle satellite cell characteristics in young and older men and women after heavy resistance strength training. J Gerontol A Biol Sci Med Sci. 2001;56:B240–B247. doi: 10.1093/gerona/56.6.b240
    1. Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS; American College of Sports Medicine. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41:1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c
    1. Short KR, Vittone JL, Bigelow ML, Proctor DN, Nair KS. Age and aerobic exercise training effects on whole body and muscle protein metabolism. Am J Physiol Endocrinol Metab. 2004;286:E92–101. doi: 10.1152/ajpendo.00366.2003
    1. Burton LA, Sumukadas D. Optimal management of sarcopenia. Clin Interv Aging. 2010;5:217–228. doi: 10.2147/cia.s11473
    1. Gielen S, Adams V, Möbius-Winkler S, Linke A, Erbs S, Yu J, Kempf W, Schubert A, Schuler G, Hambrecht R. Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol. 2003;42:861–868. doi: 10.1016/s0735-1097(03)00848-9
    1. Alfaraidhy MA, Regan C, Forman DE. Cardiac rehabilitation for older adults: current evidence and future potential. Expert Rev Cardiovasc Ther. 2022;20:13–34. doi: 10.1080/14779072.2022.2035722
    1. Lutz AH, Forman DE. Cardiac rehabilitation in older adults: apropos yet significantly underutilized. Prog Cardiovasc Dis. 2022;70:94–101. doi: 10.1016/j.pcad.2022.01.001
    1. Harada H, Kai H, Niiyama H, Nishiyama Y, Katoh A, Yoshida N, Fukumoto Y, Ikeda H. Effectiveness of cardiac rehabilitation for prevention and treatment of sarcopenia in patients with cardiovascular disease - a retrospective cross-sectional analysis. J Nutr Health Aging. 2017;21:449–456. doi: 10.1007/s12603-016-0743-9
    1. Delmonico MJ, Beck DT. The current understanding of sarcopenia. Am J Lifestyle Med. 2017;11:167–181. doi: 10.1177/1559827615594343
    1. Deutz NE, Bauer JM, Barazzoni R, Biolo G, Boirie Y, Bosy-Westphal A, Cederholm T, Cruz-Jentoft A, Krznariç Z, Nair KS, et al. . Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33:929–936. doi: 10.1016/j.clnu.2014.04.007
    1. Wolfe RR. Regulation of muscle protein by amino acids. J Nutr. 2002;132:S32193219s–S3219S3224. doi: 10.1093/jn/131.10.3219s
    1. Paddon-Jones D, Sheffield-Moore M, Zhang XJ, Volpi E, Wolf SE, Aarsland A, Ferrando AA, Wolfe RR. Amino acid ingestion improves muscle protein synthesis in the young and elderly. Am J Physiol Endocrinol Metab. 2004;286:E321–E328. doi: 10.1152/ajpendo.00368.2003
    1. Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM. Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients. 2018;10:180180. doi: 10.3390/nu10020180
    1. Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol (1985). 2009;107:987–992. doi: 10.1152/japplphysiol.00076.2009
    1. Iglay HB, Thyfault JP, Apolzan JW, Campbell WW. Resistance training and dietary protein: effects on glucose tolerance and contents of skeletal muscle insulin signaling proteins in older persons. Am J Clin Nutr. 2007;85:1005–1013. doi: 10.1093/ajcn/85.4.1005
    1. Andrews RD, MacLean DA, Riechman SE. Protein intake for skeletal muscle hypertrophy with resistance training in seniors. Int J Sport Nutr Exerc Metab. 2006;16:362–372. doi: 10.1123/ijsnem.16.4.362
    1. Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008;93:68–75. doi: 10.1210/jc.2007-1792
    1. Shin MJ, Jeon YK, Kim IJ. Testosterone and sarcopenia. World J Mens Health. 2018;36:192–198. doi: 10.5534/wjmh.180001
    1. Srinivas-Shankar U, Roberts SA, Connolly MJ, O’Connell MD, Adams JE, Oldham JA, Wu FC. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2010;95:639–650. doi: 10.1210/jc.2009-1251
    1. Storer TW, Basaria S, Traustadottir T, Harman SM, Pencina K, Li Z, Travison TG, Miciek R, Tsitouras P, Hally K, et al. . Effects of testosterone supplementation for 3 years on muscle performance and physical function in older men. J Clin Endocrinol Metab. 2017;102:583–593. doi: 10.1210/jc.2016-2771
    1. Travison TG, Basaria S, Storer TW, Jette AM, Miciek R, Farwell WR, Choong K, Lakshman K, Mazer NA, Coviello AD, et al. . Clinical meaningfulness of the changes in muscle performance and physical function associated with testosterone administration in older men with mobility limitation. J Gerontol A Biol Sci Med Sci. 2011;66:1090–1099. doi: 10.1093/gerona/glr100
    1. Barnouin Y, Armamento-Villareal R, Celli A, Jiang B, Paudyal A, Nambi V, Bryant MS, Marcelli M, Garcia JM, Qualls C, et al. . Testosterone replacement therapy added to intensive lifestyle intervention in older men with obesity and hypogonadism. J Clin Endocrinol Metab. 2021;106:e1096–e1110. doi: 10.1210/clinem/dgaa917
    1. Dalton JT, Barnette KG, Bohl CE, Hancock ML, Rodriguez D, Dodson ST, Morton RA, Steiner MS. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial. J Cachexia Sarcopenia Muscle. 2011;2:153–161. doi: 10.1007/s13539-011-0034-6
    1. Fonseca G, Dworatzek E, Ebner N, Von Haehling S. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin Investig Drugs. 2020;29:881–891. doi: 10.1080/13543784.2020.1777275
    1. Bedi H, Hammond C, Sanders D, Yang HM, Yoshida EM. Drug-induced liver injury from enobosarm (Ostarine), a selective androgen receptor modulator. ACG Case Rep J. 2021;8:e00518. doi: 10.14309/crj.0000000000000518
    1. Springer J, von Haehling S. ACE inhibitors and sarcopenia: covering all the BASEs?. Drugs Aging. 2016;33:839–840. doi: 10.1007/s40266-016-0417-7
    1. Giovannini S, Cesari M Marzetti E Leeuwenburgh C Maggio M Pahor M. Effects of ACE-inhibition on IGF-1 and IGFBP-3 concentrations in older adults with high cardiovascular risk profile. J Nutr Health Aging. 2010;14:457–460. doi: 10.1007/s12603-010-0036-7
    1. Maggio M, Ceda GP, Lauretani F, Pahor M, Bandinelli S, Najjar SS, Ling SM, Basaria S, Ruggiero C, Valenti G, et al. . Relation of angiotensin-converting enzyme inhibitor treatment to insulin-like growth factor-1 serum levels in subjects >65 years of age (the InCHIANTI study). Am J Cardiol. 2006;97:1525–1529. doi: 10.1016/j.amjcard.2005.11.089
    1. Onder G, Penninx BW, Balkrishnan R, Fried LP, Chaves PH, Williamson J, Carter C, Di Bari M, Guralnik JM, Pahor M. Relation between use of angiotensin-converting enzyme inhibitors and muscle strength and physical function in older women: an observational study. Lancet. 2002;359:926–930. doi: 10.1016/s0140-6736(02)08024-8
    1. Justice JN, Ferrucci L, Newman AB, Aroda VR, Bahnson JL, Divers J, Espeland MA, Marcovina S, Pollak MN, Kritchevsky SB, et al. . A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience. 2018;40:419–436. doi: 10.1007/s11357-018-0042-y
    1. Picca A, Beli R, Calvani R, Coelho-Júnior HJ, Landi F, Bernabei R, Bucci C, Guerra F, Marzetti E. Older adults with physical frailty and sarcopenia show increased levels of circulating small extracellular vesicles with a specific mitochondrial signature. Cells. 2020;9:973. doi: 10.3390/cells9040973
    1. Calvani R, Picca A, Marini F, Biancolillo A, Gervasoni J, Persichilli S, Primiano A, Coelho-Junior HJ, Cesari M, Bossola M. Identification of biomarkers for physical frailty and sarcopenia through a new multi-marker approach: results from the BIOSPHERE study. GeroScience. 2021;43:727–740. doi: 10.1007/s11357-020-00197-x
    1. Critchley M. The neurology of old age. Lancet. 1931;217:11191221–11191127. doi: 10.1016/s0140-6736(00)90705-0
    1. Shock NW. Physiologic aspects of aging. J Am Diet Assoc. 1970;56:491–496.
    1. Tzankoff SP, Norris AH. Effect of muscle mass decrease on age-related BMR changes. JAppl Physiol Respir Environ Exerc Physiol. 1977;43:1001–1006. doi: 10.1152/jappl.1977.43.6.1001
    1. Visser M, Kritchevsky SB, Goodpaster BH, Newman AB, Nevitt M, Stamm E, Harris TB. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79: the Health, Aging and Body Composition Study. J Am Geriatr Soc. 2002;50:897–904. doi: 10.1046/j.1532-5415.2002.50217.x
    1. Freeman LM, Roubenoff R. The nutrition implications of cardiac cachexia. Nutr Rev. 1994;52:340–347. doi: 10.1111/j.1753-4887.1994.tb01358.x
    1. Anker SD, Ponikowski P Varney S Chua TP Clark AL Webb-Peploe KM Harrington D Kox WJ Poole-Wilson PA Coats AJ. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–1053. doi: 10.1016/s0140-6736(96)07015-8
    1. Anker SD, Negassa A, Coats AJ, Afzal R, Poole-Wilson PA, Cohn JN, Yusuf S. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361:1077–1083. doi: 10.1016/s0140-6736(03)12892-9
    1. Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, et al. . Cachexia: a new definition. Clin Nutr. 2008;27:793–799. doi: 10.1016/j.clnu.2008.06.013
    1. Fülster S, Tacke M, Sandek A, Ebner N, Tschöpe C, Doehner W, Anker SD, von Haehling S. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34:512–519. doi: 10.1093/eurheartj/ehs381
    1. Steinbeck L, Ebner N, Valentova M, Bekfani T, Elsner S, Dahinden P, Hettwer S, Scherbakov N, Schefold JC, Sandek A, et al. . Detection of muscle wasting in patients with chronic heart failure using C-terminal agrin fragment: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur J Heart Fail. 2015;17:1283–1293. doi: 10.1002/ejhf.400
    1. Ishii S, Tanaka T Shibasaki K Ouchi Y Kikutani T Higashiguchi T Obuchi SP Ishikawa-Takata K Hirano H Kawai H et al. . Development of a simple screening test for sarcopenia in older adults. Geriatr Gerontol Int. 2014;14:93–101. doi: 10.1111/ggi.12197
    1. Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, Wachter R, Elsner S, Sliziuk V, Schefold JC, et al. . Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222:41–46. doi: 10.1016/j.ijcard.2016.07.135
    1. Hajahmadi M, Shemshadi S, Khalilipur E, Amin A, Taghavi S, Maleki M, Malek H, Naderi N. Muscle wasting in young patients with dilated cardiomyopathy. J Cachexia Sarcopenia Muscle. 2017;8:542–548. doi: 10.1002/jcsm.12193
    1. Tsuchida K, Fujihara Y, Hiroki J, Hakamata T, Sakai R, Nishida K, Sudo K, Tanaka K, Hosaka Y, Takahashi K, et al. . Significance of sarcopenia evaluation in acute decompensated heart failure. Int Heart J. 2018;59:143–148. doi: 10.1536/ihj.17-057
    1. Nozaki Y, Yamaji M, Nishiguchi S, Fukutani N, Tashiro Y, Shirooka H, Hirata H, Yamaguchi M, Tasaka S, Matsubara K, et al. . Sarcopenia predicts adverse outcomes in an elderly outpatient population with New York Heart Association class II–IV heart failure: a prospective cohort study. Aging Med Healthcare. 2019;10:53–61. doi: 10.33879/AMH.2019.1809
    1. Fonseca GWPD, Santos MRD, Souza FR, Costa MJAD, Haehling SV, Takayama L, Pereira RMR, Negrão CE, Anker SD, Alves MJNN. Sympatho-vagal imbalance is associated with sarcopenia in male patients with heart failure. Arq Bras Cardiol. 2019;112:739–746. doi: 10.5935/abc.20190061
    1. Canteri AL, Gusmon LB, Zanini AC, Nagano FE, Rabito EI, Petterle RR, Jonasson TH, Boguszewski CL, Borba VZC. Sarcopenia in heart failure with reduced ejection fraction. Am J Cardiovasc Dis. 2019;9:116–126.
    1. Kono Y, Izawa H, Aoyagi Y, Ishikawa A, Sugiura T, Mori E, Ueda S, Fujiwara W, Hayashi M, Saitoh E. The difference in determinant factor of six-minute walking distance between sarcopenic and non-sarcopenic elderly patients with heart failure. J Cardiol. 2020;75:42–46. doi: 10.1016/j.jjcc.2019.07.002
    1. Fonseca GWPD, Dos Santos MR, de Souza FR, Takayama L, Rodrigues Pereira RM, Negrão CE, Alves MNN. Discriminating sarcopenia in overweight/obese male patients with heart failure: the influence of body mass index. ESC Heart Fail. 2020;7:84–91. doi: 10.1002/ehf2.12545
    1. Eschalier R, Massoullié G Boirie Y Blanquet M Mulliez A Tartière PL Anker S D’Agrosa Boiteux MC Richard R Jean F et al. . Sarcopenia in patients after an episode of acute decompensated heart failure: an underdiagnosed problem with serious impact. Clin Nutr. 2021;40:4490–4499. doi: 10.1016/j.clnu.2020.12.033
    1. Kang DO, Park SY, Choi BG, Na JO, Choi CU, Kim EJ, Rha SW, Park CG, Hong SJ, Seo HS. Prognostic impact of low skeletal muscle mass on major adverse cardiovascular events in coronary artery disease: a propensity score-matched analysis of a single center all-comer cohort. J Clin Med. 2019;8:712. doi: 10.3390/jcm8050712
    1. Lee HS, Park KW, Kang J, Ki YJ, Chang M, Han JK, Yang HM, Kang HJ, Koo BK, Kim HS. Sarcopenia index as a predictor of clinical outcomes in older patients with coronary artery disease. J Clin Med. 2020;9:3121. doi: 10.3390/jcm9103121
    1. Campos AM, Moura FA, Santos SN, Freitas WM, Sposito AC, Brasilia Study on Healthy Aging and Brasilia Heart Study. Sarcopenia, but not excess weight or increased caloric intake, is associated with coronary subclinical atherosclerosis in the very elderly. Atherosclerosis. 2017;258:138–144. doi: 10.1016/j.atherosclerosis.2017.01.005
    1. Lin GM, Li YH, Lai CP, Lin CL, Wang JH. The obesity-mortality paradox in elderly patients with angiographic coronary artery disease: a report from the ET-CHD registry. Acta Cardiol. 2015;70:479–486. doi: 10.1080/ac.70.4.3096897
    1. Diercks DB, Roe MT, Mulgund J, Pollack CV, Kirk JD, Gibler WB, Ohman EM, Smith SC, Boden WE, Peterson ED. The obesity paradox in non-ST-segment elevation acute coronary syndromes: results from the Can Rapid risk stratification of Unstable angina patients Suppress ADverse outcomes with Early implementation of the American College of Cardiology/American Heart Association Guidelines Quality Improvement Initiative. Am Heart J. 2006;152:140–148. doi: 10.1016/j.ahj.2005.09.024
    1. Goel K, Gulati R, Reeder GS, Lennon RJ, Lewis BR, Behfar A, Sandhu GS, Rihal CS, Singh M. Low body mass index, serum creatinine, and cause of death in patients undergoing percutaneous coronary intervention. J Am Heart Assoc. 2016;5:e003633. doi: 10.1161/JAHA.116.003633
    1. Uchida S, Kamiya K, Hamazaki N, Matsuzawa R, Nozaki K, Ichikawa T, Suzuki Y, Nakamura T, Yamashita M, Kariya H, et al. . Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease. Heart Vessels. 2020;35:769–775. doi: 10.1007/s00380-020-01554-8
    1. Leistner DM, Bazara S, Münch C, Steiner J, Erbay A, Siegrist PT, Skurk C, Lauten A, Müller-Werdan U, Landmesser U, et al. . Association of the body mass index with outcomes in elderly patients (≥80 years) undergoing percutaneous coronary intervention. Int J Cardiol. 2019;292:73–77. doi: 10.1016/j.ijcard.2019.06.044
    1. Li Z, Tong X Ma Y Bao T Yue J. Relationship between low skeletal muscle mass and arteriosclerosis in Western China: a cross-sectional study. Front Cardiovasc Med. 2021;8:735262. doi: 10.3389/fcvm.2021.735262
    1. Nichols S, O’Doherty AF, Taylor C, Clark AL, Carroll S, Ingle L. Low skeletal muscle mass is associated with low aerobic capacity and increased mortality risk in patients with coronary heart disease - a CARE CR study. Clin Physiol Funct Imaging. 2019;39:93–102. doi: 10.1111/cpf.12539
    1. Liu HM, Zhang Q, Shen WD, Li BY, Lv WQ, Xiao HM, Deng HW. Sarcopenia-related traits and coronary artery disease: a bi-directional Mendelian randomization study. Aging (Albany NY). 2020;12:3340–3353. doi: 10.18632/aging.102815
    1. Wang YP, Yao SH, Liu D, Shen T, Zhao W, Gao W, Xu SL. [Relationships between percentage of skeletal muscle mass and cardiorespiratory fitness in elderly patients with coronary heart disease]. Zhonghua Yi Xue Za Zhi. 2018;98:831–836. doi: 10.3760/cma.j.issn.0376-2491.2018.11.008
    1. Gallone G, Depaoli A, D’Ascenzo F, Tore D, Allois L, Bruno F, Casale M, Atzeni F, De Lio G, Bocchino PP, et al. . Impact of computed-tomography defined sarcopenia on outcomes of older adults undergoing transcatheter aortic valve implantation. J Cardiovasc Comput Tomogr. 2021;16:207–214. doi: 10.1016/j.jcct.2021.12.001
    1. Dahya V, Xiao J, Prado CM, Burroughs P, McGee D, Silva AC, Hurt JE, Mohamed SG, Noel T, Batchelor W. Computed tomography-derived skeletal muscle index: a novel predictor of frailty and hospital length of stay after transcatheter aortic valve replacement. Am Heart J. 2016;182:21–27. doi: 10.1016/j.ahj.2016.08.016
    1. Heidari B, Al-Hijji MA, Moynagh MR, Takahashi N, Welle G, Eleid M, Singh M, Gulati R, Rihal CS, Lerman A. Transcatheter aortic valve replacement outcomes in patients with sarcopaenia. EuroIntervention. 2019;15:671–677. doi: 10.4244/EIJ-D-19-00110
    1. Kleczynski P, Tokarek T, Dziewierz A, Sorysz D, Bagienski M, Rzeszutko L, Dudek D. Usefulness of psoas muscle area and volume and frailty scoring to predict outcomes after transcatheter aortic valve implantation. Am J Cardiol. 2018;122:135–140. doi: 10.1016/j.amjcard.2018.03.020
    1. Krishnan A, Suarez-Pierre A, Zhou X, Lin CT, Fraser CD, 3rd, Crawford TC, Hsu J, Hasan RK, Resar J, Chacko M, et al. . Comparing frailty markers in predicting poor outcomes after transcatheter aortic valve replacement. Innovations (Phila).2019;14:43–54. doi: 10.1177/1556984519827698
    1. Lee SA, Jang IY, Park SY, Kim KW, Park DW, Kim HJ, Kim JB, Jung SH, Choo SJ, Chung CH, et al. . Benefit of sarcopenia screening in older patients undergoing surgical aortic valve replacement. Ann Thorac Surg. 2021;113:2018–2026. doi: 10.1016/j.athoracsur.2021.06.067
    1. Luetkens JA, Faron A, Geissler HL, Al-Kassou B, Shamekhi J, Stundl A, Sprinkart AM, Meyer C, Fimmers R, Treede H, et al. . Opportunistic computed tomography imaging for the assessment of fatty muscle fraction predicts outcome in patients undergoing transcatheter aortic valve replacement. Circulation. 2020;141:234–236. doi: 10.1161/CIRCULATIONAHA.119.042927
    1. Saji M, Lim DS, Ragosta M, LaPar DJ, Downs E, Ghanta RK, Kern JA, Dent JM, Ailawadi G. Usefulness of psoas muscle area to predict mortality in patients undergoing transcatheter aortic valve replacement. Am J Cardiol. 2016;118:251–257. doi: 10.1016/j.amjcard.2016.04.043
    1. Uchida Y, Ishii H, Tanaka A, Yonekawa J, Satake A, Makino Y, Suzuki W, Kurobe M, Mizutani K, Mizutani Y, et al. . Impact of skeletal muscle mass on clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Cardiovasc Interv Ther. 2021;36:514–522. doi: 10.1007/s12928-020-00725-8
    1. van Mourik MS, Janmaat YC van Kesteren F Vendrik J Planken RN Henstra MJ Velu JF Vlastra W Zwinderman AH Koch KT et al. . CT determined psoas muscle area predicts mortality in women undergoing transcatheter aortic valve implantation. Catheter Cardiovasc Interv. 2019;93:E248–E254. doi: 10.1002/ccd.27823
    1. Walpot J, Van Herck P Collas V Bossaerts L Vandendriessche T Van De Heyning CM Heidbuchel H Rodrigus I Bosmans J. Computed tomography measured psoas muscle attenuation predicts mortality after transcatheter aortic valve implantation. J Cardiovasc Med (Hagerstown). 2022;23:60–68. doi: 10.2459/JCM.0000000000001234
    1. Yoon YH, Ko Y, Kim KW, Kang DY, Ahn JM, Ko E, Park H, Cho SC, Kim HJ, Kim JB, et al. . Prognostic value of baseline sarcopenia on 1-year mortality in patients undergoing transcatheter aortic valve implantation. Am J Cardiol. 2021;139:79–86. doi: 10.1016/j.amjcard.2020.10.039
    1. Iwasaki Y, Shiotsuka J, Kawarai Lefor A, Sanui M. The psoas muscle index is associated with prognosis in elderly patients undergoing cardiovascular surgery. Anesth Pain Med. 2021;11:e118608. doi: 10.5812/aapm.118608
    1. Kiriya Y, Toshiaki N, Shibasaki I, Ogata K, Ogawa H, Takei Y, Tezuka M, Seki M, Kato T, Lefor AK, et al. . Sarcopenia assessed by the quantity and quality of skeletal muscle is a prognostic factor for patients undergoing cardiac surgery. Surg Today. 2020;50:895–904. doi: 10.1007/s00595-020-01977-w
    1. Yamashita M, Kamiya K Matsunaga A Kitamura T Hamazaki N Matsuzawa R Nozaki K Ichikawa T Nakamura T Yamamoto S et al. . Preoperative skeletal muscle density is associated with postoperative mortality in patients with cardiovascular disease. Interact Cardiovasc Thorac Surg. 2020;30:515–522. doi: 10.1093/icvts/ivz307
    1. Yamashita M, Kamiya K Matsunaga A Kitamura T Hamazaki N Matsuzawa R Nozaki K Tanaka S Nakamura T Maekawa E et al. . Prognostic value of sarcopenic obesity estimated by computed tomography in patients with cardiovascular disease and undergoing surgery. J Cardiol. 2019;74:273–278. doi: 10.1016/j.jjcc.2019.02.010
    1. Wittmann F, Schloglhofer T, Riebandt J, Schaefer AK, Wiedemann D, Tschernko E, Beitzke D, Loewe C, Laufer G, Zimpfer D. Psoas muscle area predicts mortality after left ventricular assist device implantation. Life (Basel). 2021;11:922. doi: 10.3390/life11090922
    1. Thurston B, Pena GN Howell S Cowled P Fitridge R. Low total psoas area as scored in the clinic setting independently predicts midterm mortality after endovascular aneurysm repair in male patients. J Vasc Surg. 2018;67:460–467. doi: 10.1016/j.jvs.2017.06.085
    1. Teng CH, Chen SY, Wei YC, Hsu RB, Chi NH, Wang SS, Chen YS, Chen CC. Effects of sarcopenia on functional improvement over the first year after cardiac surgery: a cohort study. Eur J Cardiovasc Nurs. 2019;18:309–317. doi: 10.1177/1474515118822964
    1. Morimoto Y, Matsuo T, Yano Y, Fukushima T, Eishi K, Kozu R. Impact of sarcopenia on the progress of cardiac rehabilitation and discharge destination after cardiovascular surgery. J Phys Ther Sci. 2021;33:213–221. doi: 10.1589/jpts.33.213
    1. Lim MH, Lee CH, Ju MH, Je HG. Impact of sarcopenia on outcomes of minimally invasive cardiac surgery. Semin Thorac Cardiovasc Surg. 2021; 35:77–85. doi:10.1053/j.semtcvs.2021.11.005
    1. Yuenyongchaiwat K, Kulchanarat C, Satdhabudha O. Sarcopenia in open heart surgery patients: a cohort study. Heliyon. 2020;6:e05759. doi: 10.1016/j.heliyon.2020.e05759
    1. Bellomo RG, Iodice P, Maffulli N, Maghradze T, Coco V, Saggini R. Muscle strength and balance training in sarcopenic elderly: a pilot study with randomized controlled trial. Eur J Inflammation. 2013;11:193–201. doi: 10.1177/1721727x1301100118
    1. Murphy CH, Flanagan EM, De Vito G, Susta D, Mitchelson KAJ, de Marco Castro E, Senden JMG, Goessens JPB, Miklosz A, Chabowski A, et al. . Does supplementation with leucine-enriched protein alone and in combination with fish-oil-derived n-3 PUFA affect muscle mass, strength, physical performance, and muscle protein synthesis in well-nourished older adults? A randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2021;113:1411–1427. doi: 10.1093/ajcn/nqaa449
    1. Martinez-Arnau FM, Fonfria-Vivas R, Buigues C, Castillo Y, Molina P, Hoogland AJ, van Doesburg F, Pruimboom L, Fernandez-Garrido J, Cauli O. Effects of leucine administration in sarcopenia: a randomized and placebo-controlled clinical trial. Nutrients. 2020;12:932. doi: 10.3390/nu12040932
    1. Alemán-Mateo H, Macías L, Esparza-Romero J, Astiazaran-García H, Blancas AL. Physiological effects beyond the significant gain in muscle mass in sarcopenic elderlymen: evidence from a randomized clinical trial using a protein-rich food. Clin IntervAging. 2012;7:225–234. doi: 10.2147/CIA.S32356
    1. Gray-Donald K, St-Arnaud-McKenzie D, Gaudreau P, Morais JA, Shatenstein B, Payette H. Protein intake protects against weight loss in healthy community-dwelling older adults. J Nutr. 2014;144:321–326. doi: 10.3945/jn.113.184705
    1. Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, McMurdo ME, Mets T, Seal C, Wijers SL, et al. . Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16:740–747. doi: 10.1016/j.jamda.2015.05.021
    1. Maltais ML, Ladouceur JP, Dionne IJ. The effect of resistance training and different sources of postexercise protein supplementation on muscle mass and physical capacity in sarcopenic elderly men. J Strength Cond Res. 2016;30:1680–1687. doi: 10.1519/JSC.0000000000001255
    1. Fiatarone MA, O’Neill EF, Ryan ND, Clements KM, Solares GR, Nelson ME, Roberts SB, Kehayias JJ, Lipsitz LA, Evans WJ. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330:1769–1775. doi: 10.1056/NEJM199406233302501
    1. Schellenbaum GD, Smith NL, Heckbert SR, Lumley T, Rea TD, Furberg CD, Lyles MF, Psaty BM. Weight loss, muscle strength, and angiotensin-converting enzyme inhibitors in older adults with congestive heart failure or hypertension. J Am Geriatr Soc. 2005;53:1996–2000. doi: 10.1111/j.1532-5415.2005.53568.x

Source: PubMed

3
Subscribe