Simultaneous monitoring of cerebral perfusion and cytochrome c oxidase by combining broadband near-infrared spectroscopy and diffuse correlation spectroscopy

Ajay Rajaram, Gemma Bale, Matthew Kewin, Laura B Morrison, Ilias Tachtsidis, Keith St Lawrence, Mamadou Diop, Ajay Rajaram, Gemma Bale, Matthew Kewin, Laura B Morrison, Ilias Tachtsidis, Keith St Lawrence, Mamadou Diop

Abstract

Preterm infants born with very low birth weights are at a high risk of brain injury, in part because the premature brain is believed to be prone to periods of low cerebral blood flow (CBF). Tissue damage is likely to occur if reduction in CBF is sufficient to impair cerebral energy metabolism for extended periods. Therefore, a neuromonitoring method that can detect reductions in CBF, large enough to affect metabolism, could alert the neonatal intensive care team before injury occurs. In this report, we present the development of an optical system that combines diffuse correlation spectroscopy (DCS) for monitoring CBF and broadband near-infrared spectroscopy (B-NIRS) for monitoring the oxidation state of cytochrome c oxidase (oxCCO) - a key biomarker of oxidative metabolism. The hybrid instrument includes a multiplexing system to enable concomitant DCS and B-NIRS measurements while avoiding crosstalk between the two subsystems. The ability of the instrument to monitor dynamic changes in CBF and oxCCO was demonstrated in a piglet model of neonatal hypoxia-ischemia (HI). Experiments conducted in eight animals, including two controls, showed that oxCCO exhibited a delayed response to ischemia while CBF and tissue oxygenation (StO2) responses were instantaneous. These findings suggest that simultaneous neuromonitoring of perfusion and metabolism could provide critical information regarding clinically significant hemodynamic events prior to the onset of brain injury.

Keywords: (170.3660) Light propagation in tissues; (170.3880) Medical and biological imaging; (170.3890) Medical optics instrumentation; (170.6510) Spectroscopy, tissue diagnostics.

Conflict of interest statement

The authors declare that there are no conflicts of interest related to this article.

Figures

Fig. 1
Fig. 1
Simplified schematic of B-NIRS/DCS system with the shutter-based multiplexer. Red dots: B-NIRS emission and detection probes; blue dots: DCS emission and detection fibers.
Fig. 2
Fig. 2
Autocorrelation functions (blue symbols) acquired with (a) DCS alone, and (b) DCS in the presence of light from the B-NIRS source (10 mm). The red lines in both figures are the best fit to the diffusion approximation.
Fig. 3
Fig. 3
(A) DCS autocorrelation curves with B-NIRS light (30 mm from DCS detection) at varying intensities, (B) diffusion coefficient values without (blue) and with (red) the B-NIRS light; data were averaged over 10 acquisitions, error bars represent standard deviation.
Fig. 4
Fig. 4
Estimation of StO2 from simulated spectra of varying SNR (obtained by varying the number of averaged spectra). The circles represent the mean and the error bars are the standard deviation over 500 repetitions for each set of averaged spectra.
Fig. 5
Fig. 5
Broadband NIRS analysis showing (A) raw intensity measurements at baseline and during HI insult, (B) attenuation and best fit of the 2- (Hb and HbO2) and 3-component models (Hb, HbO2, and oxCCO), and (C) and residuals between measured and modelled attenuation, with CCO difference spectrum (ox-redCCO) for comparison.
Fig. 6
Fig. 6
DCS autocorrelation curves measured in one piglet during (A) baseline (CBF = 35.2 ± 0.8 ml/100g/min), (B) HI insult (CBF = 2.6 ± 0.1 ml/100g/min), and (C) following insult recovery (CBF = 32.5 ± 0.8 ml/100g/min). The red lines represent best fit to the diffusion approximation.
Fig. 7
Fig. 7
Simultaneous monitoring of StO2, absolute CBF, and oxCCO in 3 hypoxia-ischemia (HI) animals (A, B, C) and a control piglet (D). The HI insult began with clamping the carotid arteries (region (i)), followed by inducing hypoxia by reducing the inspired oxygen fraction to 8% (region (ii)).
Fig. 8
Fig. 8
Correlation plots of a) oxCCO vs CBF, and b) StO2 vs CBF; * indicates a significant change in either oxCCO or StO2 from baseline (p<0.05). Error bars represent the standard error of the mean. CBF intervals with mean values of 0.62 and 0.76 show only data from two and one animals, respectively.

References

    1. Blencowe H., Cousens S., Oestergaard M. Z., Chou D., Moller A. B., Narwal R., Adler A., Vera Garcia C., Rohde S., Say L., Lawn J. E., “National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications,” Lancet 379(9832), 2162–2172 (2012).10.1016/S0140-6736(12)60820-4
    1. Volpe J. J., “Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances,” Lancet Neurol. 8(1), 110–124 (2009).
    1. Bracewell M., Marlow N., “Patterns of motor disability in very preterm children,” Ment. Retard. Dev. Disabil. Res. Rev. 8(4), 241–248 (2002).10.1002/mrdd.10049
    1. Bassan H., “Intracranial Hemorrhage in the Preterm Infant: Understanding It, Preventing It,” Clin. Perinatol. 36(4), 737–762 (2009).10.1016/j.clp.2009.07.014
    1. Bapat R., Narayana P. A., Zhou Y., Parikh N. A., “Magnetic resonance spectroscopy at term-equivalent age in extremely preterm infants: Association with cognitive and language development,” Pediatr. Neurol. 51(1), 53–59 (2014).10.1016/j.pediatrneurol.2014.03.011
    1. Thayyil S., Chandrasekaran M., Taylor A., Bainbridge A., Cady E. B., Chong W. K. K., Murad S., Omar R. Z., Robertson N. J., “Cerebral Magnetic Resonance Biomarkers in Neonatal Encephalopathy: A Meta-analysis,” Pediatrics 125(2), e382–e395 (2010).10.1542/peds.2009-1046
    1. Groenendaal F., Veenhoven R. H., van der Grond J., Jansen G. H., Witkamp T. D., de Vries L. S., “Cerebral lactate and N-acetyl-aspartate/choline ratios in asphyxiated full-term neonates demonstrated in vivo using proton magnetic resonance spectroscopy,” Pediatr. Res. 35(2), 148–151 (1994).10.1203/00006450-199402000-00004
    1. Boas D. A., Franceschini M. A., “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos Trans A Math Phys Eng Sci 369(1955), 4407–4424 (2011).10.1098/rsta.2011.0250
    1. Arora R., Ridha M., Lee D. S. C., Elliott J., Rosenberg H. C., Diop M., Lee T.-Y., St Lawrence K., “Preservation of the metabolic rate of oxygen in preterm infants during indomethacin therapy for closure of the ductus arteriosus,” Pediatr. Res. 73(6), 713–718 (2013).10.1038/pr.2013.53
    1. Diop M., Kishimoto J., Toronov V., Lee D. S. C., St Lawrence K., “Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants,” Biomed. Opt. Express 6(10), 3907–3918 (2015).10.1364/BOE.6.003907
    1. Durduran T., Yodh A. G., “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).10.1016/j.neuroimage.2013.06.017
    1. Verdecchia K., Diop M., Lee T.-Y., St Lawrence K., “Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy,” J. Biomed. Opt. 18(2), 27007 (2013).10.1117/1.JBO.18.2.027007
    1. Caldwell M., Moroz T., Hapuarachchi T., Bainbridge A., Robertson N. J., Cooper C. E., Tachtsidis I., “Modelling Blood Flow and Metabolism in the Preclinical Neonatal Brain during and Following Hypoxic-Ischaemia,” PLoS One 10(10), e0140171 (2015).10.1371/journal.pone.0140171
    1. Lin P.-Y., Roche-Labarbe N., Dehaes M., Carp S., Fenoglio A., Barbieri B., Hagan K., Grant P. E., Franceschini M. A., “Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants,” J. Vis. Exp. 73, e4379 (2013).
    1. Tichauer K. M., Brown D. W., Hadway J., Lee T.-Y., St Lawrence K., Lawrence K. S., Kenneth M., Lee Y., St K., Near-infrared L., “Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets,” J. Appl. Physiol. 100(3), 850–857 (2006).10.1152/japplphysiol.00830.2005
    1. Tichauer K. M., Wong D. Y. L., Hadway J. A., Rylett R. J., Lee T. Y., St Lawrence K., “Assessing the severity of perinatal hypoxia-ischemia in piglets using near-infrared spectroscopy to measure the cerebral metabolic rate of oxygen,” Pediatr. Res. 65(3), 301–306 (2009).10.1203/PDR.0b013e318194faa6
    1. Watzman H. M., Kurth C. D., Montenegro L. M., Rome J., Steven J. M., Nicolson S. C., “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93(4), 947–953 (2000).10.1097/00000542-200010000-00012
    1. Tichauer K. M., Elliott J. T., Hadway J. A., Lee D. S., Lee T.-Y., St Lawrence K., “Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets,” J. Appl. Physiol. 109(3), 878–885 (2010).10.1152/japplphysiol.01432.2009
    1. Sakoh M., Ostergaard L., Røhl L., Smith D. F., Simonsen C. Z., Sørensen J. C., Poulsen P. V., Gyldensted C., Sakaki S., Gjedde A., “Relationship between residual cerebral blood flow and oxygen metabolism as predictive of ischemic tissue viability: sequential multitracer positron emission tomography scanning of middle cerebral artery occlusion during the critical first 6 hours after stroke in pigs,” J. Neurosurg. 93(4), 647–657 (2000).10.3171/jns.2000.93.4.0647
    1. Bale G., Elwell C. E., Tachtsidis I., “From Jöbsis to the present day : a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 099801 (2016).
    1. Bainbridge A., Tachtsidis I., Faulkner S. D., Price D., Zhu T., Baer E., Broad K. D., Thomas D. L., Cady E. B., Robertson N. J., Golay X., “Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy,” Neuroimage 102(Pt 1 P1), 173–183 (2014).10.1016/j.neuroimage.2013.08.016
    1. Tisdall M. M., Tachtsidis I., Leung T. S., Elwell C. E., Smith M., “Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury,” J. Neurosurg. 109(3), 424–432 (2008).10.3171/JNS/2008/109/9/0424
    1. Diop M., Elliott J. T., Tichauer K. M., Lee T.-Y., St Lawrence K., “A broadband continuous-wave multichannel near-infrared system for measuring regional cerebral blood flow and oxygen consumption in newborn piglets,” Rev. Sci. Instrum. 80(5), 054302 (2009).10.1063/1.3123347
    1. Strangman G., Franceschini M. A., Boas D. A., “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003).10.1016/S1053-8119(03)00021-1
    1. Diop M., Verdecchia K., Lee T.-Y., St Lawrence K., “Calibration of diffuse correlation spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral blood flow measurements,” Biomed. Opt. Express 2(7), 2068–2081 (2011).10.1364/BOE.2.002068
    1. Yeganeh H. Z., Toronov V., Elliott J. T., Diop M., Lee T.-Y., St Lawrence K., “Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations,” Biomed. Opt. Express 3(11), 2761–2770 (2012).10.1364/BOE.3.002761
    1. Jacques S. L., “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).10.1088/0031-9155/58/11/R37
    1. Matcher S. J., Cope M., Delpy D. T., “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).10.1088/0031-9155/39/1/011
    1. Matcher S. J., Kirkpatrick P. J., Nahid K., Cope M., Delpy D. T., “Absolute quantification methods in tissue near-infrared spectroscopy,” Proc. SPIE 2389(May 1995), 486– 495 (1995).
    1. Essenpreis M., Cope M., Elwell C. E., Arridge S. R., van der Zee P., Delpy D. T., “Wavelength dependence of the differential pathlength factor and the log slope in time-resolved tissue spectroscopy,” Adv. Exp. Med. Biol. 333, 9–20 (1993).10.1007/978-1-4899-2468-1_2
    1. K. St. Lawrence, K. Verdecchia, J. T. Elliott, and M. Diop, “Measuring Cerebral Hemodynamics and Energy Metabolism by Near-Infrared Spectroscopy,” Hirrlinger J., Waagepetersen H. (Eds) Brain Energy Metabolism, Neurometho (Humana Press, 2014), p. Neuromethods, vol 90.
    1. Brown D. W., Picot P. A., Naeini J. G., Springett R., Delpy D. T., Lee T. Y., “Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets,” Pediatr. Res. 51(5), 564–570 (2002).10.1203/00006450-200205000-00004
    1. Cooper J. A., Tichauer K. M., Boulton M., Elliott J., Diop M., Arango M., Lee T.-Y., St Lawrence K., “Continuous monitoring of absolute cerebral blood flow by near-infrared spectroscopy during global and focal temporary vessel occlusion,” J. Appl. Physiol. 110(6), 1691–1698 (2011).10.1152/japplphysiol.01458.2010
    1. Cheung C., Culver J. P., Takahashi K., Greenberg J. H., Yodh A. G., “In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies,” Phys. Med. Biol. 46(8), 2053–2065 (2001).10.1088/0031-9155/46/8/302
    1. Wang D., Parthasarathy A. B., Baker W. B., Gannon K., Kavuri V., Ko T., Schenkel S., Li Z., Li Z., Mullen M. T., Detre J. A., Yodh A. G., “Fast blood flow monitoring in deep tissues with real-time software correlators,” Biomed. Opt. Express 7(3), 776–797 (2016).10.1364/BOE.7.000776
    1. Kewin M. D., Milej D. F., Abdalmalak A., Rajaram A., Diop M., de Ribaupierre S., St. Lawrence K., Rajaram A., Diop M., de Ribaupierre S., St. Lawrence K., “Validation of a Hyperspectral NIRS Method for Measuring Oxygen Saturation by Comparison to Time-Resolved NIRS,” in Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (OSA, 2018), p. OW4C4.10.1364/OTS.2018.OW4C.4
    1. Martelli F., Binzoni T., Pifferi A., Spinelli L., Farina A., Torricelli A., “There’s plenty of light at the bottom: Statistics of photon penetration depth in random media,” Sci. Rep. 6(1), 27057 (2016).10.1038/srep27057
    1. Farzam P., Johansson J., Mireles M., Jiménez-Valerio G., Martínez-Lozano M., Choe R., Casanovas O., Durduran T., “Pre-clinical longitudinal monitoring of hemodynamic response to anti-vascular chemotherapy by hybrid diffuse optics,” Biomed. Opt. Express 8(5), 2563–2582 (2017).10.1364/BOE.8.002563
    1. Lee S. Y., Pakela J. M., Helton M. C., Vishwanath K., Chung Y. G., Kolodziejski N. J., Stapels C. J., McAdams D. R., Fernandez D. E., Christian J. F., O’Reilly J., Farkas D., Ward B. B., Feinberg S. E., Mycek M. A., “Compact dual-mode diffuse optical system for blood perfusion monitoring in a porcine model of microvascular tissue flaps,” J. Biomed. Opt. 22(12), 1–14 (2017).10.1117/1.JBO.22.12.121609
    1. Rohrbach D. J., Rigual N., Tracy E., Kowalczewski A., Keymel K. L., Cooper M. T., Mo W., Baumann H., Henderson B. W., Sunar U., “Interlesion differences in the local photodynamic therapy response of oral cavity lesions assessed by diffuse optical spectroscopies,” Biomed. Opt. Express 3(9), 2142–2153 (2012).10.1364/BOE.3.002142
    1. Carp S. A., Farzam P., Redes N., Hueber D. M., Franceschini M. A., “Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis,” Biomed. Opt. Express 8(9), 3993–4006 (2017).10.1364/BOE.8.003993
    1. Springett R., Newman J., Cope M., Delpy D. T., “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).10.1152/ajpheart.2000.279.5.H2202

Source: PubMed

3
Subscribe