Impact of antidepressants on cytokine production of depressed patients in vitro

Alexander Munzer, Ulrich Sack, Roland Mergl, Jeremias Schönherr, Charlotte Petersein, Stefanie Bartsch, Kenneth C Kirkby, Katrin Bauer, Hubertus Himmerich, Alexander Munzer, Ulrich Sack, Roland Mergl, Jeremias Schönherr, Charlotte Petersein, Stefanie Bartsch, Kenneth C Kirkby, Katrin Bauer, Hubertus Himmerich

Abstract

The interplay between immune and nervous systems plays a pivotal role in the pathophysiology of depression. In depressive episodes, patients show increased production of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. There is limited information on the effect of antidepressant drugs on cytokines, most studies report on a limited sample of cytokines and none have reported effects on IL-22. We systematically investigated the effect of three antidepressant drugs, citalopram, escitalopram and mirtazapine, on secretion of cytokines IL-1β, IL-2, IL-4, IL-6, IL-17, IL-22 and TNF-α in a whole blood assay in vitro, using murine anti-human CD3 monoclonal antibody OKT3, and 5C3 monoclonal antibody against CD40, to stimulate T and B cells respectively. Citalopram increased production of IL-1β, IL-6, TNF-α and IL-22. Mirtazapine increased IL-1β, TNF-α and IL-22. Escitalopram decreased IL-17 levels. The influence of antidepressants on IL-2 and IL-4 levels was not significant for all three drugs. Compared to escitalopram, citalopram led to higher levels of IL-1β, IL-6, IL-17 and IL-22; and mirtazapine to higher levels of IL-1β, IL-17, IL-22 and TNF-α. Mirtazapine and citalopram increased IL-22 production. The differing profile of cytokine production may relate to differences in therapeutic effects, risk of relapse and side effects.

Figures

Figure 1
Figure 1
Mean concentrations (ng/mL) of IL-1ß, IL-6, IL-22 and TNF-α ± standard error (SE) for OKT3/5C3-stimulated blood without (w/o) or with (w) citalopram supplementation using the 1-fold maximum therapeutic concentration of 130 ng/mL.

References

    1. Lichtblau N., Schmidt F.M., Schumann R., Kirkby K.C., Himmerich H. Cytokines as biomarkers in depressive disorder: Current standing and prospects. Int. Rev. Psychiatry. 2013;25:592–603. doi: 10.3109/09540261.2013.813442.
    1. Seidel A., Arolt V., Hunstiger M., Rink L., Behnisch A., Kirchner H. Cytokine production and serum proteins in depression. Scand. J. Immunol. 1995;41:534–538. doi: 10.1111/j.1365-3083.1995.tb03604.x.
    1. Dantzer R. Cytokine, sickness behavior, and depression. Immunol. Allergy Clin. North Am. 2009;29:247–264. doi: 10.1016/j.iac.2009.02.002.
    1. Himmerich H., Fulda S., Linseisen J., Seiler H., Wolfram G., Himmerich S., Gedrich K., Kloiber S., Lucae S., Ising M., Uhr M., Holsboer F., Pollmächer T. Depression, comorbidities and the TNF-alpha system. Eur. Psychiatry. 2008;23:421–429. doi: 10.1016/j.eurpsy.2008.03.013.
    1. Heiser P., Lanquillon S., Krieg J.C., Vedder H. Differential modulation of cytokine production in major depressive disorder by cortisol and dexamethasone. Eur. Neuropsychopharmacol. 2008;18:860–870. doi: 10.1016/j.euroneuro.2008.07.003.
    1. Maes M., Berk M., Goehler L., Song C., Anderson G., Gałecki P., Leonard B. Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways. BMC Med. 2012;10:66. doi: 10.1186/1741-7015-10-66.
    1. Capuron L., Miller A.H. Immune system to brain signaling: Neuropsychopharmacological implications. Pharmacol. Ther. 2011;130:226–238. doi: 10.1016/j.pharmthera.2011.01.014.
    1. Himmerich H., Berthold-Losleben M., Pollmächer T. The relevance of the TNF-alpha system in psychiatric disorders. Fortschr. Neurol. Psychiatr. 2009;77:334–345. doi: 10.1055/s-0028-1109420.
    1. Berthold-Losleben M., Himmerich H. The TNF-alpha system: functional aspects in depression, narcolepsy and psychopharmacology. Curr. Neuropharmacol. 2008;6:193–202. doi: 10.2174/157015908785777238.
    1. Ramamoorthy S., Ramamoorthy J.D., Prasad P.D., Bhat G.K., Mahesh V.B., Leibach F.H., Ganapathy V. Regulation of the human serotonin transporter by interleukin-1 beta. Biochem. Biophys. Res. Commun. 1995;216:560–567. doi: 10.1006/bbrc.1995.2659.
    1. Müller N., Schwarz M.J. Immunological aspects of depressive disorders. Nervenarzt. 2007;78:1261–1273. doi: 10.1007/s00115-007-2311-3.
    1. Catena-Dell'Osso M., Rotella F., Dell'Osso A., Fagiolini A., Marazziti D. Inflammation, serotonin and major depression. Curr. Drug Targets. 2013;14:571–577. doi: 10.2174/13894501113149990154.
    1. Besedovsky H.O., del Rey A., Klusman I., Furukawa H., Monge Arditi G., Kabiersch A. Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. J. Steroid Biochem. Mol. Biol. 1991;40:613–618. doi: 10.1016/0960-0760(91)90284-C.
    1. Makhija K., Karunakaran S. The role of inflammatory cytokines on the aetiopathogenesis of depression. Aust. N. Z. J. Psychiatry. 2013;47:828–839. doi: 10.1177/0004867413488220.
    1. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuro Endocrinol. Lett. 2008;29:287–291.
    1. Audet M.C., Anisman H. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Front. Cell. Neurosci. 2013;7:68.
    1. Himmerich H., Milenović S., Fulda S., Plümäkers B., Sheldrick A.J., Michel T.M., Kircher T., Rink L. Regulatory T cells increased while IL-1β decreased during antidepressant therapy. J. Psychiatr. Res. 2010;44:1052–1057. doi: 10.1016/j.jpsychires.2010.03.005.
    1. Himmerich H., Fulda S., Sheldrick A.J., Plümäkers B., Rink L. IFN-gamma reduction by tricyclic antidepressants. Int. J. Psychiatry Med. 2010;40:413–424. doi: 10.2190/PM.40.4.e.
    1. Akhondzadeh S., Jafari S., Raisi F., Nasehi A.A., Ghoreishi A., Salehi B., Mohebbi-Rasa S., Raznahan M., Kamalipour A. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress. Anxiety. 2009;26:607–611. doi: 10.1002/da.20589.
    1. Müller N., Schwarz M.J., Dehning S., Douhet A., Cerovecki A., Goldstein-Müller B., Spellmann I., Hetzel G., Maino K., Kleindienst N., Möller H.J., Arolt V., Riedel M. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol. Psychiatry. 2006;11:680–684. doi: 10.1038/sj.mp.4001805.
    1. Müller N. The role of anti-inflammatory treatment in psychiatric disorders. Psychiatr. Danub. 2013;25:292–298.
    1. Hemdan N.Y., Birkenmeier G., Wichmann G., Abu El-Saad A.M., Krieger T., Conrad K., Sack U. Interleukin-17-producing T helper cells in autoimmunity. Autoimmun. Rev. 2010;9:785–792. doi: 10.1016/j.autrev.2010.07.003.
    1. Park H., Li Z., Yang X.O., Chang S.H., Nurieva R., Wang Y.H., Wang Y., Hood L., Zhu Z., Tian Q., Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005;6:1133–1141. doi: 10.1038/ni1261.
    1. Murdaca G., Colombo B.M., Puppo F. The role of Th17 lymphocytes in the autoimmune and chronic inflammatory diseases. Intern. Emerg. Med. 2011;6:487–495. doi: 10.1007/s11739-011-0517-7.
    1. Pan H.F., Li X.P., Zheng S.G., Ye D.Q. Emerging role of interleukin-22 in autoimmune diseases. Cytokine Growth Factor Rev. 2013;24:51–57. doi: 10.1016/j.cytogfr.2012.07.002.
    1. Li S., Yu M., Li H., Zhang H., Jiang Y. IL-17 and IL-22 in cerebrospinal fluid and plasma are elevated in Guillain-Barré syndrome. Mediators Inflamm. 2012;2012:260473.
    1. Wang P., Bai F., Zenewicz L.A., Dai J., Gate D., Cheng G., Yang L., Qian F., Yuan X., Montgomery R.R., Flavell R.A., Town T., Fikrig E. IL-22 signaling contributes to West Nile encephalitis pathogenesis. PLoS One. 2012;7:e44153.
    1. Jadidi-Niaragh F., Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand. J. Immunol. 2011;74:1–13. doi: 10.1111/j.1365-3083.2011.02536.x.
    1. Adair J.R., Athwal D.S., Bodmer M.W., Bright S.M., Collins A.M., Pulito V.L., Rao P.E., Reedman R., Rothermel A.L., Xu D., Zivin R.A., Jolliffe L.K. Humanization of the murine anti-human CD3 monoclonal antibody OKT3. Hum. Antibodies Hybridomas. 1994;5:41–47.
    1. Pound J.D., Challa A., Holder M.J., Armitage R.J., Dower S.K., Fanslow W.C., Kikutani H., Paulie S., Gregory C.D., Gordon J. Minimal crosslinking and epitope requirements for CD40-dependent suppression of apoptosis contrast with those for promotion of the cell cycle and homotypic adhesions in human B cells. Int. Immunol. 1999;11:11–20. doi: 10.1093/intimm/11.1.11.
    1. Montgomery S., Hansen T., Kasper S. Efficacy of escitalopram compared to citalopram: a meta-analysis. Int. J. Neuropsychopharmacol. 2011;14:261–268. doi: 10.1017/S146114571000115X.
    1. Leonard B., Taylor D. Escitalopram-translating molecular properties into clinical benefit: reviewing the evidence in major depression. J. Psychopharmacol. 2010;24:1143–1152. doi: 10.1177/0269881109349835.
    1. Cipriani A., Furukawa T.A., Salanti G., Geddes J.R., Higgins J.P., Churchill R., Watanabe N., Nakagawa A., Omori I.M., McGuire H., Tansella M., Barbui C. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373:746–758. doi: 10.1016/S0140-6736(09)60046-5.
    1. Sánchez C., Bergqvist P.B., Brennum L.T., Gupta S., Hogg S., Larsen A., Wiborg O. Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology. 2003;167:353–362.
    1. Kennedy S.H., Andersen H.F., Thase M.E. Escitalopram in the treatment of major depressive disorder: a meta-analysis. Curr. Med. Res. Opin. 2009;25:161–175. doi: 10.1185/03007990802622726.
    1. Himmerich H., Wranik D.W. Choice of treatment with antidepressants: influencing factors. Curr. Pharm. Des. 2012;18:5958–5975. doi: 10.2174/138161212803523653.
    1. Himmerich H., Bartsch S., Hamer H., Mergl R., Schönherr J., Petersein C., Munzer A., Kirkby K.C., Bauer K., Sack U. Impact of mood stabilizers and antiepileptic drugs on cytokine production in vitro. J. Psychiatr. Res. 2013;47:1751–1759. doi: 10.1016/j.jpsychires.2013.07.026.
    1. Schilström B., Konradsson-Geuken A., Ivanov V., Gertow J., Feltmann K., Marcus M.M., Jardemark K., Svensson T.H. Effects of S-citalopram, citalopram, and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, N-methyl-d-aspartate receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat. Synapse. 2011;65:357–367. doi: 10.1002/syn.20853.
    1. Friedman E.S., Wisniewski S.R., Gilmer W., Nierenberg A.A., Rush A.J., Fava M., Zisook S., Balasubramani G.K., Trivedi M.H. Sociodemographic, clinical, and treatment characteristics associated with worsened depression during treatment with citalopram: results of the NIMH STAR(*)D trial. Depress. Anxiety. 2009;26:612–621. doi: 10.1002/da.20568.
    1. Vieweg W.V., Hasnain M., Howland R.H., Hettema J.M., Kogut C., Wood M.A., Pandurangi A.K. Citalopram, QTc interval prolongation, and torsade de pointes. How should we apply the recent FDA ruling? Am. J. Med. 2012;125:859–868. doi: 10.1016/j.amjmed.2011.12.002.
    1. Adkins D.E., Clark S.L., Åberg K., Hettema J.M., Bukszár J., McClay J.L., Souza R.P., van den Oord E.J. Genome-wide pharmacogenomic study of citalopram-induced side effects in STAR*D. Transl. Psychiatry. 2012;2:e129.
    1. Rozanski G.J., Witt R.C. IL-1 inhibits b-adrenergic control of cardiac calcium current: role of l-arginine/nitric oxide pathway. Am. J. Physiol. 1994;267:1753–1758.
    1. Liu S.J., Zhou W., Kennedy R.H. Suppression of b-adrenergic responsiveness of L-type Ca2+ current by IL-1b in rat ventricular myocytes. Am. J. Physiol. 1999;276:141–148.
    1. Kaprielian R., Wickenden A.D., Kassiri Z., Parker T.G., Liu P.P., Backx P.H. Relationship between K+ channel down-regulation and [Ca2+]i in rat ventricular myocytes following myocardial infarction. J. Physiol. 1999;517:229–245. doi: 10.1111/j.1469-7793.1999.0229z.x.
    1. Gazewood J.D., Richards D.R., Clebak K. Parkinson disease: an update. Am. Fam. Physician. 2013;87:267–273.
    1. Shneyder N., Harris M.K., Minagar A. Movement disorders in patients with multiple sclerosis. Handb. Clin. Neurol. 2011;100:307–314. doi: 10.1016/B978-0-444-52014-2.00023-9.
    1. Weschenfelder J., Sander C., Kluge M., Kirkby K.C., Himmerich H. The influence of cytokines on wakefulness regulation: clinical relevance, mechanisms and methodological problems. Psychiatr. Danub. 2012;24:112–126.
    1. Avitsur R., Yirmiya R. The immunobiology of sexual behavior: gender differences in the suppression of sexual activity during illness. Pharmacol. Biochem. Behav. 1999;64:787–796. doi: 10.1016/S0091-3057(99)00165-3.
    1. Kraus T., Haack M., Schuld A., Hinze-Selch D., Koethe D., Pollmächer T. Body weight, the tumor necrosis factor system, and leptin production during treatment with mirtazapine or venlafaxine. Pharmacopsychiatry. 2002;35:220–225. doi: 10.1055/s-2002-36390.
    1. Himmerich H., Schuld A., Pollmächer T. Weight gain during treatment with antipsychotics: clinical relevance, pathophysiology, and therapeutical strategies. Psychiatr. Prax. 2004;31(Suppl. 2):233–237. doi: 10.1055/s-2004-828475.
    1. Hannestad J., DellaGioia N., Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36:2452–2459. doi: 10.1038/npp.2011.132.
    1. Liberman A.C., Druker J., Refojo D., Holsboer F., Arzt E. Glucocorticoids inhibit GATA-3 phosphorylation and activity in T cells. FASEB J. 2009;23:1558–1571. doi: 10.1096/fj.08-121236.
    1. Ising M., Lauer C.J., Holsboer F., Modell S. The Munich vulnerability study on affective disorders: premorbid neuroendocrine profile of affected high-risk probands. J. Psychiatr. Res. 2005;39:21–28. doi: 10.1016/j.jpsychires.2004.04.009.
    1. Li Y., Xiao B., Qiu W., Yang L., Hu B., Tian X., Yang H. Altered expression of CD4(+)CD25(+) regulatory T cells and its 5-HT(1a) receptor in patients with major depression disorder. J. Affect. Disord. 2010;124:68–75. doi: 10.1016/j.jad.2009.10.018.
    1. Wittchen H.U., Zaudig M., Fydrich T. Strukturiertes Klinisches Interview für DSM-IV. Hogrefe; Göttingen, Germany: 1997.
    1. Beck A.T., Ward C.H., Mendelson M., Mock J., Erbaugh J. An inventory for measuring depression. Arch. Gen. Psychiatry. 1961;4:561–571. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Hamilton M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry. 1960;23:56–62. doi: 10.1136/jnnp.23.1.56.
    1. Kirchner H., Kleinicke C., Digel W. A whole-blood technique for testing production of human interferon by leukocytes. J. Immunol. Methods. 1982;48:213–219.
    1. Seidel A., Arolt V., Hunstiger M., Rink L., Behnisch A., Kirchner H. Cytokine production and serum proteins in depression. Scand. J. Immunol. 1995;41:534–538. doi: 10.1111/j.1365-3083.1995.tb03604.x.
    1. Baumann P., Hiemke C., Ulrich S., Eckermann G., Gaertner I., Gerlach M., Kuss H.J., Laux G., Müller-Oerlinghausen B., Rao M.L., Riederer P., Zernig G., Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry. 2004;37:243–265. doi: 10.1055/s-2004-832687.

Source: PubMed

3
Subscribe