Abnormal functional connectivity under somatosensory stimulation in migraine: a multi-frequency magnetoencephalography study

Jing Ren, Jing Xiang, Yueqiu Chen, Feng Li, Ting Wu, Jingping Shi, Jing Ren, Jing Xiang, Yueqiu Chen, Feng Li, Ting Wu, Jingping Shi

Abstract

Background: Although altered neural networks have been demonstrated in recent MEG (magnetoencephalography) research in migraine patients during resting state, it is unknown whether this alteration can be detected in task-related networks. The present study aimed to investigate the abnormalities of the frequency-specific somatosensory-related network in migraine patients by using MEG.

Methods: Twenty-two migraineurs in the interictal phase and twenty-two sex- and age-matched healthy volunteers were studied using a whole-head magnetoencephalography (MEG) system. Electrical stimuli were delivered alternately to the median nerve on the right wrists of all subjects. MEG data were analyzed in a frequency range of 1-1000 Hz in multiple bands.

Results: The brain network patterns revealed that the patients with migraine exhibited remarkably increased functional connectivity in the high-frequency (250-1000 Hz) band between the sensory cortex and the frontal lobe. The results of quantitative analysis of graph theory showed that the patients had (1) an increased degree of connectivity in the theta (4-8 Hz), beta (13-30 Hz) and gamma (30-80 Hz) bands; (2) an increased connectivity strength in the beta (13-30 Hz) and gamma (30-80 Hz) bands; (3) an increased path length in the beta (13-30 Hz), gamma (30-80 Hz) and ripple (80-250 Hz) bands; and (4) an increased clustering coefficient in the theta (4-8 Hz), beta (13-30 Hz) and gamma (30-80 Hz) bands.

Conclusions: The results indicate that migraine is associated with aberrant connections from the somatosensory cortex to the frontal lobe. The frequency-specific increases in connectivity in terms of strength, path length and clustering coefficients support the notion that migraineurs have elevated cortical networks. This alteration in functional connectivity may be involved in somatosensory processing in migraine patients and may contribute to understanding migraine pathophysiology and to providing convincing evidence for a spatially targeted migraine therapy.

Keywords: Functional connectivity; Magnetoencephalography; Migraine; Multi-frequency; Somatosensory.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Magnetoencephalography (MEG) waveforms showing neuromagnetic activation evoked by right median nerve stimulation in a migraine subject (“Migraine”) and a healthy subject (“Control”) in a frequency band of 30–80 Hz. There are at least two responses in the somatosensory-evoked magnetic fields (SEFs), “SEFs1” and “SEFs2”. Our analyzed time window is 10-40 ms, which contained the two main responses under somatosensory stimulation. The “Trigger” indicates the start of median nerve stimuli. The “SEFs1” and “SEFs2” indicate the first and second SEF responses, respectively
Fig. 2
Fig. 2
Real time source images showing spatial activities under somatosensory stimulation in gamma band (30–80 Hz) recorded from migraine patients and control. 3D images are displayed in axial, coronal and oblique sagittal positions. The black arrow indacates the source activity flow from the deep brain to the sensory cortex
Fig. 3
Fig. 3
Typical functional connectivity network patterns in the 1–1000 Hz frequency range in migraine patients and controls, visualized from the lateral (left column) and axial (right column) views. Migraineurs show a significantly altered pattern of functional connectivity network at 250–1000 Hz compared with the controls, showing more connections between the sensory cortex and the frontal lobe. (Color figure online)
Fig. 4
Fig. 4
Number of migraineurs and controls with different functional connectivity patterns at 250–1000 Hz. Patients have significantly higher odds of functional connectivity in the frontal lobe than the controls. The orange bars indicate that functional connections are present in frontal cortices. The blues bars indicate that no excitatory connections exist in frontal cortices
Fig. 5
Fig. 5
Comparison of the organization of the functional connectivity networks measured by four parameters (degree, strength, path length, and clustering coefficient) between migraine patients and healthy controls. *p < 0.05, and the result is still significant after correction for multiple comparisons using the FDR controlling procedure (corrected for 7 × 4 tests), **p < 0.01. (Color figure online)
Fig. 6
Fig. 6
Charts of Spearman’s correlation showing significant relationships between the parameters of network and clinical characteristics in migraineurs. Duration of migraine attacks shows a negative correlation with network strength in the 4–8 Hz range. Migraine attack frequency shows a positive correlation with path length in both the 1–4 Hz and 30–80 Hz frequencies

References

    1. Burstein R, Noseda R, Borsook D. Migraine: multiple processes, complex pathophysiology. J Neurosci. 2015;35(17):6619–6629. doi: 10.1523/JNEUROSCI.0373-15.2015.
    1. Goadsby PJ. Pathophysiology of migraine. Neurol Clin. 2009;27(2):335–360. doi: 10.1016/j.ncl.2008.11.012.
    1. Michael CF, SJ H. Human studies in the pathophysiology of migraine: genetics and functional neuroimaging. Headache: The Journal of Head and Face Pain. 2013;53(2):401–412. doi: 10.1111/head.12024.
    1. Russo A, Tedeschi G, Tessitore A. Functional magnetic resonance imaging and brain functional connectivity in migraine. J Headache Pain. 2015;16(Suppl 1):A11. doi: 10.1186/1129-2377-16-S1-A11.
    1. de Tommaso M, Ricci K, Vecchio E, Marinazzo D, Trotta G, Stramaglia S. Migraine and functional connectivity: an innovative pathophysiological perspective. J Headache Pain. 2015;16(Suppl 1):A10
    1. Colombo B, Rocca MA, Messina R, Guerrieri S, Filippi M. Resting-state fMRI functional connectivity: a new perspective to evaluate pain modulation in migraine? Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2015;36(Suppl 1):41–45. doi: 10.1007/s10072-015-2145-x.
    1. Tessitore A, Russo A, Giordano A, Conte F, Corbo D, De Stefano M, et al. Disrupted default mode network connectivity in migraine without aura. The Journal of Headache and Pain. 2013;14(1):89. doi: 10.1186/1129-2377-14-89.
    1. Cao Z, Lin CT, Chuang CH, Lai KL, Yang AC, Fuh JL, et al. Resting-state EEG power and coherence vary between migraine phases. J Headache Pain. 2016;17(1):102. doi: 10.1186/s10194-016-0697-7.
    1. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, et al. Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. Brain 2009;132(1):213–224
    1. Conforto AB, Chaim KT, Peres MFP, Goncalves AL, Siqueira IL, Barreiros MAM, et al. Interictal abnormal fMRI activation of visual areas during a motor task cued by visual stimuli in migraine. Einstein. 2017;15(1):17–23. doi: 10.1590/s1679-45082017ao3719.
    1. Hsiao FJ, Wang SJ, Lin YY, Fuh JL, Ko YC, Wang PN, et al. Somatosensory gating is altered and associated with migraine chronification: a magnetoencephalographic study. Cephalalgia : an international journal of headache. 2018;38(4):744–753. doi: 10.1177/0333102417712718.
    1. Solstrand Dahlberg L, Linnman CN, Lee D, Burstein R, Becerra L, Borsook D. Responsivity of periaqueductal gray connectivity is related to headache frequency in episodic migraine. Front Neurol. 2018;9:61. doi: 10.3389/fneur.2018.00061.
    1. Griebe M, Flux F, Wolf ME, Hennerici MG, Szabo K. Multimodal assessment of optokinetic visual stimulation response in migraine with aura. Headache. 2014;54(1):131–141. doi: 10.1111/head.12194.
    1. Vincent M, Pedra E, Mourão-Miranda J, Bramati I, Henrique A, Moll J. Enhanced Interictal responsiveness of the Migraineous visual cortex to incongruent Bar stimulation: a functional MRI visual activation study. Cephalalgia : an international journal of headache. 2003;23(9):860–868. doi: 10.1046/j.1468-2982.2003.00609.x.
    1. de Tommaso M, Trotta G, Vecchio E, Ricci K, Van de Steen F, Montemurno A, et al. Functional connectivity of EEG signals under laser stimulation in migraine. Front Hum Neurosci. 2015;9:640.
    1. Harriott AM, Schwedt TJ. Migraine is associated with altered processing of sensory stimuli. Curr Pain Headache Rep. 2014;18(11):458. doi: 10.1007/s11916-014-0458-8.
    1. Schwedt TJ. Multisensory integration in migraine. Curr Opin Neurol. 2013;26(3):248–253. doi: 10.1097/WCO.0b013e328360edb1.
    1. Xiang J, Wang Y, Chen Y, Liu Y, Kotecha R, Huo X, et al. Noninvasive localization of epileptogenic zones with ictal high-frequency neuromagnetic signals. J Neurosurg Pediatr. 2010;5(1):113–122. doi: 10.3171/2009.8.PEDS09345.
    1. Zijlmans M, Worrell GA, Dumpelmann M, Stieglitz T, Barborica A, Heers M, et al. How to record high-frequency oscillations in epilepsy: a practical guideline. Epilepsia. 2017;58(8):1305–1315. doi: 10.1111/epi.13814.
    1. Caetano G, Olausson H, Cole J, Jousmaki V, Hari R. Cortical responses to Adelta-fiber stimulation: magnetoencephalographic recordings in a subject lacking large myelinated afferents. Cereb Cortex. 2010;20(8):1898–1903. doi: 10.1093/cercor/bhp260.
    1. Huttunen J, Komssi S, Lauronen L. Spatial dynamics of population activities at S1 after median and ulnar nerve stimulation revisited: an MEG study. NeuroImage. 2006;32(3):1024–1031. doi: 10.1016/j.neuroimage.2006.04.196.
    1. Hagiwara K, Okamoto T, Shigeto H, Ogata K, Somehara Y, Matsushita T, et al. Oscillatory gamma synchronization binds the primary and secondary somatosensory areas in humans. NeuroImage. 2010;51(1):412–420. doi: 10.1016/j.neuroimage.2010.02.001.
    1. Headache Classification Committee of the International Headache S The international classification of headache disorders, 3rd edition (beta version) Cephalalgia : an international journal of headache. 2013;33(9):629–808. doi: 10.1177/0333102413485658.
    1. Ge HT, Liu HX, Xiang J, Miao AL, Tang L, Guan QS, et al. Abnormal cortical activation in females with acute migraine: a magnetoencephalography study. Clin Neurophysiol. 2015;126(1):170–179. doi: 10.1016/j.clinph.2014.03.033.
    1. Muthukumaraswamy SD. High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Front Hum Neurosci. 2013;7:138. doi: 10.3389/fnhum.2013.00138.
    1. Xiang J, Luo Q, Kotecha R, Korman A, Zhang F, Luo H, et al. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals. Front Neuroinform. 2014;8:57. doi: 10.3389/fninf.2014.00057.
    1. Liu H, Ge H, Xiang J, Miao A, Tang L, Wu T, et al. Resting state brain activity in patients with migraine: a magnetoencephalography study. J Headache Pain. 2015;16(1):525. doi: 10.1186/s10194-015-0525-5.
    1. Xiang J, Tenney JR, Korman AM, Leiken K, Rose DF, Harris E, et al. Quantification of Interictal Neuromagnetic activity in absence epilepsy with accumulated source imaging. Brain Topogr. 2015;28(6):904–914. doi: 10.1007/s10548-014-0411-5.
    1. Tang L, Xiang J, Huang S, Miao A, Ge H, Liu H, et al. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2015. Neuromagnetic high-frequency oscillations correlate with seizure severity in absence epilepsy.
    1. Xiang J, Korman A, Samarasinghe KM, Wang X, Zhang F, Qiao H, et al. Volumetric imaging of brain activity with spatial-frequency decoding of neuromagnetic signals. J Neurosci Methods. 2015;239:114–128. doi: 10.1016/j.jneumeth.2014.10.007.
    1. Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks. NeuroImage. 2011;56(4):2068–2079. doi: 10.1016/j.neuroimage.2011.03.069.
    1. Wu C, Xiang J, Sun J, Huang S, Tang L, Miao A, et al. Quantify neuromagnetic network changes from pre-ictal to ictal activities in absence seizures. Neuroscience. 2017;357:134–144. doi: 10.1016/j.neuroscience.2017.05.038.
    1. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage. 2002;15(4):870–878. doi: 10.1006/nimg.2001.1037.
    1. Schwedt TJ, Chiang C-C, Chong CD, Dodick DW. Functional MRI of migraine. The Lancet Neurology. 2015;14(1):81–91. doi: 10.1016/S1474-4422(14)70193-0.
    1. Liu J, Zhao L, Lei F, Zhang Y, Yuan K, Gong Q, et al. Disrupted resting-state functional connectivity and its changing trend in migraine suffers. Hum Brain Mapp. 2015;36(5):1892–1907. doi: 10.1002/hbm.22744.
    1. Hougaard A, Amin FM, Magon S, Sprenger T, Rostrup E, Ashina M. No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura. Eur J Neurol. 2015;22(4):702–e46. doi: 10.1111/ene.12636.
    1. Chen WT, Lin YY, Fuh JL, Hamalainen MS, Ko YC, Wang SJ. Sustained visual cortex hyperexcitability in migraine with persistent visual aura. Brain. 2011;134(Pt 8):2387–2395. doi: 10.1093/brain/awr157.
    1. Restuccia D, Vollono C, Del Piero I, Martucci L, Zanini S. Somatosensory high frequency oscillations reflect clinical fluctuations in migraine. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology 2012;123(10):2050–2056
    1. Cebolla AM, Palmero-Soler E, Dan B, Cheron G. Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential. NeuroImage. 2011;54(2):1297–1306. doi: 10.1016/j.neuroimage.2010.08.060.
    1. Lorenz J, Minoshima S, Casey K. Keeping pain out of mind: The role of the dorsolateral prefrontal cortex in pain modulation. Brain. 2003;126:1079–1091. doi: 10.1093/brain/awg102.
    1. de la Vega A, Chang LJ, Banich MT, Wager TD, Yarkoni T. Large-scale meta-analysis of human medial frontal cortex reveals tripartite functional organization. J Neurosci. 2016;36(24):6553–6562. doi: 10.1523/JNEUROSCI.4402-15.2016.
    1. D'Andrea G, D'Arrigo A, Dalle Carbonare M, Leon A. Pathogenesis of migraine: role of neuromodulators. Headache. 2012;52(7):1155–1163. doi: 10.1111/j.1526-4610.2012.02168.x.
    1. Li F, Xiang J, Wu T, Zhu D, Shi J. Abnormal resting-state brain activity in headache-free migraine patients: a magnetoencephalography study. Clin Neurophysiol. 2016;127(8):2855–2861. doi: 10.1016/j.clinph.2016.05.015.
    1. Wu D, Zhou Y, Xiang J, Tang L, Liu H, Huang S, et al. Multi-frequency analysis of brain connectivity networks in migraineurs: a magnetoencephalography study. The Journal of Headache and Pain. 2016;17(1):38. doi: 10.1186/s10194-016-0636-7.
    1. Kanda M, Mima T, Oga T, Matsuhashi M, Toma K, Hara H, et al. Transcranial magnetic stimulation (TMS) of the sensorimotor cortex and medial frontal cortex modifies human pain perception. Clin Neurophysiol. 2003;114(5):860–866. doi: 10.1016/S1388-2457(03)00034-8.
    1. Brighina F, Piazza A, Vitello G, Aloisio A, Palermo A, Daniele O, et al. rTMS of the prefrontal cortex in the treatment of chronic migraine: a pilot study. J Neurol Sci. 2004;227(1):67–71. doi: 10.1016/j.jns.2004.08.008.
    1. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci. 2006;26(1):63–72. doi: 10.1523/JNEUROSCI.3874-05.2006.
    1. Liu J, Qin W, Nan J, Li J, Yuan K, Zhao L, et al. Gender-related differences in the dysfunctional resting networks of migraine suffers. PLoS One. 2011;6(11):e27049. doi: 10.1371/journal.pone.0027049.
    1. Zhang J, Su J, Wang M, Zhao Y, Zhang QT, Yao Q, et al. The posterior insula shows disrupted brain functional connectivity in female Migraineurs without Aura based on Brainnetome atlas. Sci Rep. 2017;7(1):16868. doi: 10.1038/s41598-017-17069-8.
    1. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 2010;52(3):1059–1069. doi: 10.1016/j.neuroimage.2009.10.003.
    1. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440. doi: 10.1038/30918.
    1. Liu J, Zhao L, Li G, Xiong S, Nan J, Li J, et al. Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PLoS One. 2012;7(12):e51250. doi: 10.1371/journal.pone.0051250.
    1. Jia Z, Yu S. Grey matter alterations in migraine: a systematic review and meta-analysis. Neuroimage Clin. 2017;14:130–140. doi: 10.1016/j.nicl.2017.01.019.

Source: PubMed

3
Subscribe